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Abstract
A topological space homeomorphic to a self-similar space is demonstrated to
be self-similar. There exists a self-similar space S whose coarse graining is
homeomorphic to S. The coarse graining of S is, therefore, self-similar again.
In the same way, the coarse graining of the self-similar coarse graining of S
is, furthermore, self-similar. These situations succeed endlessly. Such a self-
similar S is generated actually from an intense quadratic dynamics.
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1 Introduction

In the fractal sciences, the fine structure of the self-similar space is charac-
terized by the property that every details looks similar with the whole. In
the present report, we are oppositely concerned with the coarse structures
of a self-similar space, that is, with the problem ”what self-similar space can
have a coarse graining of it with a self-similarity again?”. According to A.
Fernández [1], the procedure of the coarse graining or the block construction
[2] of a space in the statistical physics corresponds mathematically to that
of the construction of a quotient space which is defined by a classification of
all points in the space through the identification of the different points based
on an equivalence relation.

At first, a sufficient condition for a given topological space to be metriz-
able and self-similar with respect to the metric is investigated, and, second,
the existence of a decomposition space [3] as a coarse graining of a self-similar
space S whose self-similarity is defined by a system of weak contractions
which is topologically closely related to that defining the self-similarity of S
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is discussed in a quite elementary way. As a consequence, we are convinced
that there exists a sequence of self-similar coarse graining of a self-similar
space even for the quadratic dynamics known to be one of the simplest dy-
namical system. Finally, it is noted that each step of the sequence can
equally generate a topological space characteristic of condensed matter such
as dendrite [4].

2 A condition for a topological space to be

self-similar

An answer of the problem ”for what topological space, can we find a system
of weak contractions which makes the space self-similar?” is simply stated as
follows.

Proposition. The existence of a self-similar space which is homeomorphic
[5] to (Y, τ) is sufficient for a topological space (Y, τ) to be a metrizable space
and self-similar with respect to the metric.
Proof. Let (X, τd) be self-similar based on a system of weak contractions
pj : (X, τd) → (X, τd), d(pj(x), pj(x

′)) ≤ αj(η)d(x, x
′) for d(x, x′) < η, 0 ≤

αj(η) < 1, j = 1, . . . , m (2 ≤ m < ∞). That is,
m⋃

j=1

pj(X) = X . Using a

homeomorphism h : (X, τd) ≃ (Y, τ), we can define a metric ρ on Y as

ρ(y, y′) = d(h−1(y), h−1(y′)), y, y′ ∈ Y.

The metric topology τρ is identical with the initial topology τ . From the
relations 1) and 2) below, the metric space (Y, τρ) is confirmed to be self-
similar by a system of weak contractions qj : (Y, τρ) → (Y, τρ), j = 1, . . . , m
where qj is topologically conjugate to pj with the above homeomorphism h,
that is, qj = h ◦ pj ◦ h

−1 .

1) ρ(qj(y), qj(y
′)) = d(h−1(qj(y)), h

−1(qj(y
′)))

= d(pj(h
−1(y)), pj(h

−1(y′))) ≤ αj(η)d(h
−1(y), h−1(y′))

= αj(η)ρ(y, y
′) for ρ(y, y′) < η.

2)

m⋃

j=1

qj(Y ) =

m⋃

j=1

qj(h(X)) = h(

m⋃

j=1

pj(X)) = h(X) = Y. �
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3 Existence of a self-similar decomposition

space

As an application of Proposition, we will show the existence of a self-similar
decomposition space of a self-similar space.

Let S be a self-similar, perfect [6], zero-dimensional (0-dim) [7], compact
metric space, and (X, τd) be any compact metric space which is self-similar.
Then, there exists a continuous map f from S onto X [8], and X is homeo-
morphic to the decomposition space (Df , τ(Df)) of S with a homeomorphism
h : (X, τd) ≃ (Df , τ(Df )), x 7→ f−1(x) [9]. Here, Df = {f−1(x) ⊂ S; x ∈ X}

and τ(Df) = {U ⊂ Df ;
⋃

U(=
⋃

D∈U

D) is an open set of S}. The decom-

position topology τ(Df ) is identical with a metric topology τρ with a metric
ρ(y, y′) = d(h−1(y), h−1(y′)), y, y′ ∈ Df [10]. Since the metric space (X, τd)
is assumed to be self-similar, from Proposition, the decomposition space
(Df , τρ) must be self-similar based on a system of weak contractions each
of which is topologically conjugate to each weak contraction which defines
the self-similarity of X . According to the self-similarity of the selected space
X , the decomposition space Df of S can have various types of self-similarity.

Now, let us consider a special case where the system of contructions defin-
ing the self-similarity of the decomposition space Df of S is topologically re-
lated to that defining the self-similarity of S. Let {S1, · · · , Sn} be a partition
of S [3] such that each Si is a clopen (closed and open) set of S. (Concerning
the existence of such partition of S, see Appendix.) Since the metric space
S1 is perfect, 0-dim, compact, it is homeomorphic to the Cantor’s Middle
Third Set (abbreviated to CMTS) [11] as well as the space S. Therefore,
S1 and S are homeomorphic. Let f : S → S1 be a not one to one, contin-
uous, onto map. For example, the map f : S → S1 defined as f(x) = x
for x ∈ S1, f(x) ≡ q2 ∈ S1 for x ∈ S2, · · · , f(x) ≡ qn ∈ S1 for x ∈ Sn is a
continuous, onto map. It must be noted that Df is not trivial decomposition
space {{x} ⊂ S; x ∈ S} because the map f is not one to one [12]. Since the
decomposition space Df of S is homeomorphic to S1 [9], S must be home-
omorphic to Df . Therefore, from Proposition, Df is self-similar based on a
system of weak contractions each of which is topologically conjugate to each
weak contraction which defines the self-similarity of S.

Since the metric space Df is perfect, 0-dim and compact, the same sit-
uation as for the initial space S can take place for the decomposition space
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Df of S. Therefore, continuing this process endlessly, we obtain an infinite
sequence of self-similar decomposition spaces or self-similar coarse graining
starting from the self-similar space S, namely, a hierarchic structure of self-
similar spaces as shown in Fig.1. In Fig. 1, the above mentioned decompo-
sition space Df of S is denoted by D1. D1 is self-similar due to a system of
weak contractions {f 1

j = h1 ◦ fj ◦ (h1)−1 : D1 → D1; j = 1, · · · , m}. Here,
{fj : S → S; j = 1, · · · , m} is a system of weak contractions which defines the
self-similarity of S, and h1 is a homeomorphism from S to D1. The decom-
position space D2 of D1 is self-similar based on a system of weak contractions
{f 2

j = h2◦f 1

j ◦(h
2)−1 : D2 → D2; j = 1, · · · , m} where h2 is a homeomorphism

from D1 to D2. We can continue the procedure in this manner.

Statement. [14, 15, 16] Let (Z, τd) be a compact metric space. If the sytem
{fj : (Z, τd) → (Z, τd), j = 1, . . . , m} of weak contractions
d(fj(z), fj(z

′)) ≤ αj(η)d(z, z
′) for d(z, z′) < η, 0 < αj(η) < 1, infη>0 αj(η) >

0, j = 1, · · · , m
satisfies three conditions

i) Each fj is one to one,

ii) The set
⋃m

j=1
{z ∈ Z; fj(z) = z} is not a singleton,

iii)
∑m

j=1
infη>0αj(η) < 1,

then, there exists a perfect, 0-dim, compact S (⊂ Z) such that⋃m

j=1
fj(S) = S.

Concludingly, we are convinced of the existence of a sequence as shown
in Fig. 1 of self-similar coarse graining of a self-similar space based on the
above quadratic dynamics Fµ(x) with a sufficiently large rate constant µ > 0.

4 Generation of dendrites from each step of

the sequence S,D1,D2, · · ·

Since all of the metric spaces S,D1,D2, · · · in Fig. 1 are perfect, 0-dim
and compact, there exist continuous maps [8], k from S onto the dendrite
δ as a compact metric space, k1 from D1 onto δ, k2 from D2 onto δ, · · ·,
respectively [17]. The decomposition spaces δS = {k−1(x) ⊂ S; x ∈ δ}
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of S due to f , δD1 = {(k1)−1(x) ⊂ D1; x ∈ δ} of D1 due to k1, δD2 =
{(k2)−1(x) ⊂ D2; x ∈ δ} of D2 due to k2, · · · are homeomorphic to the
dendrite δ, and therefore, δS, δD1, δD2, · · · must have the dendritic structure
in common (Fig. 3). For example, the self-similar space S generated from
a quadratic dynamics Fµ(x) = µx(1 − x) with a sufficiently large µ > 0
is mathematically demonstrated to be able to form a dendrite through the
coalescence or the rearrangement of constituents of S.

Appendix
Let S be a perfect, 0-dim T0-space. Then, for any n, there exist n non-

empty clopen (closed and open) sets S1, · · · , Sn of S such that Si ∩ Si′ = φ

for i 6= i′ and

n⋃

i=1

Si = S. For any n, there exist n non-empty clopen sets

Si1 , · · · , Sin of S such that Sij ∩ Sij′
= φ for j 6= j′ and

n⋃

j=1

Sij = Si. We can

continue in this manner endlessly.
proof) To use the mathematical induction, let the statement hold for n− 1.
Since S is perfect, the open set Sn−1 has at least two distinct points a and
b. Since S is a T0-space, there exists an open set u containing a such that
b /∈ u without loss of generality. Since S is 0-dim, there exists a clopen
set v which contains the point a and is contained in the open set u ∩ Sn−1.
Since b ∈ Sn−1 − v, the clopen set Sn−1 − v is not empty. Thus, we obtain a
desired n-partition {S1, · · · , Sn−2, v, Sn−1−v} of S. Concerning the subspace
Si, it suffices to remember that any non-empty open set in a perfect space is
perfect again. �
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1

1 2

2

Figure 1: A hierarchic structure of self-similar spaces. hi, i = 1, 2, · · · are

homeomorphisms. fj , f
1

j , f
2

j , · · · are weak contractions such that
m⋃

j=1

fj(S) =

S,

m⋃

j=1

f 1

j (D
1) = D1,

m⋃

j=1

f 2

j (D
2) = D2, · · ·, respectively.
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f2

f1

a

a) b)

0

Figure 2: a) Fµ(x) = µx(1 − x), µ > 4, x ∈ [0, 1]. b) The quadratic
dynamics Fµ(x) defines a system of contractions {fj : [0, 1] → [0, 1], j = 1, 2}
which satisfies three conditions i), ii), iii) in Statement in the text. In fact,⋃

j=1,2

{x ∈ [0, 1]; fj(x) = x} = {0, a}.
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Figure 3: Generation of dendrites from each step of the sequence
S,D1,D2, · · ·. δ, δS, δD1, δD2 , · · · are dendrites.
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