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Abstract

Suppose l = 2m+1, m > 0. We introduce m “theta-series”, [1], . . . , [m], in Z/2[[x]].
It has been conjectured that the n for which the coefficient of xn in 1/[i] is 1 form a
set of density 0. This is probably always false, but in certain cases, for n restricted to
certain arithmetic progressions, it is true. We prove such zero-density results using
the theory of modular forms, and speculate about what may be true in general.

1 Introduction

Throughout L is a field of fractions of Z/2[[x]], viewed as the field of Laurent
series with coefficients in Z/2.

Definition 1.1. For g 6= 0 in Z/2[[x]], B(g) is the set of n in Z for which the
co-efficient of xn in 1/g is 1. Note that only finitely many elements of B(g)
can be < 0.

Fix l = 2m+ 1 with m > 0. We define certain “theta series” [i] in Z/2[[x]].

Definition 1.2. [i] =
∑

xn2

, the sum extending over all n in Z with n ≡ i
(l). (Note that [0] = 1, and that [i] = [j] whenever i ≡ ±j (l). So the ring S
generated over Z/2 by all the [i] is just Z/2[[1], . . . , [m]].)

In this note we study the sets B([r]) for fixed l and r with r prime to l. Note
that each j in B([r]) is ≡ −r2 (l) and that consequently B([r]) has (upper)
density at most 1/l in the positive integers.

In [1], Cooper, Eichhorn and O’Bryant conjectured, in a slightly different
language, that each B([r]) has density 0. I think this is never true, but we’ll
show that for certain l and r and in certain congruence classes mod a power
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of 2, B([r]) indeed has relative density 0. For example when l = 3 the relative
density is 0 in the classes n ≡ 0 (2), n ≡ 1 (4) and n ≡ 3 (8). I’ll now describe
more precisely, what perhaps is true in general, and the small part of it I’m
able to prove.

Definition 1.3. Fix l. k < 0 is “l-exceptional” if k is in some B([r]) with r
prime to l. A “basic congruence class” is a congruence class of the form n ≡ k
(8q), where k is l-exceptional and q is the largest power of 2 dividing k.

Definition 1.4. An integer n ≥ 0 is in U if it is in some basic congruence
class, and in U∗ otherwise.

Example 1. Suppose l = 3. Then 1/[1] = x−1+ · · · . So the only 3-exceptional
k is −1 and the only basic class is n ≡ −1 (8). U∗ consists of the integers
n ≥ 0 with n ≡ 0 (2), n ≡ 1 (4), or n ≡ 3 (8).

Example 2. Suppose l = 9. The only [r] we need consider are [1], [2] and [4].
Now 1/[1] = x−1 + · · · , 1/[2] = x−4 + · · · and 1/[4] = x−16 + x−7+ · · · . So the
basic classes are n ≡ 1 or −1 (8), n ≡ −4 (32) and n ≡ −16 (128). Then U
consists of the integers ≥ 0 lying in 16 + 16 + 4 + 1 = 37 congruence classes
to the modulus 128, and U∗ of the integers ≥ 0 in the remaining 91 classes.

It seems to me plausible that when r is prime to l then B([r]) has relative
density 0 in U∗. I’ll show that this holds for l ≤ 11. When l = 13 or 15, then
U∗ is the union of 83 mod 128 congruence classes, and I’ll prove that B([r])
has relative density 0 in each of these classes, with the possible exception of
the class n ≡ 48 (128). Unfortunately the proof is not unified—we have to
write U∗ as a union of congruence classes and examine each class in turn.
To this end we now give the (easily proved) description of U∗ as a union of
congruence classes for each l ≤ 15.

l mod 2 mod 4 mod 8 mod 16 mod 32 mod 64 mod 128

3 0 1 3

5 1, 2 0, 3 4 12

7 1 0, 2, 3 4, 6 12

9 2 3, 5 4, 8 0, 12 16 48

11 1, 3, 6 4, 8, 10 0, 12 16 48

13 2, 3, 5 4, 8, 14 0, 12 16 48

15 1, 2, 3 4, 6, 8 0, 12 16 48
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Here’s a rough description of how our proofs proceed. Fix l and [r] and a
congruence class j mod q where q is a power of 2. We’ll construct a g in
Z/2[[x]], depending on l, r, j and q, with the following properties:

(1) There are integers c0, c1, . . . such that:

(A)
∑

cne
2πinz converges in Im(z) > 0 to a modular form of integral

weight for a congruence group.

(B) g is the mod 2 reduction of
∑

cnx
n

(2) Suppose that g/[r]q is itself the mod 2 reduction of some
∑

dnx
n where

∑

dne
2πinz converges to a modular form as in 1(A) above. Then B([r])

has density 0 in the congruence class j mod q.

g is in fact the image of [r]q−1 under a certain projection operator pq,j which
we describe in the next section. The fact that g is “the reduction of a modular
form” comes from a corresponding result for [r]; [r] is the reduction of a weight
1 modular form. (The proof of (2) is deeper, coming from a result of Deligne
and Serre on the reduction of modular forms.) Once (1) and (2) are established
we still need to show that for each of our choices of l, [r], and the congruence
class j mod q lying in U∗, the power series g/[r]q satisfies the condition (2)
above. This is true, for example, whenever g/[r]q lies in the ring S of Definition
1.2. In certain cases, extensive computer calculations tell us that g/[r]q lies in
S.

At the end of the paper we’ll speculate on the relative density of B([r]) in the
basic classes. Though we are unable to prove anything, computer calculations
suggest that each B([r]) has relative density 1/(2l) in each basic class.

2 The operators pq,j and the case l = 3

If q is a power of 2, let L[q] ⊂ L consist of all qth powers of elements of L. L
is the direct sum of the L[q] vector-spaces xjL[q], 0 ≤ j < q.

Definition 2.1. pq,jL → xjL[q] is the L[q]-linear projection map attached to
the above direct sum decomposition.

Note that pq,j(FG) =
∑

pq,a(F )pq,b(G), the sum extending over all pairs (a, b)
with a+ b ≡ j (q). Furthermore p2q,2j (F

2) = (pq,j (F ))2. We’ll use these facts
often.

Lemma 2.2. Fix l = 2m+ 1. Then:

(1) p2,0([2i]) = [i]4
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(2) The subring S of L generated over Z/2 by all the [i] is stabilized by the
operators p8,0, . . . , p8,7.

Proof. Since [2i] =
∑

n≡2i (l) x
n2

, p2,0([2i]) =
∑

k≡i (l) x
4k2 = [i]4.

In view of the formula for p8,j(FG), to prove (2) it suffices to show that
p8,0([i]), . . . , p8,7([i]) are all in the subring. Now if j 6= 0, 1 or 4, each p8,j([i])
is 0. Since every odd square is ≡ 1 (8), p8,1([2i]) = p2,1([2i]) = [2i] + [i]4.
Also p8,0([4i]) = p8,0p2,0([4i]) = p8,0 ([2i]

4) = (p2,0([2i]))
4 = [i]16. Similarly,

p8,4([4i]) = (p2,1([2i]))
4 = [2i]4 + [i]16.

Suppose for the rest of this section that l = 3. In this case the proofs of
zero-density in U∗ are much easier than the proofs for l > 3, requiring neither
modular forms nor computer calculations. Observe that if 3 doesn’t divide i,
then [i] = 1.

Definition 2.3. a = [1] = [2]. Note that p2,0(a) = a4.

Theorem 2.4. Suppose n ≡ 0 (2) and n is in B(a). Then n/2 is a square.

Proof. p2,0
(

1
a

)

= 1
a2
p2,0(a) = a2. Since n is in B(a) and is even, the coefficient

of xn in a2 is 1, giving the result.

Theorem 2.5. Suppose n ≡ 1 (4) and n is in B(a). Then the number of pairs
(s1, s2) with s1 and s2 squares, and s1 + 4s2 = n is odd. Furthermore n is the
product of a prime and a square.

Proof. p4,1
(

1
a

)

= 1
a4
p4,1(a

3) = 1
a4
p4,1(a)p4,1(a

2) = 1
a4
(a+ a4) a8 = a5 + a8.

Since n is in B(a) and is ≡ 1 (4), the coefficient of xn in a5 + a8 is 1, and so
the coefficient in a5 = a·a4 is 1. So the number of pairs (r1, r2) with r1 ≡ r2 ≡ 1
(3) and r21 + 4r22 = n is odd. To each such pair attach the pair (s1, s2) with
s1 and s2 squares, s1 + 4s2 = n, by setting si = r2i . The function from pairs
(r1, r2) to pairs (s1, s2) is 1–1. Since n is in B(a), n ≡ −1 (3). So whenever we
have a pair (s1, s2) as above, s1 and s2 are ≡ 1 (3) and have square roots ≡ 1
(3). So the function (r1, r2) → (s1, s2) is onto, and we get the first assertion
of the theorem. A little arithmetic in Z[i] gives the second assertion.

Lemma 2.6. If n ≡ 3 (8), n is in B(a) if and only if the number of triples
(r1, r2, r3) with r1 ≡ r2 ≡ r3 ≡ 1 (3) and r21 + 2r22 + 8r23 = n is odd.

Proof. p8,3
(

1
a

)

= 1
a8
p8,3 (a · a2 · a4) = 1

a8
p8,1(a)p8,2 (a

2) p8,0 (a
4) = 1

a8
(a+ a4)

(a+ a4)
2
a16 = a11 + a14 + a17 + a20. Since n ≡ 3 (8) the coefficients of xn in
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a14, a20, and a17 = a · a16 are evidently 0. So n is in B(a) if and only if the
coefficient of xn in a11 = a · a2 · a8 is 1, giving the lemma.

Lemma 2.7. If n ≡ 11 (24) the number of triples (s1, s2, s3) where the si are
squares and s1+s2+s3 = n is 3·(the number of triples (r1, r2, r3) as in Lemma
2.6).

Proof. If the si are as above, two of them are ≡ 1 (3) while 3 divides the third.
So our lemma states that the number of triples (s1, s2, s3) with the si squares,
s1+s2+s3 = n and s3 ≡ 0 (3) is the number of triples (r1, r2, r3) as in Lemma
2.6. If we have a triple (r1, r2, r3) let s1 = r21, s2 = (r2−2r3)

2, s3 = (r2+2r3)
2.

Then the si are squares, s3 ≡ 0 (3) and s1 + s2 + s3 = r21 + 2r22 + 8r23 = n.
That (r1, r2, r3) → (s1, s2, s3) is 1–1 is easily seen. To prove ontoness suppose
we’re given (s1, s2, s3). Then s1 and s2 are ≡ 1 (3) and have square roots,√
s1 and

√
s2, that are ≡ 1 (3). Also, since n ≡ 3 (8), the si are odd. So

we can find a square-root,
√
s3 of s3 with

√
s3 ≡ √

s2 (4). Then the triple
(√

s1,
−
√
s2−

√
s3

2
,
√
s2−

√
s3

4

)

has its entries ≡ 1 (3) and maps to (s1, s2, s3).

Theorem 2.8. Suppose n ≡ 3 (8) and n is in B(a). Then the number of pairs
(s1, s2) with s1 and s2 squares and s1 + 2s2 = n is odd. Furthermore, n is the
product of a prime and a square.

Proof. Consider the set of triples (s1, s2, s3) where the si are squares and
s1 + s2 + s3 = n. Since n is in B(a), and n ≡ 3 (8), n ≡ 11 (24). Lemmas 2.6
and 2.7 then show that the number of such triples is odd. Now (s1, s2, s3) →
(s1, s3, s2) is an involution on the set of such triples whose fixed points identify
with the pairs (s1, s2) as in the statement of the theorem. This gives the
first assertion of the theorem, and a little arithmetic in Z[

√
−2] gives the

second.

Theorem 2.9.

(1) Every element n of B(a) that lies in U∗ is the product of a prime and a
square.

(2) The number of elements of B(a) that are ≤ x and lie in U∗ is O (x/ log x).

Proof. The elements of U∗ are ≡ 0 (2), 1 (4), or 3 (8), and we use Theorems
2.4, 2.5 and 2.8 to get (1). (2) is an immediate consequence.

Remark 1. The proof of Theorem 2.9 is easier than that of a similar result in
Monsky [2], which makes use of results of Gauss on representations by sums
of 3 squares.

Remark 2. The set B(a + a4) has been more extensively studied. One sees
immediately that a + a4 =

∑

x1+24s, where s runs over the generalized pen-
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tagonal numbers 0, 1, 2, 5, 7, 12, 15, . . .. So the elements of B(a + a4) are all
≡ −1 (24). The mod 2 reduction of a famous identity of Euler tells us that
24k−1 is in B(a+a4) if and only if the number of partitions, p(k), of k is odd.
Large-scale computer calculations suggest very strongly that the k for which
p(k) is odd have density 1/2, so that B(a + a4) has relative density 1/2 in
the congruence class n ≡ −1 (24). It’s tempting to believe that B(a) also has
relative density 1/2 in this congruence class. This would be in line with the
(modest) computer calculations that have been made; see our final section.

3 Enter modular forms. The quintic theta relations

In the proofs of section 2 we expressed p2,0
(

1
a

)

, p4,1
(

1
a

)

, and p8,3
(

1
a

)

as el-

ements of Z/2[a], and were able to deduce that B(a) has density 0 in the

congruence classes n ≡ 0 (2), n ≡ 1 (4) and n ≡ 3 (8). (Note that p8,7
(

1
a

)

is

not in Z/2[a]. Indeed p8,7
(

1
a

)

= x−1 + · · · and is not even in Z/2[[x]]). In our
treatment of larger l we’ll use a similar idea, but in most cases we’ll have to
rely on a deep result on modular forms due to Deligne and Serre. My thanks
go to David Rohrlich for telling me about this result.

The following is well-known; for a more general theorem on definite quadratic
forms in an even number of variables see Schöneberg [4].

Theorem 3.1.
∑∑

e2πi(m
2+n2)z, the sum extending over all pairs (m,n) with

m and n in Z and n ≡ some j mod l, converges in Im(z) > 0 to a weight 1
modular form for a congruence group.

Corollary 3.2. Fix l. Let u =
∑

asx
s be a product of powers of various [j].

Then there are integers c0, c1, . . . such that:

(A)
∑

cne
2πinz converges in Im(z) > 0 to a modular form of integral weight

for a congruence group.
(B) The mod 2 reduction of cs is as.

Proof. It’s enough to show this when u = [j]. We take our modular form to be
that of Theorem 3.1. If we write this form as

∑

cse
2πisz, then (A) is satisfied.

Furthermore cs is the number of pairs (m,n) with n ≡ j (l) and m2 +n2 = s.
(m,n) → (−m,n) is an involution on this set of pairs. There is one fixed point
if s is the square of some n ≡ j (l), and no fixed point otherwise. It follows
that the mod 2 reduction of cs is as.

Now fix l. Recall that S is the subring of Z/2[[x]] generated over Z/2 by all
the [j].
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Theorem 3.3. If u =
∑

anx
n is in S, then the set of n for which an is 1 has

density 0.

Proof. We may assume that u is a product of powers of various [j]. As we’ve
seen, there are cn in Z, with cn reducing to an mod 2, such that

∑

cne
2πinz

converges in Im(z) > 0 to a modular form of integral weight for a congruence
group. A theorem of Serre [5], based on results of Deligne attaching Galois
representations to Hecke eigenforms, shows that the n for which 2 does not
divide cn form a set of density 0.

Corollary 3.4. Suppose that pq,j (1/[r]) is in S, or more generally is in pq,j(S).
Then B([r]) has relative density 0 in the congruence class j mod q.

Now pq,j (1/[r]) = (1/[r]q) pq,j ([r]
q−1). But to show that this quotient lies in

pq,j(S) for various choices of j and q seems very difficult. There is however
a technique for showing that a quotient of two elements of S lies in S that
makes use of certain “quintic theta relations”.

Lemma 3.5. p2,0 ([2i][2j]) = [i+ j]2[i− j]2.

Proof. It suffices to show that the coefficients of x2n on the two sides are equal.
On the left one has the mod 2 reduction of the number of pairs (r, s) with
r ≡ 2i (l), s ≡ 2j (l) and r2 + s2 = 2n. On the right one has the mod 2
reduction of the number of pairs (t, u) with t ≡ i + j (l), u ≡ i − j (l) and

t2 + u2 = n. Clearly (r, s) →
(

r+s
2
, r−s

2

)

gives the desired bijection.

Theorem 3.6. [i]4[2j] + [j]4[2i] + [2i][2j] + [i+ j]2[i− j]2 = 0.

Proof. p2,0 ([2i][2j]) = p2,0([2i])p2,0([2j]) + p2,1([2i])p2,1([2j]) = [i]4[j]4 +
([i]4 + [2i]) ([j]4 + [2j]). Now use Lemma 3.5.

Let x1, . . . , xm (where l = 2m+ 1) be indeterminates over Z/2.

Definition 3.7. If r is prime to l, φr is the homomorphism Z/2[x1, . . . , xm] →
S taking xk to [rk].

Note that each φr is onto. We’ll use Theorem 3.6 to construct m(m−1)
2

elements
of Z/2[x1, . . . , xm] lying in the kernel of each φr.

Theorem 3.8. Suppose that m ≥ i > j ≥ 1. For 1 ≤ k ≤ m define xl−k to be
xk, so that we have elements x1, . . . , x2m of Z/2[x1, . . . , xm]. Then if we define
Ri,j to be x4

ix2j + x4
jx2i + x2ix2j + x2

i+jx
2
i−j , each Ri,j is in the kernel of each

φr.
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Proof. The definition of xm+1, . . . , x2m shows that φr(xk) = [rk] for k =
1, . . . , 2m. The result now follows from Theorem 3.6 on replacing i and j
by ri and rj throughout.

Theorem 3.9. Let u and v be elements of Z/2[x1, . . . , xm], and N the ideal
in this ring generated by the Ri,j. Suppose that the ideals (N, v) and (N, u, v)
are the same. Then the element φr(u)/φr(v) of the field of fractions of S in
fact lies in S.

Proof. u is in (N, v). Applying φr and using Theorem 3.9 we find that in S,
φr(u) lies in the principal ideal φr(v).

Remark. Commutative algebra computer programs such as Macaulay 2 use
Gröbner bases to decide whether 2 ideals in a polynomial ring are equal. We
shall use such a program to show that in many cases of interest the quotient
φr(u)/φr(v) lies in S.

There is one further simple result that we’ll use frequently in the calculations
to follow.

Lemma 3.10. Suppose that for some a and b, p2,0(a) = b4. Then:

(1) p2,0
(

1
a

)

= b4

a2

(2) p4,0
(

1
a

)

= b12

a4

(3) p8,0
(

1
a

)

= b8

a8
(p2,0(ab))

4

Proof. p2,0
(

1
a

)

= 1
a2
p2,0(a) = b4

a2
. Then p4,0

(

1
a

)

= p4,0p2,0
(

1
a

)

= p4,0
(

b4

a2

)

=

b4
(

p2,0
(

1
a

))2
= b12

a4
. Furthermore, p8,0

(

1
a

)

= p8,0p4,0
(

1
a

)

= p8,0
(

b12

a4

)

=
b8

a8
p8,0 (a

4b4), giving the last result.

4 l = 5

In this section l = 5, so that m = 2. Then the ideal N of Theorem 3.9 is
generated by the single element R2,1 = x4

2x2 + x4
1x4 + x4x2 + x2

3x
2
1 = x5

1 + x5
2 +

x1x2 + x2
1x

2
2. Now let r = 1 or 2 and set a = [r], b = [2r]. Then p2,0(a) = b4,

p2,0(b) = a4 and we have the quintic relation a5 + b5 + ab+ a2b2 = 0.

We’ll use the techniques sketched in the last section to show that p4,1
(

1
a

)

,

p4,2
(

1
a

)

, p8,0
(

1
a

)

, p8,3
(

1
a

)

, p16,4
(

1
a

)

and p32,12
(

1
a

)

are all in S. Corollary 3.4 in
conjunction with the description of U∗ given in the introduction when l = 5
then tells us that B(a) has relative density 0 in U∗.
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Theorem 4.1. p8,0
(

1
a

)

= b16.

Proof. By Lemma 3.10, p8,0
(

1
a

)

= b8

a8
(p2,0(ab))

4. Now p2,0(ab) = p2,0([4r][2r]) =

[3r]2 · [r]2 = a2b2.

Theorem 4.2. p4,2
(

1
a

)

, p4,1
(

1
a

)

and p8,3
(

1
a

)

are in S.

Proof. We first write these power series as quotients of elements of S.

(1) p4,2
(

1
a

)

= p2,0
(

1
a

)

+ p4,0
(

1
a

)

= b4

a2
+ b12

a4
=

(

b4

a4

)

(a2 + b8).

(2) p4,1
(

1
a

)

=
(

1
a4

)

p4,1(a)p4,0(a
2) =

(

1
a4

)

p2,1(a) (p2,0(a))
2 =

(

b8

a4

)

(a+ b4).

(3) p8,3
(

1
a

)

=
(

1
a8

)

p8,1(a)p8,2(a
2)p8,0(a

4) =
(

1
a8

)

p2,1(a) (p2,1(a))
2 (p2,0(a))

4 =
(

b16

a8

)

(a+ b4)
3
.

In view of (1), (2) and (3) it will suffice to show that b2

a2
(a+ b4) and b8

a4
(a+ b4)

are each in S. This can be done by hand, but in the mechanized spirit of the
paper I’ll give a computer argument. First let u = x2

2(x1 + x4
2) and v = x2

1.
Macaulay 2 tells us that (N, v) = (N, u, v). So by Theorem 3.9, φr(u)/φr(v) is
in S. But φr(u)/φr(v) =

b2

a2
(a + b4). For the second result we argue similarly

taking u = x8
2(x1 + x4

2) and v = x4
1.

Lemma 4.3. p8,4
(

1
a

)

+
(

p2,1
(

1
b

))4
= a4 + b16.

Proof. p8,4
(

1
a

)

= p4,0
(

1
a

)

+ p8,0
(

1
a

)

= b12

a4
+ b16, by Lemma 3.10 and Theorem

4.1. Furthermore p2,1
(

1
b

)

= 1
b
+ p2,0

(

1
b

)

= 1
b
+ a4

b2
. So the left hand side in

the statement of Lemma 4.3 is b16 +
(

b3

a
+ 1

b
+ a4

b2

)4
. But the quintic relation

a5 + b5 + ab+ a2b2 = 0 tells us that b3

a
+ 1

b
+ a4

b2
= 1

ab2
(b5 + ab+ a5) = a.

Theorem 4.4. p16,4
(

1
a

)

and p32,12
(

1
a

)

are in S.

Proof. Applying p16,4 to the identity of Lemma 4.3 we find that p16,4
(

1
a

)

+
(

p4,1
(

1
b

))4
= (p4,1(a))

4 = a4 + b16. But Theorem 4.2 (with r replaced by 2r)

tells us that p4,1
(

1
b

)

is in S. Applying p32,12 to the identity of Lemma 4.3 we

find that p32,12
(

1
a

)

+
(

p8,3
(

1
b

))4
= (p8,3(a))

4 = 0. And Theorem 4.2 (with r

replaced by 2r) shows that p8,3
(

1
b

)

is in S.

9



5 l = 7

In this section l = 7. Then m = 3 and the ideal N is generated by x5
1+x4

3x2+
x1x2 + x2

2x
2
3, x

5
2 + x4

1x3 + x2x3 + x2
3x

2
1 and x5

3 + x4
2x1 + x3x1 + x2

1x
2
2. Let r be

1, 2 or 3, a = [r], b = [4r], c = [2r]. Then p2,0 takes a, b and c to b4, c4 and
a4. Lemma 3.5 shows that p2,0 takes ab, bc and ac to a2c2, a2b2 and b2c2. We’ll

prove that B(a) has relative density 0 in U∗ by showing that each of p4,1
(

1
a

)

,

p8,0
(

1
a

)

, p8,2
(

1
a

)

, p8,3
(

1
a

)

, p16,4
(

1
a

)

, p16,6
(

1
a

)

and p32,12
(

1
a

)

is in S.

Remark. In this case, as in the case l = 5, N is the kernel of each φr. This is
not true when l = 9. Whether it holds for all prime l is an interesting question.

Theorem 5.1. p8,0
(

1
a

)

= b8c8, and p8,2
(

1
a

)

= (a2 + b8) c8.

Proof. By Lemma 3.10, p8,0
(

1
a

)

=
(

b8

a8

)

(p2,0(ab))
4 = b8c8. Also, p8,2

(

1
a

)

=

p8,2p2,0
(

1
a

)

= p8,2
(

b4

a2

)

=
(

p4,1
(

b2

a

))2
. And p4,1

(

b2

a

)

= 1
a4
p4,1(a)p4,0(a

2b2) =
1
a4
p2,1(a) (p2,0(ab))

2 = (a + b4) · c4.

Theorem 5.2. p4,1
(

1
a

)

, p8,3
(

1
a

)

and p16,6
(

1
a

)

are in S.

Proof. Again we first write these power series as quotients of elements in S.

(1) The proof of Theorem 4.2 shows that p4,1
(

1
a

)

= b8

a4
(a + b4), and that

p8,3
(

1
a

)

= b16

a8
(a + b4)

3
.

(2) p16,6
(

1
a

)

= p16,6p2,0
(

1
a

)

= p16,6
(

b4

a2

)

=
(

p8,3
(

b2

a

))2
. Now p8,3

(

b2

a

)

=
1
a8
p8,1(a)p8,0(a

4)p8,2(a
2b2) = 1

a8
p2,1(a) (p2,0(a))

4·(p4,1(ab))2. Now p4,3(ab) =
0, and it follows that p4,1(ab) = p2,1(ab) = ab + p2,0(ab) = ab + a2c2. So

p8,3
(

b2

a

)

=
(

b16

a8

)

(a+ b4)(a2b2 + a4c4).

We can now use the technique of the last section to prove the theorem. It
suffices to show that

(

b8

a4

)

(a+ b4) and
(

b16

a8

)

(a+ b4)(a2b2 + a4c4) are in S. To

prove the second result we take u to be x16
3 (x1 + x4

3)(x
2
1x

2
3 + x4

1x
4
2), and v to

be x8
1. Macaulay 2 verifies that (N, v) = (N, u, v). So φr(u)/φr(v) is in S, as

desired. The first result is proved similarly.

Lemma 5.3. p8,4
(

1
a

)

+
(

p4,2
(

1
c

))2
= u4 for some u in S.

Proof. p8,4
(

1
a

)

= p4,0
(

1
a

)

+ p8,0
(

1
a

)

. By Lemma 3.10 and Theorem 5.1, this is
b12

a4
+ b8c8. And p4,2

(

1
c

)

= p2,0
(

1
c

)

+ p4,0
(

1
c

)

= a4

c2
+ a12

c4
. So the left-hand side

in the statement of the lemma is the fourth power of b3

a
+ b2c2 + a2

c
+ a6

c2
. To
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show that b3

a
+ a2

c
+ a6

c2
is in S, we write it as a quotient, b3c2+a3c+a7

ac2
, and use

our Macaulay 2 technique.

Theorem 5.4. p16,4
(

1
a

)

and p32,12
(

1
a

)

are in S.

Proof. Applying p16,4 to the identity of Lemma 5.3 we find that p16,4
(

1
a

)

+
(

p8,2
(

1
c

))2
= (p4,1(u))

4. Now Theorem 5.1 (with r replaced by 2r) shows that

p8,2
(

1
c

)

is in S. Since S is stable under p4,1, p16,4
(

1
a

)

is in S. Similarly, applying

p32,12 to the identity, we find that p32,12
(

1
a

)

+
(

p16,6
(

1
c

))2
= (p8,3(u))

4. Theorem

5.2 shows that p16,6
(

1
c

)

is in S, and we use the fact that p8,3 stabilizes S.

6 l = 9

Now l = 9. Then m = 4 and N is generated by x5
1 + x4

4x2 + x1x2 + x2
3x

2
4,

x5
2 + x4

1x4 + x2x4 + x2
3x

2
1, x

5
4 + x4

2x1 + x4x1 + x2
3x

2
2, x

4
1x3 + x4

3x2 + x2x3 + x2
2x

2
4,

x4
2x3 + x4

3x4 + x4x3 + x2
4x

2
1, and x4

4x3 + x4
3x1 + x1x3 + x2

1x
2
2. Let r be 1, 2 or

4, a = [r], b = [4r], c = [2r] and d = [3r] = [6r]. Then p2,0(d) = d4, and
p2,0 takes a, b and c to b4, c4 and a4. Lemma 3.5 shows that p2,0 takes ab, bc
and ac to c2d2, a2d2 and b2d2, and that it takes ad, bd and cd to a2c2, a2b2

and b2c2. We’ll prove that B(a) has relative density 0 in U∗ by showing that

each of p4,2
(

1
a

)

, p8,3
(

1
a

)

, p8,5
(

1
a

)

, p16,4
(

1
a

)

, p16,8
(

1
a

)

, p32,0
(

1
a

)

, p64,16
(

1
a

)

and

p128,48
(

1
a

)

is in S.

Theorem 6.1. p4,2
(

1
a

)

, p8,3
(

1
a

)

, p8,5
(

1
a

)

, p16,4
(

1
a

)

and p16,8
(

1
a

)

are in S.

Proof. Again we first write these power series as quotients of elements in S.

(1) The proof of Theorem 4.2 shows that p4,2
(

1
a

)

=
(

b4

a4

)

(a2 + b8) while

p8,3
(

1
a

)

=
(

b16

a8

)

(a+ b4)
3
.

(2) p8,5
(

1
a

)

=
(

1
a8

)

p8,1(a)p8,0(a
2)p8,4(a

4) =
(

1
a8

)

p2,1(a) (p4,0(a))
2 (p2,1(a))

4 =
b8

a8
(a+ b4)5.

(3) p16,4
(

1
a

)

= p16,4p4,0
(

1
a

)

=
(

p4,1
(

b3

a

))4
. And p4,1

(

b3

a

)

=
(

1
a4

)

p4,1(ab)p4,0(a
2b2)

=
(

1
a4

)

p2,1(ab) (p2,0(ab))
2 = c4d4

a4
(ab+ c2d2).

(4) p8,0
(

1
a

)

=
(

b8

a8

)

(p2,0(ab))
4 =

(

bcd
a

)8
. If follows that p16,8

(

1
a

)

= p16,8p8,0
(

1
a

)

=
(

p2,1
(

bcd
a

))8
. Now p2,1

(

bcd
a

)

=
(

1
a2

)

p2,1 ((ab)(cd)) =
(

1
a2

)

((c2d2)(cd+ b2c2) + (ab+ c2d2)(b2c2)) =
(

1
a2

)

(ab3c2 + c3d3).

11



We conclude with our by now standard computer procedure. For example to
show that

(

1
a2

)

(ab3c2 + c3d3) is in S we set u = x1x
3
4x

2
2 + x3

2x
3
3, v = x2

1 and

use Macaulay 2 to verify that (N, v) = (N, u, v).

Lemma 6.2. p16,0
(

1
a

)

is the sixteenth power of d(ab2+bc2+ca2)
a

.

Proof. Arguing as in the above calculation of p16,8
(

1
a

)

we find that p16,0
(

1
a

)

is the eighth power of p2,0
(

bcd
a

)

= abcd
a2

+ ab3c2+c3d3

a2
. So it suffices to show

that (abcd + ab3c2 + c3d3) + d2(a2b4 + b2c4 + c2a4) = 0. To do this, set u =
(x1x4x2x3 + x1x

3
4x

2
2 + x3

2x
3
3) + x2

3(x
2
1x

4
4 + x2

4x
4
2 + x2

2x
4
1). Macaulay 2 shows that

(N, u) = N . So u is in N and applying φr gives the result.

Lemma 6.3. p16,0
(

1
a

)

+
(

p8,4
(

1
b

))4
= u16 for some u in S.

Proof. p8,4
(

1
b

)

= p8,0
(

1
b

)

+ p4,0
(

1
b

)

. Using Lemma 3.10 we find that this is
(

acd
b

)8
+

(

c3

b

)4
. So the left-hand side in the statement of the lemma is the

sixteenth power of u = d(ab2+bc2+ca2)
a

+ a2c2d2

b2
+ c3

b
. It remains to show that this

u is in S. This is established using Macaulay 2 in the usual way.

Theorem 6.4. p32,0
(

1
a

)

and p64,16
(

1
a

)

are in S.

Proof. Applying p32,0 to the identity of Lemma 6.3 we find that p32,0
(

1
a

)

=

(p2,0(u))
16 with u in S. Applying p64,16 to the identity we find that p64,16

(

1
a

)

+
(

p16,4
(

1
b

))4
= (p4,1(u))

16. But Theorem 6.1 shows that p16,4
(

1
b

)

is in S.

Theorem 6.5. p32,12
(

1
a

)

and p128,48
(

1
a

)

are in S.

Proof. We show how the second result follows from the first. Applying p128,48 to

the identity of Lemma 6.3 we find that p128,48
(

1
a

)

+
(

p32,12
(

1
b

))4
= (p8,3(u))

16.

Since p32,12
(

1
b

)

is in S and p8,3 stabilizes S we get the second result. To prove
the first result we once again express our element as a quotient of two elements

of S. p32,12
(

1
a

)

= p32,12p4,0
(

1
a

)

= p32,12
(

b12

a4

)

=
(

p8,3
(

b3

a

))4
. So it’s enough

to show that p8,3
(

b3

a

)

is in S. Now p8,3
(

b3

a

)

=
(

1
a8

)

p8,3 ((a
2b2)(ab)(a4)) =

(

1
a8

)

p8,2(a
2b2) (p8,1(ab)p8,0(a

4) + p8,5(ab)p8,4(a
4)). Now modulo a8, p8,1(ab) =

p8,0(a)p8,1(b) = c16(b+ c4). Also p4,1(ab) = p2,1(ab) = ab+ c2d2. So modulo a8,
p8,5(ab) = p4,1(ab) + c16(b + c4) = ab + c2d2 + c16(b + c4). We conclude that

p8,3
(

b3

a

)

is the sum of an element of S and 1
a8
(a2b2 + c4d4)

(c16(b+ c4)b16 + (ab+ c2d2 + c16(b+ c4))(a4 + b16)). A Macaulay 2 calculation
shows that this last element is in S.
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7 l = 11, 13 and 15

We state the results for these l with very brief indications of proofs.

Lemma 7.1. Let a = [r] with r prime to l. Then p8,k
(

1
a

)

, p16,2k
(

1
a

)

, p32,4k
(

1
a

)

and p64,8k
(

1
a

)

are all quotients of elements of S by powers of a.

Proof. p8,k
(

1
a

)

= 1
a8
p8,k(a

7), and we use Lemma 2.2. For the remaining results

we may assume that r = 4s. Let b = [2s], c = [s], e = [3s] so that p2,0(a) = b4,

p2,0(ab) = c2e2. Then p64,8k
(

1
a

)

= p64,8kp8,0
(

1
a

)

. By Lemma 3.10 this is the

eighth power of p8,k
(

bce
a

)

, and we use the fact that p8,k(a
7bce) is in S. p16,2k

(

1
a

)

and p32,4k
(

1
a

)

are treated similarly.

Theorem 7.2. Let a = [r] with r prime to l.

(1) When l = 11, p8,1, p8,3, p8,6, p16,4, p16,8, p16,10, p32,0, p32,12 and p64,16 all
take 1

a
to an element of S.

(2) When l = 13, p8,2, p8,3, p8,5, p16,4, p16,8, p16,14, p32,0, p32,12 and p64,16 all
take 1

a
to an element of S.

(3) When l = 15, p8,1, p8,2, p8,3, p16,4, p16,6, p16,8, p32,0, p32,12 and p64,16 all
take 1

a
to an element of S.

Idea of proof. By Lemma 7.1 each pq,j
(

1
a

)

is the quotient of an element of
S by a power of a. It’s clear that one can write down such a representation
explicitly. In each case the Macaulay 2 argument using the ideal N of quintic
relations shows that pq,j

(

1
a

)

is in fact in S.

Corollary 7.3. Suppose l = 11, 13, or 15. Then in each of the mod 128 con-
gruence classes constituting U∗, with the possible exception of the congruence
class n ≡ 48 (128), B(a) has relative density 0

Proof. This follows from Theorem 7.2, Corollary 3.4 and the explicit descrip-
tion of U∗ as a union of congruence classes.

I’ll now show that when l = 11 each B(a) in fact has relative density 0 in the
congruence class 48 mod 128.

Lemma 7.4. When l = 11, p8,0
(

1
a

)

+
(

p8,4
(

1
b

))4
= u8 for some u in S.

Idea of proof. As we noted in the proof of Lemma 7.1, p8,0
(

1
a

)

=
(

bce
a

)8
.

Furthermore p8,4
(

1
b

)

= p8,4p2,0
(

1
b

)

=
(

1
b8

)

p8,4(b
6c4). This is the quotient of a

13



square in S by b8. It follows that the left-hand side in the statement of Lemma
7.4 is the eighth power of v

ab4
for some v in S. Our usual Macaulay 2 technique

shows that v
ab4

is in fact in S.

Theorem 7.5. When l = 11, p128,48
(

1
a

)

is in p128,48(S). In fact it’s the eighth

power of an element of p16,6(S). Corollary 3.4 then shows that B(a) has relative
density 0 in the congruence class 48 mod 128, and consequently in U∗.

Proof. Applying p128,48 to the identity of Lemma 7.4 we find that p128,48
(

1
a

)

+
(

p32,12
(

1
b

))4
= (p16,6(u))

8. Now p32,12
(

1
b

)

= p32,12p4,0
(

1
b

)

= p32,12
(

c12

b4

)

, which

is the square of p16,6
(

c6

b2

)

. So p128,48
(

1
a

)

is the eighth power of p16,6
(

c6

b2

)

+

p16,6(u), and it will suffice to show that p16,6
(

c6

b2

)

is in S. In fact, p8,3
(

c3

b

)

is
in S; the Macaulay 2 calculations going into the proof of Theorem 7.2 show
this.

Remarks. We’ve established various zero-density results when l ≤ 15. If we
take l > 15, computer trouble arises. Suppose for example we restrict ourselves
to congruence classes to the modulus 8 that lie in U∗. Then necessarily l ≤ 21
or l = 25. When l = 17, the classes n ≡ 5 (8) and n ≡ 6 (8) are in U∗. But the
ideal N in Z/2[x1, . . . , x8] has 28 generators, and attempts, using Macaulay 2,

to show that p8,5
(

1
a

)

(or p8,6
(

1
a

)

) is in S cause a computer crash. Indeed the

computer seemed at its limit in handling the congruence class n ≡ 16 (64)
when l = 15; it was an all-day calculation.

For l = 11 I don’t know whether Theorem 7.5 can be strengthened to show
that p128,48

(

1
a

)

is in S. When l = 13 or 15 it’s possible that, as in the case

l = 11, p128,48
(

1
a

)

is the eighth power of an element of p16,6(S). But there’s no
analogue of Lemma 7.4 that could be used to prove this.

8 The basic classes — a little computer evidence

Fix l together with r prime to l and a basic congruence class C. All the
elements of B([r]) are ≥ −r2 and are congruent to −r2 mod l. There is some
evidence that B([r]) has density 1

2l
in C, so that “half the elements of C that

are ≥ −r2 and are congruent to −r2 mod l lie in B([r]).”

Suppose for example that l ≤ 9 and we are looking at the basic classes to the
modulus 8. These are:
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(1) l = 3 n ≡ 7 (8)

(2) l = 5 n ≡ 7 (8)

(3) l = 7 n ≡ 7 (8)

(4) l = 9 n ≡ 1 or 7 (8)

Consider the first 217 = 131, 072 elements of C that are ≥ −r2 and congruent
to −r2 mod l. The number of these lying in B([r]) has been calculated by
O’Bryant [3]. Here are his results.

(1) l = 3 n ≡ 7 (8), r = 1 65, 411

(2) l = 5 n ≡ 7 (8), r = 1 65, 397 r = 2 65, 713

(3) l = 7 n ≡ 7 (8), r = 1 65, 185 r = 2 65, 474 r = 3 65, 622

(4) l = 9 n ≡ 1 (8), r = 1 65, 495 r = 2 65, 666 r = 4 65, 367

n ≡ 7 (8) , r = 1 65, 877 r = 2 65, 579 r = 4 65, 813

We may also consider the basic congruence class n ≡ 14 (16) when l = 7. Now
if we consider the first 65,536 elements of the class that are ≡ −r2 mod 7 and
≥ −r2, the number in B([r]) is 32,673 when r = 1. It is 32,716 when r = 2
and 32,981 when r = 3. All this suggests the following:

Speculation. Suppose that ρ > 1
2
. Consider a basic class C and the first X

elements in the class that are ≥ −r2 and congruent to −r2 mod l. Of these
elements, the number in B([r]) is X

2
+O(Xρ).

We might go even further, speculating that this is true not only for the basic
classes, but for any congruence class contained in a a basic class.

It would be interesting to test these speculations further experimentally. But
some caution is in order. Suppose for example that l = 9. Then the congruence
class n ≡ 2 (4) is contained in U∗, and as we’ve seen, B([1]), B([2]) and B([4])
all have relative density 0 in this class. Consider now the first 218 = 262, 144
elements of this class that are≥ −r2 and congruent to −r2 mod 9. The number
of these elements that lie in B([r]) is 102,284 when r = 1, and 110,034 when
r = 2. This is in good accord with our zero-density result. But when r = 4
more than half of the elements are in B([r])! (The number is 137,657.) So we
are advised not to place too much predictive power in such computer counts
unless the range over which we’re counting is considerably extended.
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