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Abstract 

In this paper, the Goldbach Conjecture﹛1, 1﹜  is proved by the complex 
variable integration. To prove the conjecture, a new function is introduced into 
Dirichlet series. And then, by using the Perron Formula of Dirichlet Series and 
the Residue Theorem, we conclude that any larger even integer can decompose 
the sum of two primes. 
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Notation： 

p    prime number 

N    positive integer 

p N    p  exactly divides N  

( ), 1p N =    coprime between p  and N  

﹛1, 1﹜   the even integer as the sum of two primes 
﹛a, b﹜  the even integer as the sum of product of at most a primes and 

product of at most b primes 

( )nφ    the Euler function 

s itσ= +    complex variable 

( )sζ    ( )
1

s

n
s nζ

∞
−

=

=∑ , the Riemann zeta function 

( )sζ
ζ
′

   ( ) ( )
( )

s
s

s
ζζ

ζ ζ
′′

=  
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( )nΛ    ( ) log ,
0,

mp if n p
n

otherwise
⎧ =

Λ = ⎨
⎩

, the Mangoldt function 

( )xπ    ( ) 1
p x

xπ
≤

=∑  

( )xθ    ( ) log
p x

x pθ
≤

=∑  

( )xψ    ( ) ( )
n x

x nψ
≤

= Λ∑  

cσ    the convergence abscissa of Dirichlet series 

aσ    the absolute convergence abscissa of Dirichlet series 

( )resf s    the residue of function ( )f s  

( )( )N f s    the number of zero point of function ( )f s  

( ),B O A B A=  there exists a calculable position constant c ， such 

that B cA≤ , 

( )1o    the constant tending to zero 

γ    the Euler constant, 0.577γ = ⋅⋅⋅  

ε    the sufficiently small positive constant 

1c ， 2c ， 3c     calculable positive constant 
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1. Introduction 
As well-known, the Goldbach Conjecture ﹛1, 1﹜ has not been resolved in 

mathematical field. The conjecture states that every even integer 4N ≥  can 
decompose the sum of two primes (e.g., 12 = 5 + 7, 20 = 3 + 17). In over past two 
hundreds years, several relevant proofs on this issue have been conducted. Using the 
sieve method, some mathematicians verified the results including﹛9, 9﹜(Brun, 1920) 
[1], ﹛1, c﹜(R´enyi, 1947) [2], ﹛1, 5﹜(Pan, 1962) [3], ﹛1, 4﹜(Wang, 1962) [4], 
﹛1, 3﹜(Richert, 1969) [5], ﹛1, 2﹜(Chen, 1973) [6], etc. In 1975, Montgomery 
and Vaughan made the progress on the exceptional set in Goldbach’s problem by the 
circle method [7]. However,﹛1, 1﹜has not been proven up to now. In current paper, 
by using the complex variable integration, we are to prove ﹛1, 1﹜. 

First, we define a new function 

( )
0, mod

1,
p N

if n N p
n

otherwise
λ ≤

≡⎧⎪= ⎨
⎪⎩

,     (1.1) 

where ( ), 1p N = , { }2,3,5,7,p = …  is the prime sequence. Hence, this function 

is provided with properties of sieve function. 

Based on the series: ( )sζ , ( )xπ , ( )xθ  and ( )xψ , we obtain the new 

following series: 

( ) ( )
1

, s

n

s n nζ λ λ
∞

−

=

=∑ ,      (1.2) 

( ) ( ),
p x

x pπ λ λ
≤

=∑ ,      (1.3) 

( ) ( ), log
p x

x p pθ λ λ
≤

=∑ ,      (1.4) 

( ) ( ) ( ),
n x

x n nψ λ λ
≤

= Λ∑ ,      (1.5) 

and 

( ) ( ) ( )
1

, s

n

s n n nλ λ
∞

−

=

Ψ = Λ∑ .           (1.6) 

In this case, if x N= , such that ( ), 0Nπ λ > , then ﹛1, 1﹜ is true. 

By the Prime Number Theorem [8], we have 

( ) ( ) ( ) 1

2
, , log ,

x
x x x u u duθ λ π λ π λ −= − ∫ ,     (1.7) 

( ) ( )( ) ( )( ) 11 2

2
, , log , log

x
x x x x u u duπ λ θ λ θ λ

−−= + ∫ ,   (1.8) 

and 
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( ) ( ) ( )1
2, ,x x O xψ λ θ λ= + .      (1.9) 

So we can estimate the value of function ( ),xπ λ  by function ( ),xψ λ . 

In present paper, applying the Perron Formula of Dirichlet Series and the 
Residue Theorem, we will verify following theorems. 
Theorem 1. If N  is any larger even integer, then 

( )

( )log

, 1

1( , ) 1 e
1

c N

p N
p N

N N O N
p

ψ λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ .         (1.10) 

Theorem 2. If N  is any larger even integer, then 

( )
( )

( )log

, 1

1, 1
log 1

c N

p N
p N

NN O Ne
N p

π λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ .        (1.11) 

Remark: The propositions (1.10) and (1.11) are equivalent. 

By Theorem 2 we have ( ), 0Nπ λ > , the Goldbach Conjecture (i.e., {1, 1}) is 

established. 
To prove Theorem 1 and Theorem 2, we need the following lemmas. 

 
 

2. Lemmas 
Lemma 1. The Perron Formula of Dirichlet Series. 

For the Dirichlet series 

( ) ( )
1

s

n

A s a n n
∞

−

=

=∑ , aσ < +∞ ,     (2.1) 

if there exist increasing functions ( )H u  and ( )B u , such that 

( ) ( )a n H n≤ , 1, 2,3n = … ,      (2.2) 

and 

( ) ( )
1n

a n n Bσ σ
∞

−

=

≤∑ , aσ σ> ,     (2.3) 

for any 0 0 0s itσ= + , let 0 0 ab bσ σ≥ + > , 1T ≥ , 1x ≥  (when x is a positive integer), 

then 

( ) ( ) ( )0 0
0

1 1
2 2

sb iTs s

b iT
n x

xa n n a x x A s s ds
i sπ

+− −

−
≤

+ = +∑ ∫  
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( )0
bx B b

O
T

σ⎛ ⎞+
+ ⎜ ⎟

⎝ ⎠
( )01 log2 min 1, xO x H x

T
σ−⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,   (2.4) 

the constant implied in O  depends on aσ  and 0b . 

Let 0 0s = , then 

( ) ( ) ( )1 1
2 2

sb iT

b iT
n x

xa n a x A s ds
i sπ

+

−
≤

+ =∑ ∫
( )bx B b

O
T

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
 

( ) log2 min 1, xO xH x
T

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
        (2.5) 

(for the proof of Lemma 1, see [8]). 

Lemma 2. There exists a positive constant 1c , such that ( ),itζ σ λ+  has not zero 

point in the range 

( )1
11 log 2c tσ −≥ − +        (2.6) 

Proof. Let ( ),sζ λ  be defined by 

( ) ( )( )
1

, 1 s

n

s n nζ λ λ
∞

−

=

= −∑ .      (2.7) 

When ( )1
11 log 2c tσ −≥ − + , we obtain 

( ) ( ), ,s sζ λ ζ λ≤ ,       (2.8) 

and 

( ) ( ) ( ), ,s s sζ λ ζ λ ζ+ = .      (2.9) 

By the Rouché Theorem, we deduce 

( ) ( )( , ) ( )N s N sζ λ ζ= .       (2.10) 

Since ( )itζ σ +  has not zero point in the range ( )1
11 log 2c tσ −≥ − + , then 

( ),itζ σ λ+  has not zero point in the range ( )1
11 log 2c tσ −≥ − +  too. 

This proves Lemma 2. 

Lemma 3.  For Dirichlet series ( ) ( ) ( )
1

, s

n

s n n nλ λ
∞

−

=

Ψ = Λ∑ , we have 

1c aσ σ= = .        (2.11) 
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Proof. By the Prime Number Theorem for Arithmetic Progressions, when x →∞  and 

( ), 1q N = , we have 

( ) ( )mod
lim
x n N q

n x

xn
qφ→∞ ≡

≤

Λ =∑       (2.12) 

( ) ( ) ( )
( ), 1

1lim 1
x n x p N

p N

n n x
p

λ
φ→∞

≤ ≤
=

⎛ ⎞
Λ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏  

( ), 1

11
1p N

p N

x
p≤

=

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

∏  

hence 

( ) ( )1

1

lim log log 1
x

c x n

x n nσ λ−

→∞
=

= Λ =∑ .     (2.13) 

Since ( ) 0nλ ≥ , So 1c aσ σ= = . 

This proves Lemma 3. 

Lemma 4. At 1s = , ( ) ( ) ( )
1

, s

n

s n n nλ λ
∞

−

=

Ψ = Λ∑  exists a pole, and the residue of 

function ( ),s λΨ  is that 

( )
( )

1

, 1

1, 1
1s

p N
p N

res s
p

λ
=

≤
=

⎛ ⎞
Ψ = −⎜ ⎟−⎝ ⎠

∏ .             (2.14) 

Proof. Because 

( ) ( ) 1

1 1

lim 1 1
s n

s n n
∞

−

→
=

− Λ =∑ ,      (2.15) 

and 

( ) ( ) ( )1 1

1
mod

1lim
x n x n

n N q

n n n n
qφ

∞
− −

→∞ ≤ =
≡

Λ = Λ∑ ∑ ,    (2.16) 

consequently 

( ) ( ) ( )
( )

( )1 1

1
, 1

1lim 1
x n x np N

p N

n n n n n
p

λ
φ

∞
− −

→∞
≤ =≤

=

⎛ ⎞
Λ = − Λ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∏  
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( )

( ) 1

1
, 1

11
1 np N

p N

n n
p

∞
−

=≤
=

⎛ ⎞
= − Λ⎜ ⎟−⎝ ⎠

∑∏                     (2.17) 

Therefore 

( ) ( ) ( ) ( ) 1

11 1

, lim 1
ss n

res s s n n nλ λ
∞

−

→=
=

Ψ = − Λ∑  

  

( )

( ) ( ) 1

1 1
, 1

11 lim 1
1 s np N

p N

s n n
p

∞
−

→
=≤

=

⎛ ⎞
= − − Λ⎜ ⎟−⎝ ⎠

∑∏  

     

( ), 1

11
1p N

p N

p≤
=

⎛ ⎞
= −⎜ ⎟−⎝ ⎠
∏ .                      (2.18) 

Lemma 4 is proved. 
 

3. Proof of Theorem 1 
For Dirichlet series (1.6) 

( ) ( ) ( )
1

, s

n

s n n nλ λ
∞

−

=

Ψ = Λ∑ , 

let ( )1
11 log 2a c T−= − + , 11 logb x−= + , ( )

1
1log logT x α+= ( )0 1α< < , we have 

( ) logH u u≤ ,        (3.1) 

and 

( ) 2 logB u c x≤ ,        (3.2) 

where 2c  is a positive constant. 

By (2.5) in Lemma 1, we have 
( ) ( ) ( ),

n x
x n nψ λ λ

≤

= Λ∑  

( ) 1
1 ,

2

sb iT

b iT

xs ds R
i s

λ
π

+

−
= Ψ +∫ ,     (3.3) 

where 
2

2
1

log log ,0 1x xR x x
T

τ τ≤ < < .    (3.4) 

By letting a iT± , b iT±  to be the fixed points for closed contour Γ , we then 
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have 

( ) 1 2
1( , ) ,

2

sxx s ds R R
i s

ψ λ λ
π Γ

= Ψ + +∫ ,     (3.5) 

where 

( ) ( )2
1 ,

2

sa iT a iT b iT

b iT a iT a iT

xR s ds
i s

λ
π

− + +

− − +
+ + Ψ∫ ∫ ∫  

( ) ( )
1

1
2

sa iT a iT b iT s

b iT a iT a iT
n

xn n ds
i sπ

∞− + + −

− − +
=

≤ + + Λ∑∫ ∫ ∫  

( ) ( )1
2

sa iT a iT b iT

b iT a iT a iT

xs ds
i s

ζ
π ζ

− + +

− − +

′
= + + −∫ ∫ ∫  

( ) 21 log
2

sa iT a iT b iT

b iT a iT a iT

xt ds
i sπ

− + +

− − +
+ +∫ ∫ ∫  

logc xxe− .            (3.6) 

Remark:  When 2
31 logc tσ > − , ( ) ( ) 2

1

logs

n

n n it tζ σ
ζ

∞
−

=

′
Λ = − +∑ .See 

[8]. 

By Lemma 2 and Lemma 4, ( ),sζ λ  has not zero point in closed contour Γ . 

So function ( ),
sxs

s
λΨ  only exists a pole at 1s = , we obtain 

( ) ( )
1

1, ,
2

s s

s

x xres s s ds
s i s

λ λ
π Γ=

Ψ = Ψ∫  

( ), 1

11
1p N

p N

x
p≤

=

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

∏ .                    (3.7) 

By (3.5) and (3.7), we have 

( )

1 2

, 1

1( , ) 1
1p N

p N

x x R R
p

ψ λ
≤

=

⎛ ⎞
= − + +⎜ ⎟−⎝ ⎠

∏ .              (3.8) 

Thus, combining (3.8) with (3.4) and (3.6) we have 

( )

( )log

, 1

1( , ) 1
1

c x

p N
p N

x x O xe
p

ψ λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ .           (3.9) 
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Let x N= , and N  is any larger number, we then obtain (1.10), namely, 

( )

( )log

, 1

1( , ) 1 e
1

c N

p N
p N

N N O N
p

ψ λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ . 

This completely proves Theorem 1. 
 

4. Proof of Theorem 2 
Combining (3.9) with (1.7), (1.8) and (1.9) we have 

( )
( )

3

, 1

1, 1
log 1p N

p N

xx R
x p

π λ
≤

=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏              (4.1) 

where  

( ) ( )log
log

3 2 22 2

,
log log log

c xx x c xu uxeR du du xe
u u x u u
ψ λ ψ−

−+ ≤ +∫ ∫ .   (4.2) 

By the Prime Number Theorem 

( ) ( )logc xx x O xeψ −= + ,      (4.3) 

we have 

( ) log
log

2 2 22 2 2log log log

c ux x x c xu u uedu du du xe
u u u u u u
ψ −

−+∫ ∫ ∫ .   (4.4) 

By (4.1), (4.2) and (4.4), we have 

( )
( )

( )log

, 1

1, 1
log 1

c x

p N
p N

xx O xe
x p

π λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ .          (4.5) 

Let x N= , and N  is any larger number, we then obtain (1.11), i.e., 

( )
( )

( )log

, 1

1, 1
log 1

c N

p N
p N

NN O Ne
N p

π λ −

≤
=

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

∏ . 

Theorem 2 is proved. Therefore, when N  is any larger number we have 

( ), 0Nπ λ > . Thus, the Goldbach Conjecture﹛1, 1﹜ is established. 
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