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Abstract

A two-hop wireless communication link in which a source sends data to a destination with the aid of an

intermediate relay node is studied. It is assumed that thereis no direct link between the source and the destination, and

the relay forwards the information to the destination by employing the decode-and-forward scheme. Both the source

and intermediate relay nodes are assumed to operate under statistical quality of service (QoS) constraints imposed

as limitations on the buffer overflow probabilities. The maximum constant arrival rates that can be supported by this

two-hop link in the presence of QoS constraints are characterized by determining the effective capacity of such links

as a function of the QoS parameters and signal-to-noise ratios at the source and relay, and the fading distributions of

the links. The analysis is performed for both full-duplex and half-duplex relaying. Through this study, the impact upon

the throughput of having buffer constraints at the source and intermediate relay nodes is identified. The interactions

between the buffer constraints in different nodes and how they affect the performance are studied. The optimal time-

sharing parameter in half-duplex relaying is determined, and performance with half-duplex relaying is investigated.

Index Terms

Two-hop wireless links, fading channels, effective capacity, quality of service (QoS) constraints, buffer violation

probability, full-duplex and half-duplex relaying.

I. INTRODUCTION

Fueled by the fourth generation (4G) wireless standards, smart phones and tablets, social networking

tools and video-sharing sites, wireless transmission of multimedia content has significantly increased in
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volume and is expected to be the dominant traffic in data communications. Such wireless multimedia traffic

requires certain quality-of-service (QoS) guarantees so that acceptable performance and quality levels can be

met for the end-users. For instance, in voice over IP (VoIP),interactive-video (e.g., videoconferencing), and

streaming-video applications in wireless systems, latency is a key QoS metric. In such cases, information has

to be communicated with minimal delay. Hence, certain constraints on the queue length should be imposed in

order to have the data not wait too long in the buffer at the transmitter. At the same time, satisfying these QoS

considerations is challenging in wireless communication scenarios. Due to mobility, changing environment

and multipath fading, the power of the received signal, and hence the instantaneous rates supported by the

channel, fluctuate randomly [1]. In such a volatile environment, providing deterministic delay guarantees

either is not possible or, when it is possible, requires the system to operate pessimistically and achieve low

performance underutilizing the resources. Therefore, wireless systems are better suited to support statistical

QoS guarantees.

In [2], Chang employed the effective bandwidth theory to analyze systems operating under statistical QoS

constraints. These constraints are imposed on buffer violation probabilities and are specified by the QoS

exponentθ, which is defined as

lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

= −θ, (1)

where Q is the queue length in steady state andQmax is a threshold indicating the maximal tolerable

queue length. If the above limiting formulation is satisfied, then the buffer violation probability behaves as

Pr{Q > Qmax} ≈ e−θQmax for largeQmax. Therefore, QoS exponentθ is the exponential decay rate of the

buffer overflow probability for largeQmax. A larger θ implies a lower probability of violating the queue

length and is a more stringent QoS constraint. In [3], Chang and Zajic characterized the effective bandwidths

of the time varying departure processes. In [4], Chang and Thomas applied the effective bandwidth theory

to high-speed digital networks. More recently, Wu and Negi in [5] defined the dual concept of effective

capacity, which provides the maximum constant arrival ratethat can be supported by a given departure

or service process while satisfying statistical QoS constraints. The analysis and application of effective
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capacity in various settings have attracted much interest recently (see e.g. [6]-[13] and references therein).

For instance, optimal power control policies that maximizethe effective capacity of a point-to-point link

have been derived in [6]. In [10], the authors study the multiple-input single-output (MISO) channels and

determine the optimal transmit strategies with covariancefeedback when effective capacity is adopted as the

performance metric. In [11], effective capacity in a time-division-based downlink system is characterized,

and optimal scheduling schemes that achieve the points on the boundary of the effective capacity region are

identified.

In this paper, we consider two-hop wireless links and investigate the throughput in the presence of QoS

constraints by studying the effective capacity. We note that references [12] and [13] have also recently

investigated the effective capacity of relay channels. Tang and Zhang in [12] analyzed the power allocation

policies in relay networks under the assumption that the relay node has no buffer constraints. Parag and

Chamberland in [13] provided a queueing analysis of a butterfly network with constant rate for each link.

However, they assumed that there is no congestion at the intermediate nodes. In this work, as a significant

departure from previous studies, we assume that both the source and the relay nodes are subject to QoS

constraints specified by the QoS exponentsθ1 andθ2. Now, we face a more challenging scenario in which

the buffer constraints at the source and relay interact. Moreover, we consider a general relay channel model

in which the fading coefficients for each link can have arbitrary distributions. We concentrate on the decode-

and-forward (DF) relaying scheme. Assuming that the relay operates in full-duplex or half-duplex mode,

we determine the effective capacity as a function ofθ1 and θ2. Through this analysis, we characterize the

impact of the presence of QoS constraints at the relay and also of half-duplex operation on the throughput

of the two-hop link.

The rest of this paper is organized as follows. In Section II,the system model and necessary preliminaries

are provided. In Section III, we describe our main results onthe effective capacity and present numerical

results. Finally, in Section IV, we conclude the paper. Lengthy proofs are relegated to the Appendix.
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Fig. 1. The system model.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

The two-hop communication link is depicted in Figure 1. In this model, sourceS is sending information

to the destinationD with the help of the intermediate relay nodeR. We assume that there is no direct link

betweenS andD (which, for instance, holds, if these nodes are sufficientlyfar apart in distance). Both the

source and the intermediate relay node operate under QoS constraints (i.e., buffer constraints) specified by

the QoS exponentsθ1 andθ2, respectively. Hence, the source and relay buffer violation probabilities should,

for some largeQmax, satisfy

Pr{Qs ≥ Qmax} ≈ e−θ1Qmax (2)

and

Pr{Qr ≥ Qmax} ≈ e−θ2Qmax, (3)

respectively. Above,Qs andQr denote the stationary queue lengths at the source and relay,respectively.

We consider both full-duplex and half-duplex relay operation. The full-duplex relay can receive and

transmit simultaneously while the half-duplex relay first listens and then transmits. Therefore, reception and

transmission at the half-duplex relay occur in non-overlapping intervals.

Next, we identify the discrete-time input and output relationships. In theith symbol duration, the signal

Yr received at the relay from the source and the signalYd received at the destination from the relay can be
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expressed as

Yr[i] = g1[i]X1[i] + n1[i] (4)

Yd[i] = g2[i]X2[i] + n2[i] (5)

whereXj for j = {1, 2} denote the inputs for the linksS−R andR−D, respectively. More specifically,X1

is the signal sent from the source andX2 is sent from the relay. The inputs are subject to individual average

energy constraintsE{|Xj |2} ≤ P̄j/B, j = {1, 2} whereB is the bandwidth. Assuming that the symbol rate

is B complex symbols per second, we can easily see that the symbolenergy constraint of̄Pj/B implies

that the channel input has a power constraint ofP̄j. We assume that the fading coefficientsgj , j = {1, 2}

are jointly stationary and ergodic discrete-time processes, and we denote the magnitude-square of the fading

coefficients byzj [i] = |gj[i]|2. Above, in the channel input-output relationships, the noise componentnj[i] is

a zero-mean, circularly symmetric, complex Gaussian random variable with varianceE{|nj[i]|2} = Nj for

j = 1, 2. The additive Gaussian noise samples{nj [i]} are assumed to form an independent and identically

distributed (i.i.d.) sequence. We denote the signal-to-noise ratios asSNRj =
P̄j

NjB
.

B. Effective Capacity

We first state the following result from [3], which identifiesthe QoS exponent for given arrival and

departure processes under certain conditions.

Theorem 1 ([3]): Consider a queueing system, and suppose that the queue is stable and that both the

arrival processa[n], n = 1, 2, . . . and service processc[n], n = 1, 2, . . . satisfy the Gärtner-Ellis limit, i.e.,

for all θ ≥ 0, there exists a differentiable asymptotic logarithmic moment generating function (LMGF)

ΛA(θ) defined as1

ΛA(θ) = lim
n→∞

logE{eθ
∑n

i=1 a[i]}
n

, (6)

1Throughout the text, logarithm expressed without a base, i.e., log(·), refers to the natural logarithmloge(·).
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and a differentiable asymptotic LMGFΛC(θ) defined as

ΛC(θ) = lim
n→∞

logE{eθ
∑n

i=1 c[i]}
n

. (7)

If there exists a uniqueθ∗ > 0 such that

ΛA(θ
∗) + ΛC(−θ∗) = 0, (8)

then

lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

= −θ∗. (9)

whereQ is the stationary queue length. �

Now, we discuss the implications of this result on the two-hop link we study. Assume that the constant

arrival rate at the source isR ≥ 0, and the channels operate at their capacities. To satisfy the QoS constraint

at the source, we should have

θ̃ ≥ θ1 (10)

whereθ̃ is the solution to

R = −Λsr(−θ̃)

θ̃
(11)

andΛsr(θ) is the LMGF of the instantaneous capacity of theS−R link.

According to [3], the LMGF of the departure process from the source, or equivalently the arrival process

to the relay node, is given by

Λr(θ) =











Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + Λsr(θ − θ̃), θ > θ̃
. (12)
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Therefore, in order to satisfy the QoS of the intermediate relay nodeR, we must have

θ̂ ≥ θ2 (13)

whereθ̂ is the solution to

Λr(θ̂) + Λrd(−θ̂) = 0. (14)

Above,Λrd(θ) is the LMGF of the instantaneous capacity of theR−D link.

After these characterizations, effective capacity of the two-hop communication model can be formulated

as follows.

Definition 1: The effective capacity of the two-hop communication link with the QoS constraints specified

by θ1 at the source andθ2 at the relay node is given by

RE(θ1, θ2) = sup
R∈R

R (15)

whereR is the collection of constant arrival ratesR for which the solutions̃θ and θ̂ of (11) and (14) satisfy

θ̃ ≥ θ1 and θ̂ ≥ θ2, respectively. Hence, effective capacity is the maximum constant arrival rate that can be

supported by the two-hop link in the presence of QoS constraints at both the source and relay nodes.

III. EFFECTIVE CAPACITY OF A TWO-HOP L INK IN BLOCK FADING CHANNELS

We assume that the channel state information of the linksS−R andR−D is available atS andR, and

the channel state information of the linkR−D is available atR andD. The transmission power levels at

the source and the intermediate-hop node are fixed and hence no power control is employed (i.e., nodes are

subject to short-term power constraints). We further assume that the channel capacity for each link can be

achieved, i.e., the service processes are equal to the instantaneous Shannon capacities of the links. Moreover,

we consider a block fading scenario in which the fading staysconstant for a block ofT seconds and change

independently from one block to another.
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A. Full-Duplex Relay

In this part, we consider the full-duplex relay. The instantaneous capacities of theS−R andR−D links

in each block are given, respectively, by

TB log2(1 + SNR1z1) and TB log2(1 + SNR2z2) (16)

in the units of bits per block or equivalently bits perT seconds. These can be regarded as the service

processes at the source and relay.

Under the block fading assumption, the logarithmic moment generating functions for the service processes

of links S−R andR−D as functions ofθ are given by2 [6]

Λsr(θ) = logEz1

{

eθTB log2(1+SNR1z1)
}

(17)

Λrd(θ) = logEz2

{

eθTB log2(1+SNR2z2)
}

(18)

and as a result

Λr(θ) =











Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + logEz1

{

e(θ−θ̃)TB log2(1+SNR1z1)
}

, θ > θ̃
. (19)

With these formulations forΛsr, Λrd, andΛr, we can now more explicitly express the equations in (11) and

(14) as

R = g(θ̃) = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

(20)

and

R = h(θ̃, θ̂) =











−1

θ̂
logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ̃)TB log2(1+SNR1z1)
})

θ̂ ≥ θ̃
,

(21)

2Due to the assumption that the fading changes independentlyfrom one block to another, we can, for instance, simplify (6)as ΛA =

limn→∞
log E{eθ

∑n
i=1 a[i]}

n
= limn→∞

log
∏

n

i=1 E{eθa[i]}

n
= limn→∞

∑
n

i=1 log E{eθa[i]}

n
= limn→∞

n log E{eθa[1]}
n

= logE{eθa[1]}.
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respectively.

We seek to identify the constant arrival ratesR that can be supported in the presence of QoS constraints

specified by the QoS exponentsθ1 for theS−R link and θ2 for theR−D link. In this quest, we have the

following characterization. The ratesR, which simultaneously satisfy the equations in (20) and (21) with

someθ̃ ≥ θ1 andθ̂ ≥ θ2, are the arrival rates that can be supported by the two-hop link while having the buffer

violation probabilities, for largeQmax, behave approximately asPr{Qs ≥ Qmax} ≈ e−θ̃Qmax ≤ e−θ1Qmax and

Pr{Qr ≥ Qmax} ≈ e−θ̂Qmax ≤ e−θ2Qmax , whereQs andQr are the stationary queue lengths at the source

and relay, respectively. We first establish an upper bound onthese arrival rates.

Proposition 1: The constant arrival rates, which can be supported by the two-hop link in the presence of

QoS constraints with QoS exponentsθ1 andθ2 at the source and relay, respectively, are upper bounded by

R ≤ min

{

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

}

. (22)

Proof: We can see from (10) and (20) that

R = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

≤ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (23)

Note that the inequality above follows from the assumption that θ̃ ≥ θ1 and the fact that−Λ(−θ̃)

θ̃
=

−1
θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

is a decreasing function of̃θ since largerθ̃ implies a faster decay in

the buffer violation probabilities and hence more stringent QoS constraints. Another upper bound can be

obtained through the following arguments. Consider the idealistic scenario in which theS − R link is

deterministic (i.e., there is no fading) and can support anyconstant arrival rateR (i.e., the capacity of this

link is unbounded andR − D link is the bottleneck). In such a case, the arriving data canimmediately

be sent without waiting and consequently there is no need forbuffering at the source. Hence, any source

QoS constraint can be satisfied. More specifically, if the service rate matches the constant arrival rate, the

equation in (11) holds for anỹθ, i.e.,

R = −Λsr(−θ̃)

θ̃
= −1

θ̃
logE

{

e−θ̃R
}

= −1

θ̃
(−θ̃R) = R (24)
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where instantaneous service rate is assumed to be equal to the constant arrival rateR (rather than the random

quantityTB log2(1 + SNR1z1) as we have in the fading channel case). Since no buffering is now required

at the source, we can freely impose the most strict QoS constraints and assumẽθ to be unbounded as well.

Then, we havêθ ≤ θ̃ for any θ̂. With this, we see from (21) that

R = −1

θ̂
logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

≤ − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

(25)

where, similarly as before, the inequality is due to the assumption thatθ̂ ≥ θ2. Combining the bounds in

(23) and (25), we can equivalently write

R ≤ min

{

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

}

(26)

concluding the proof. �

Remark 1:Note that− 1
θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

is the effective capacity of theS−R link with

QoS exponentθ1. Similarly, − 1
θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

is the effective capacity of theR−D link

with QoS exponentθ2. Hence, the arrival rates that can be supported by the two-hop link are upper bounded

by the minimum of the effective capacities of the individuallinks.

Below, we identify, for full-duplex relaying, the effective capacity of the two-hop link, i.e., maximum of

the arrival rates that can be supported in the two-hop link inthe presence of QoS constraints. According to

[3], we know that the queues are not stable if the average transmission rate of linkR−D is less than the

average transmission rate of linkS−R. Therefore, in order to ensure stability, we assume that thecondition

Ez1{log2(1 + SNR1z1)} < Ez2{log2(1 + SNR2z2)} is satisfied in the following result.

Theorem 2:The effective capacity of the two-hop communication systemas a function ofθ1 and θ2 is

given by the following:

Case I: If θ1 ≥ θ2,

RE(θ1, θ2) = min

{

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

}

. (27)
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Case II: If θ1 < θ2 andθ2 ≤ θ̄,

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

(28)

whereθ̄ is the unique value ofθ for which we have the following equality satisfied:

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

=− 1

θ1

(

logEz2

{

e−θTB log2(1+SNR2z2)
}

+ logEz1

{

e(θ−θ1)TB log2(1+SNR1z1)
})

. (29)

Case III: Assumeθ1 < θ2 andθ2 > θ̄.

III.a: If − 1
θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

≥ − 1
θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

, then

RE(θ1, θ2) = − 1

θ̃∗
logEz1

{

e−θ̃∗TB log2(1+SNR1z1)
}

(30)

whereθ̃∗ is the smallest solution to

−1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

=− 1

θ̃

(

logEz2

{

e−θ2TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
}

)

. (31)

III.b: If − 1
θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

< − 1
θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

and

− 1
θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

≥ TB log2(1 + SNR1z1,min),

RE(θ1, θ2) = − 1

θ̃∗
logEz1

{

e−θ̃∗TB log2(1+SNR1z1)
}

(32)

wherez1,min is the essential infimum ofz1, and θ̃∗ is the solution to

−1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

= − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (33)

III.c: Otherwise,

RE(θ1, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (34)
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Proof : See Appendix A.

Remark 2:We see that in Case I in whichθ1 ≥ θ2, the effective capacity upper bound identified in

Proposition 1 is attained.

Remark 3:Note that ifθ1 ≥ θ2, then the source is operating under more stringent QoS constraints then

the relay. In this case, if we have

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

≤ − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (35)

then

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (36)

Therefore, under these assumptions, the effective capacity is equal to the effective capacity of theS −R

link, and the performance is not affected by the presence of the buffer constraints at the relay nodeR.

This is because of the fact that the effective bandwidth of the departure process from the source can be

completely supported by theR−D link when the QoS exponent imposed at the relay nodeR is smaller.

The inequality in (35) is, for instance, satisfied whenz1 andz2 (which are the fading powers in theS−R

andR−D links) have the same distribution, and we haveSNR1 ≤ SNR2. We can easily see that

− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

≥ − 1

θ1
logEz2

{

e−θ1TB log2(1+SNR2z2)
}

(37)

≥ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

(38)

where (37) and (38) follow from the facts that−1
θ
logEz

{

e−θTB log2(1+SNRz)
}

is a decreasing function inθ,

and a increasing function inSNR. This discussion also suggests that even if the source operates under more

strict buffer constraints, if the fading in theR − D link is worse than that in theS − R link and/or the
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signal-to-noise ratio of the relay is smaller, i.e.,SNR1 ≥ SNR2, then we can have

RE(θ1, θ2) = min

{

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

}

(39)

= − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (40)

and hence experience theR−D link as the bottleneck.

B. Half-Duplex Relay

In the case of half-duplex relaying with a fixed time-sharingparameterτ ∈ (0, 1), we assume that the

source first transmits in theτ fraction of the block ofT seconds during which the relay listens. Subsequently,

in the remaining(1− τ) fraction of the time, the relay transmits to the destination. Hence, the transmission

or service rates (in bits perT seconds) at the source and relay become

τTB log2(1 + SNR1z1) and (1− τ)TB log2(1 + SNR2z2). (41)

Now, the logarithmic moment generating functions for the service processes of linksS−R andR−D as

functions ofθ are given by

Λsr(θ) = logEz1

{

eτθTB log2(1+SNR1z1)
}

(42)

Λrd(θ) = logEz2

{

e(1−τ)θTB log2(1+SNR2z2)
}

(43)

and as a result, we have

Λr(θ) =











Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + logEz1

{

eτ(θ−θ̃)TB log2(1+SNR1z1)
}

, θ > θ̃
.

With these expressions, equations in (11) and (14) can be written, for fixedτ , as

R = g(θ̃) = −1

θ̃
logEz1

{

e−τ θ̃TB log2(1+SNR1z1)
}

(44)

13



and

R = h(θ̃, θ̂) =











−1

θ̂
logEz2

{

e−(1−τ)θ̂TB log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−(1−τ)θ̂TB log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ̂−θ̃)TB log2(1+SNR1z1)
})

θ̂ ≥ θ̃
,

(45)

respectively. As in full-duplex relaying, the ratesR for which the equations in (44) and (45) are simultane-

ously satisfied for somẽθ ≥ θ1 and θ̂ ≥ θ2 are the rates that can be supported by the two-hop link in the

presence of QoS constraints specified byθ1 andθ2. The following result provides the effective capacity, which

is defined as the supremum of such rates. Similarly as in full-duplex relaying, we assume that the average

transmission rate of theS−R link is less than the average transmission rate of theR−D link in order to

ensure stability in the buffers. Therefore, we supposeEz1{τ log2(1+SNR1z1)} < Ez2{(1−τ) log2(1+SNR2z2)}.

Accordingly, in the following result, we assume that the feasible values ofτ for half-duplex relaying are

upper bounded by

τ < τ0 =
Ez2{log2(1 + SNR2z2)}

Ez1{log2(1 + SNR1z1)}+ Ez2{log2(1 + SNR2z2)}
. (46)

Theorem 3:In half-duplex relaying, the effective capacity of the two-hop communication link with

statistical QoS constraints at the source and the intermediate relay nodes is given by

Case I θ1 ≥ θ2 : RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ̃ θ1TB log2(1+SNR1z1)
}

(47)

Case II θ1 < θ2 : RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ̂ θ1TB log2(1+SNR1z1)
}

(48)

where τ̃ = min{τ0, τ ∗} and τ ∗ is the solution to

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

= − 1

θ2
logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

(49)
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Fig. 2. The relay model.

and τ̂ = min{τ0, τ ′} and τ ′ is the solution to

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

= − 1

θ1

(

logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)TB log2(1+SNR1z1)
})

. (50)

Proof : See Appendix B.

C. Numerical Results

We consider the relay model depicted in Fig. 2. The source, relay, and destination nodes are located on

a straight line. The distance between the source and the destination is normalized to 1. Let the distance

between the source and the relay node bed ∈ (0, 1). Then, the distance between the relay and the destination

is 1−d. We assume the fading distributions forS−R andR−D links follow independent Rayleigh fading

with meansE{z1} = 1/dα andE{z2} = 1/(1−d)α, respectively, where we assume that the path lossα = 4.

We assume thatSNR1 = 0 dB andθ1 = 0.01 in the following numerical results.

In Fig. 3, we plot the effective capacity as a function of the QoS constraints of the full-duplex relay node

for different SNR2 values. We fixd = 0.5, in which case theS−R andR−D links have the same channel

conditions. From the figure, we can see that the effective capacity does not decrease for a certain range of

θ2, and this range is increased by increasingSNR2. Motivated by this observation, we plot the value ofθ′2,

up to which the effective capacity is unaffected, as a function of SNR2 in Fig. 4. Note that for all values of

the pair(SNR, θ2) below the curve shown in the figure, the QoS constraints of therelay node do not impose

any negative effect on the effective capacity. This provides us with useful insight on the design of wireless

15
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systems. In Fig. 5, we plot the effective capacity asd varies. We assumeθ2 = {0.001, 0.01, 0.05, 0.1}.

We are interested in the range in which the condition for stable queues (as stated above Theorem 2) is

satisfied. More specifically, we note that the optimald is lower bounded by the value at which we have

Ez1{log2(1 + SNR1z1)} = Ez2{log2(1 + SNR2z2)}. We can see from the figure that for smallθ2 (i.e., for

θ2 = 0.001 andθ2 = 0.01), the effective capacity curves overlap. In these cases,S−R link is the bottleneck

and the throughput is determined by the effective capacity of this link. When θ2 is greater thanθ1 (i.e.,

whenθ2 = 0.05 or 0.1), it is interesting that the effective capacity decreases first and then increases until the

S−R link becomes again the bottleneck, in which case the curves overlap. This tells us that with stringent

QoS constraints at the relay, having symmetric channel conditions for the linksS − R andR − D, i.e.,

havingd = 0.5, generally leads to lower performance.

In Fig. 6, we plot the effective capacity as a function ofθ2 for half-duplex relaying. We setd = 0.5. From

the figure, we can find that the effective capacity stays constant for smallθ2, i.e., the QoS constraints at

the relay node does not impose any negative effect on the effective capacity of the system. We can also see

17



10
−4

10
−3

10
−2

10
−1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

θ
2

E
ffe

ct
iv

e 
ca

pa
ci

ty
 (

bp
s/

H
z)

SNR
2
=3 dB

SNR
2
=10 dB

SNR
2
=20 dB

Fig. 6. The effective capacity as a function ofθ2. d = 0.5. SNR2 = {3, 10, 20} dB.

that asSNR2 increases, larger QoS constraints at the relay node can be supported while having the effective

capacity of the system unaltered. One stark difference fromthe full-duplex relay is that asSNR2 increases,

the effective capacity of the system increases as well even for small θ2. This is due to the nature of the

half-duplex operation. AsSNR2 increases, more time can be allocated to the transmission between the source

and relay nodes while satisfying (46).

In Fig. 7, we plot the effective capacity asd andθ2 varies. We assumeSNR2 = 3 dB. As we can see from

the figure, there exists an optimald that maximizes the effective capacity of the system. Besides, the optimal

d increases asθ2 increases. This is due to the fact that as the QoS constraintsat the relay node become

more stringent, the effective bandwidth supported by theR −D link decreases and this link becomes the

bottleneck of the system. In order to counterbalance this negative effect, the channel conditions of theR−D

link should be improved, which results in a largerd. It is also interesting that the curve is nearly flat for

small θ2 whend is large. So, we plot the effective capacity asd varies forθ2 = {0.001, 0.01, 0.1} in Fig.

8. Confirming the observation in Fig. 7, we see that the two curves for θ2 = 0.001 and θ2 = 0.01 overlap
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asd increases. This is because the upperbound forτ specified in (46) is achieved for both curves.

IV. CONCLUSION

In this paper, we have analyzed the maximum arrival rates that can be supported by a two-hop commu-

nication link in which the source and relay nodes are both subject to statistical QoS constraints. We have

determined the effective capacity in the block-fading scenario as a function of the signal-to-noise ratio levels

SNR1 and SNR2 and the QoS exponentsθ1 and θ2 for both full-duplex and half-duplex relaying. Through

this analysis, we have quantified the throughput of a two-hoplink operating under buffer constraints. In

particular, we have shown that effective capacity can have different characterizations depending on how

buffer constraints at the source and relay or more specifically how θ1 andθ2 compare. We have noted that

if θ1 ≥ θ2, the upper bound on the effective capacity is attained. We have also seen that under certain

conditions depending on theSNR levels and fading distributions,S − R link becomes the bottleneck and

buffer constraints at the relay do not incur performance losses when the QoS exponentθ2 is sufficiently

small but nonzero. In the numerical results, the threshold for θ2 above which the effective capacity starts
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diminishing is identified and is shown to increase with increasingSNR2. In a simple linear setting, we have

numerically investigated the impact of the location of the relay on the effective capacity for different values

of the QoS exponents. In half-duplex relaying, we have determined the optimal time-sharing parameterτ .

In the numerical results, we have had several interesting observations. We have shown that as theSNR level

at the relay node increases, the effective capacity of the system increases for allθ2. Additionally, as the

QoS constraints at the relay node become more stringent, we have observed that the effective capacity of

the system can be increased by improving the channel conditions in theR − D link through having the

relay node approach the destination.
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APPENDIX

A. Proof of Theorem 2

Case I θ1 ≥ θ2:

For this case, we can show that the upper bound in (22) can be attained. First assume that

− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

≤ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (51)

Hence, the second term on the right-hand side of (22) is the minimum one. Now, set̂θ = θ2 in (21). Assume

that θ̃ ≥ θ̂ = θ2 where θ̃ is the solution to (20). The validity of this assumption willbe shown later below.

Under these assumptions, we see from (21) that

R = h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

for all θ̃ ≥ θ̂ = θ2. (52)

Now, in order to show that this rate can be supported, we have to prove that the equation in (20) is also

satisfied for this choice ofR, i.e., we should have

R = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

= g(θ̃) = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

(53)

for someθ̃ satisfyingθ̃ ≥ θ1 and θ̃ ≥ θ̂ = θ2. From (51) and (52), we have

R ≤ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (54)

Since−1
θ
logEz1

{

e−θTB log2(1+SNR1z1)
}

is a decreasing function ofθ, (54) implies that there exists ãθ ≥ θ1

such that

R = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

≤ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

(55)

showing that (53) holds. Note that in Case I, the original assumption is thatθ1 ≥ θ2. Then, we have

θ̃ ≥ θ1 ≥ θ̂ = θ2. Hence, in case I, we satisfỹθ ≥ θ̂ = θ2, verifying the earlier assumption. In summary, we
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have shown that (20) and (21) simultaneously hold forθ̃ ≥ θ1 and θ̂ = θ2 when we have

R = min

{

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

}

(56)

= − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (57)

Hence, the upper bound in (22) can be achieved and this is the effective capacity.

Above, we have assumed that the second term in (22) is the minimum one. On the other hand, if we have

− 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

≤ − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (58)

similar arguments follow. In particular, we can chooseθ̃ = θ1 in this case, and have from (20)

R = g(θ1) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (59)

Through a similar approach as above, we can show that (21) canbe satisfied witĥθ ≥ θ2 for this choice of

R and establish that the upper bound in (22) is again attained.

Case II: θ1 < θ2 andθ2 ≤ θ̄:

Suppose that the effective capacity is decided by theS−R link and θ̃ = θ1 returns the highestR. Hence,

we setθ̃ = θ1 in (20) and have

R = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (60)

Clearly, this rate can be supported by theS−R link while the QoS constraint at the source is satisfied. In

order to prove that this rate is viable for the two-hop link inthe presence of the QoS constraint at the relay,

we have to show that the equality in (21) is satisfied as well for someθ̂ ≥ θ2. Note that the assumption in

Case II isθ̃ = θ1 < θ2. Then, havinĝθ ≥ θ2 implies thatθ̂ > θ̃ = θ1. Consequently, in order to satisfy (21),

we should have

R = − 1

θ1

(

logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ1)TB log2(1+SNR1z1)
})

(61)

22



where we have used the assumption thatθ̃ = θ1. Our goal is to see whether (60) and (61) for someθ̂ ≥ θ2 can

be satisfied simultaneously. In this quest, we first show several properties of the function on the right-hand

side of (61).

Lemma 1:Consider the function

f(θ) = − 1

θ1

(

logE
{

e−θTB log2(1+SNR2z2)
}

+ logE
{

e(θ−θ1)TB log2(1+SNR1z1)
})

for θ ≥ 0. (62)

This function has the following properties:

a) f(θ) is a continuous function ofθ.

b) f(0) = − 1
θ1
logE

{

e−θ1TB log2(1+SNR1z1)
}

.

c) The first derivative off(θ) with respect toθ at θ = 0 is positive, i.e.,ḟ(0) > 0. Hence,f(θ) is initially

an increasing function in the vicinity of the origin asθ increases.

d) f(θ) is a concave function ofθ.

e) If TB log2(1 + SNR1z1,max) > TB log2(1 + SNR2z2,min) where z1,max is the essential supremum of the

random variablez1 and z2,min is the essential infimum ofz2, then there exists aθ∗ > 0 such that

f(θ∗) = 0.

Proof:

a) The continuity can be shown by noting the continuity of thelogarithm and exponential functions

and employing the Dominated Convergence Theorem and Monotone Convergence Theorem for the

justification of the interchange of the limit and expectations. For the first expectation in (62), we can

apply the Dominated Convergence Theorem by observing that we have|e−θTB log2(1+SNR2z2)| ≤ 1 for

all θ ≥ 0 and the bounding function is integrable, i.e.,E{1} = 1 < ∞. For the second expectation,

we immediately note thate(θ−θ1)TB log2(1+SNR1z1) is nonnegative and increases with increasingθ, and

consequently we can use the Monotone Convergence Theorem tojustify the interchange of limit and

expectation.

b) This property can be readily seen by evaluating the function atθ = 0.
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c) The first derivative off with respect toθ can be evaluated as

ḟ(θ) = − 1

θ1

(−Ez2

{

e−θTB log2(1+SNR2z2)TB log2(1 + SNR2z2)
}

Ez2 {e−θTB log2(1+SNR2z2)}

+
Ez1

{

e(θ−θ1)TB log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

Ez1 {e(θ−θ1)TB log2(1+SNR1z1)}

)

. (63)

Then, ḟ(0) can be written as

ḟ(0) =
TB

θ1

(

Ez2{log2(1 + SNR2z2)} −
Ez1{e−θ1TB log2(1+SNR1z1) log2(1 + SNR1z1)}

Ez1{e−θ1TB log2(1+SNR1z1)}

)

. (64)

Let us define

α(θ1) = Ez2{log2(1 + SNR2z2)} −
Ez1{e−θ1TB log2(1+SNR1z1) log2(1 + SNR1z1)}

Ez1{e−θ1TB log2(1+SNR1z1)} . (65)

We can see thatα(0) = Ez2{log2(1+SNR2z2)}−Ez1{log2(1+SNR1z1)} > 0 (due to our original assumption

to ensure stability). The first derivative ofα(θ1) with respect toθ1 is

α̇(θ1) = TB
1

(Ez1{e−θ1TB log2(1+SNR1z1)})2

×
(

Ez1{e−θ1TB log2(1+SNR1z1) (log2(1 + SNR1z1))
2}Ez1{e−θ1TB log2(1+SNR1z1)}

−
(

Ez1{e−θ1TB log2(1+SNR1z1) log2(1 + SNR1z1)}
)2
)

(66)

By Cauchy-Schwarz inequality, we know thatE{X2}E{Y 2} ≥ (E{XY })2. Then, denoting

X =
√

e−θ1TB log2(1+SNR1z1) (log2(1 + SNR1z1))
2 and Y =

√
e−θ1TB log2(1+SNR1z1), we easily see that

α̇(θ1) ≥ 0 for all θ1. Thus,α(θ1) is an increasing function and we haveα(θ1) ≥ α(0) > 0. Hence,

ḟ(0) > 0.
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d) The second derivative off with respect toθ can be expressed as

f̈(θ) = − 1

θ1

(

1

(Ez2 {e−θTB log2(1+SNR2z2)})2

×
(

Ez2

{

e−θTB log2(1+SNR2z2) (TB log2(1 + SNR2z2))
2
}

Ez2

{

e−θTB log2(1+SNR2z2)
}

−
(

Ez2

{

e−θTB log2(1+SNR2z2)TB log2(1 + SNR2z2)
})2

)

+
1

(Ez1 {e(θ−θ1)TB log2(1+SNR1z1)})2

×
(

Ez1

{

e(θ−θ1)TB log2(1+SNR1z1) (TB log2(1 + SNR1z1))
2
}

Ez1

{

e(θ−θ1)TB log2(1+SNR1z1)
}

−
(

Ez1

{

e(θ−θ1)TB log2(1+SNR1z1)TB log2(1 + SNR1z1)
})2

)

)

(67)

≤ 0 (68)

where Cauchy-Schwarz inequality is used again. With this characterization, we establish thatf is a

concave function ofθ.

e) We first expressf(θ) in the following form:

f(θ) = − 1

θ1

(

logEz2

{

e−θTB log2(1+SNR2z2)
}

+ logEz1

{

e(θ−θ1)TB log2(1+SNR1z1)
})

(69)

=
θ

θ1

(

− 1

θ
logEz2

{

e−θTB log2(1+SNR2z2)
}

−
(

1− θ1
θ

)

1

θ − θ1
logEz1

{

e(θ−θ1)TB log2(1+SNR1z1)
}

)

=
θ

θ1
(EC(θ)−EB(θ − θ1)) (70)

where

EC(θ) = −1

θ
logEz2

{

e−θTB log2(1+SNR2z2)
}

(71)

is the virtual effective capacity with respect toθ, and

EB(θ − θ1) =

(

1− θ1
θ

)

1

θ − θ1
logEz1

{

e(θ−θ1)TB log2(1+SNR1z1)
}
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is the virtual effective bandwidth with respect toθ − θ1. Similar to the discussion in [5], we know that

EC(θ) is decreasing inθ. Moreover, whenθ = 0, we haveEC(0) = Ez2 {TB log2(1 + SNR2z2)}, and

as θ → ∞, EC(θ) approaches the delay limited capacity [9], i.e.,EC(θ) → TB log2(1 + SNR2z2,min)

wherez2,min is the essential infimum of the random variablez2. Furthermore,EB(θ−θ1) is an increasing

function ofθ. Forθ < θ1, EB(θ−θ1) has a negative value. Atθ = θ1, we haveEB(θ1−θ1) = EB(0) = 0.

As θ → ∞, EB(θ − θ1) approaches the highest rate of theS−R link, i.e., EB(θ − θ1) → TB log2(1 +

SNR1z1,max) where z1,max is the essential supremum of the random variablez1. Therefore, as long as

TB log2(1 + SNR1z1,max) > TB log2(1 + SNR2z2,min), the decreasing curveEC(θ) and increasing curve

EB(θ−θ1) will meet at some pointθ = θ∗ > 0 at which we havef(θ∗) = θ∗

θ1
(EC(θ

∗)−EB(θ
∗ − θ1)) = 0.

A numerical result provides a visualization of the above discussion. In Fig. 9, we plot the virtual effective

capacity and virtual effective bandwidth normalized byTB as a function ofθ in the Rayleigh fading

channel. We assume thatT = 2 ms,B = 105 Hz, θ1 = 0.01, SNR1 = 0 dB, andSNR2 = 10 dB. Note that

we havez1,max = ∞ andz2,min = 0 in the Rayleigh fading model. �

Recall that we are seeking to establish whether (60) and (61)can simultaneously be satisfied for some

θ̂ ≥ θ2. With the definition of the functionf(·) whose properties are delineated in Lemma 1, the equations

in (60) and (61) can be combined to write

f(θ̂) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (72)

Hence, our goal is to see whether the equation in (72) can be satisfied for someθ̂ ≥ θ2. In Lemma 1, we

have noted that the functionf(θ) is equal to the right-hand side of (72) atθ = 0, and then it increases. At

some point,f(θ) approaches zero. Since it is a concave function, we immediately see thatf(θ) is a function

that initially increases, hits a peak value, and then startsdecreasing. This leads us to conclude thatf(θ)

becomes equal to the right-hand side of (72) once again at some uniqueθ > 0. Let us denote this unique

point asθ̄. Hence,

f(θ̄) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

. (73)
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Fig. 9. The virtual effective capacity and virtual effective bandwidth as a function ofθ in Rayleigh fading channels with full-duplex relay.
E{z1} = E{z2} = 1.

If θ̄ ≥ θ2, then (72) is satisfied for̂θ = θ̄ ≥ θ2. Therefore, (60) and (61) are satisfied simultaneously. Hence,

the arrival rate

R = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

(74)

can be supported by the two-hop link. Since this rate is an upper bound on the arrival rates as proved in

Proposition 1, this arrival rate is the effective capacity,proving (28) in Theorem 2.

It is important to note that the above result implicitly assumes thatTB log2(1+SNR1z1,max) > TB log2(1+

SNR2z2,min) which is a condition in part e) of Lemma 1. Note that if this condition does not hold, then it

means that the maximum service rate from the source is equal to or lower than the minimum service rate

from the relay. Hence, the relay can immediately support anyarrival rate without requiring any buffering.

The bottleneck is theS−R link and arrival rates are limited by the effective capacityof this link. Therefore,

we again have effective capacity of the two-hop link given by(28).
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Case III: Assumeθ1 < θ2 andθ2 > θ̄:

Above, we have discussed the case in whichθ̄ ≥ θ2. If, on the other hand,̄θ < θ2, then (72) and

consequently (61) cannot be satisfied for someθ̂ ≥ θ2. Hence, the arrival rate in (74) cannot be supported

by the two-hop link, and we need to consider possibly smallerrates, i.e.,

R = g(θ̃) = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

(75)

for someθ̃ ≥ θ1. The rate given above is supported by the two-hop link if the equation

g(θ̃) = h(θ̃, θ̂) (76)

is satisfied for somêθ ≥ θ2 and θ̃ ≥ θ1. Recall that the functionh is defined in (21) as

h(θ̃, θ̂) =











−1

θ̂
logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

0 ≤ θ̂ ≤ θ̃

−1
θ̃

(

logEz2

{

e−θ̂TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ̂−θ̃)TB log2(1+SNR1z1)
})

θ̂ ≥ θ̃
. (77)

We first note that for fixed̃θ, h(θ̃, θ̂) is a decreasing function of̂θ because aŝθ increases, the QoS constraints

at the relay become more stringent and consequently lower rates can be supported by the relay. Therefore,

in order to identify the highest arrival ratesR, we consider the smallest allowed value ofθ̂ and setθ̂ = θ2.

We now consider the equation

g(θ̃) = h(θ̃, θ2) (78)

and seek whether this equation is satisfied for someθ̃ ≥ θ1. At θ̃ = θ1, the left-hand side of (78) becomes

g(θ1) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

(79)
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while the right-hand side is

h(θ1, θ2) = − 1

θ1

(

logEz2

{

e−θ2TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ1)TB log2(1+SNR1z1)
})

(80)

= f(θ2) (81)

wheref(·) is the function defined in Lemma 1. Note that our assumption inthis case isθ2 > θ̄. Recalling

(73), we know that

f(θ̄) = − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

= g(θ1). (82)

Then, from the properties off and the assumption thatθ2 > θ̄, we immediately see that

f(θ2) = h(θ1, θ2) ≤ − 1

θ1
logEz1

{

e−θ1TB log2(1+SNR1z1)
}

= g(θ1). (83)

Therefore, at̃θ = θ1, the left-hand side of (78) is larger than the value at the right-hand side.

Now, let us consider the values atθ̃ = θ2. The left-hand and right-hand sides of (78) become, respectively,

g(θ2) = − 1

θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

(84)

and

h(θ2, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

(85)

If we have

g(θ2) = − 1

θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

≤ h(θ2, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (86)

then the left-hand side of (78) is smaller that the value of the right-hand side atθ2. Therefore, being

continuous functions,g(θ̃) andh(θ̃, θ2) meet at someθ1 ≤ θ̃ ≤ θ2. Denote the smallest value ofθ̃ for which
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we haveg(θ̃) = h(θ̃, θ2) as θ̃∗. Then, the highest rate that can be supported by the two-hop link is

R = g(θ̃∗) = − 1

θ̃∗
logEz1

{

e−θ̃∗TB log2(1+SNR1z1)
}

(87)

Above result is obtained under the assumption thatg(θ2) ≤ h(θ2, θ2). Let us now consider the other

possibility in whichg(θ2) > h(θ2, θ2). For this case, we first have the following lemma.

Lemma 2:Assume thatg(θ2) > h(θ2, θ2). Then,h(θ̃, θ2) is an increasing function of̃θ for θ̃ ≤ θ2.

Proof: For θ̃ ≤ θ2, we can express

h(θ̃, θ2) = −1

θ̃

(

logEz2

{

e−θ2TB log2(1+SNR2z2)
}

+ logEz1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
})

. (88)

The first derivative ofh(θ̃, θ2) with respect toθ̃ is

ḣ(θ̃, θ2) =
1

θ̃2

(

θ̃
Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

e(θ2−θ̃)TB log2(1+SNR1z1)

+ logEz1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
}

+ logEz2

{

e−θ2TB log2(1+SNR2z2)
}

)

. (89)

Let us define

β(θ̃) = θ̃
Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)TB log2(1 + SNR1z1)
}

Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
}

+ logEz1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
}

+ logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (90)

We can show thatβ(θ̃) is nonnegative.

The first derivative ofβ(θ̃) with respect toθ̃ is

β̇(θ̃) =
θ̃

(

Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
})2

(

−Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1) (TB log2(1 + SNR1z1))
2
}

× Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)
}

+
(

Ez1

{

e(θ2−θ̃)TB log2(1+SNR1z1)TB log2(1 + SNR1z1)
})2

)

(91)

≤ 0 (92)
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where Cauchy-Schwarz inequality is used for (92). Therefore, β(θ̃) is a decreasing function of̃θ, and hence

for θ̃ ≤ θ2 we have

β(θ̃) ≥ β(θ2) = θ2Ez1 {TB log2(1 + SNR1z1)}+ logEz2

{

e−θ2TB log2(1+SNR2z2)
}

(93)

= −θ2

(

−TBEz1{log2(1 + SNR1z1)} −
1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

)

(94)

Note that our assumption is that

g(θ2) = − 1

θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

> h(θ2, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (95)

SinceTBEz1{log2(1 + SNR1z1)} ≥ − 1
θ2
logEz1

{

e−θ2TB log2(1+SNR1z1)
}

, the above inequality implies that

TBEz1{log2(1 + SNR1z1)} > − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

(96)

which further implies thatβ(θ2) > 0. Finally, we immediately see that

ḣ(θ̃, θ2) =
1

θ̃2
β(θ̃) ≥ 1

θ̃2
β(θ2) > 0 (97)

proving thath(θ̃, θ2) is an increasing function of̃θ for θ̃ ≤ θ2. �

In effect, we have shown that ifh(θ2, θ2) < g(θ2), thenh(θ̃, θ2) < g(θ2) for all θ̃ ≤ θ2. Note that since

g(θ̃) is a decreasing function,g(θ2) ≤ g(θ̃) for all θ̃ ≤ θ2. Combining these, we observe that

h(θ̃, θ2) < g(θ2) ≤ g(θ̃) ∀θ̃ ≤ θ2. (98)

Therefore, the equalityg(θ̃) = h(θ̃, θ2) cannot be satisfied for anyθ1 ≤ θ̃ ≤ θ2. Hence, we should have

θ̃ > θ2. Note that forθ̃ > θ2, h(θ̃, θ2), which can be expressed as

h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (99)
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is a constant for givenθ2. On the other hand,

g(θ̃) = −1

θ̃
logEz1

{

e−θ̃TB log2(1+SNR1z1)
}

(100)

is a decreasing function with minimum value given by

lim
θ̃→∞

g(θ̃) = TB log2(1 + SNR1z1,min) (101)

wherez1,min is the essential infimum ofz1. Hence, if

TB log2(1 + SNR1z1,min) ≤ h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (102)

then the equationg(θ̃) = h(θ̃, θ2) can be satisfied at somẽθ = θ̃∗ ≥ θ2, and the maximum arrival rate is

given by

R = g(θ̃∗) = − 1

θ̃∗
logEz1

{

e−θ̃∗TB log2(1+SNR1z1)
}

. (103)

If, on the other hand,

TB log2(1 + SNR1z1,min) > h(θ̃, θ2) = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

, (104)

the bottleneck is theR−D link, and the highest arrival rate that can be supported by the two-hop link is

R = − 1

θ2
logEz2

{

e−θ2TB log2(1+SNR2z2)
}

. (105)

Note that this arrival rate is smaller than the smallest possible transmission rate of the source and hence no

buffering is needed at the source in this extreme case. �
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B. Proof of Theorem 3

We first identify the following upper bound on the rates that can be supported with half-duplex relaying

in the two-hop link:

R ≤ sup
τ∈[0,τ0)

min

{

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

,− 1

θ2
logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

}

(106)

= − 1

θ1
logEz1

{

e−τ̃ θ1TB log2(1+SNR1z1)
}

(107)

where τ̃ = min{τ0, τ ∗} and τ ∗ is the solution to

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

= − 1

θ2
logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

(108)

andτ0, as defined in (46), is the upper bound on the time-sharing parameterτ . Above, (106) can be easily

obtained by using a similar approach as in the proof of Proposition 1. (107) follows from the fact that

the first term inside the minimization in (106) is an increasing function of τ while the second term is a

decreasing function. Hence, the upper bound in (106) is maximized atτ ∗ at which the two terms inside the

minimization are equal to each other. Ifτ ∗ < τ0, the optimal value ofτ is selected asτ ∗. If, on the other

hand,τ ∗ exceeds the upper bound, i.e.,τ ∗ ≥ τ0, then the optimal value isτ0.

Case I θ1 ≥ θ2:

In this case in which the QoS constraint at the source is more stringent, we can show that the upper

bound in (107) can be achieved or be approached arbitrarily closely. Let us set̃θ = θ1, θ̂ = θ2, and choose

the time-sharing parameter asτ = τ̃ = min{τ0, τ ∗}. Now, the equation in (44) becomes

R = g(θ1) = − 1

θ1
logEz1

{

e−τ̃ θ1TB log2(1+SNR1z1)
}

. (109)

Since θ̂ = θ2 ≤ θ̃ = θ1 by our assumption in Case I, (45) reduces to

R = h(θ1, θ2) = − 1

θ2
logEz2

{

e−(1−τ̃ )θ2TB log2(1+SNR2z2)
}

. (110)

Now, first assume that̃τ = τ ∗. As seen in (108), we have, by the definition ofτ ∗, that the right-hand sides
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of (109) and (110) are equal and therefore these equations are simultaneously satisfied.

Next, consider the other possibility in which̃τ = min{τ0, τ ∗} = τ0 which implies thatτ0 ≤ τ ∗. Note

again thatτ ∗ is the value ofτ at which the functions

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

(111)

and

− 1

θ2
logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

(112)

are equal. Note that the function in (111) increases with increasingτ while the function in (112) decreases.

They meet atτ ∗. Therefore, atτ = τ0 ≤ τ ∗, we have

− 1

θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

≤ − 1

θ2
logEz2

{

e−(1−τ0)θ2TB log2(1+SNR2z2)
}

. (113)

Hence, the rate

R = − 1

θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

(114)

can be supported. More specifically, the equations in (44) and (45) can simultaneously be satisfied by

setting θ̃ = θ1, τ = τ0, and also by choosinĝθ > θ2 so that the right-hand side of (45) becomes smaller

than− 1
θ2
logEz2

{

e−(1−τ0)θ2TB log2(1+SNR2z2)
}

and matches− 1
θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

.

One subtlety in the above argument is the following. Note that we have the strict inequalityτ < τ0.

Hence, we cannot actually setτ = τ0 but we can select a value ofτ that is arbitrarily close toτ0.

Therefore, since the function in (111) increases with increasing τ , we can approach the maximum rate

− 1
θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

arbitrarily closely. Because the effective capacity is defined as the

supremum of rates (see e.g., (15)),R = − 1
θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

is indeed the effective capacity.

Case II θ1 < θ2:

We now consider the scenario in which the relay node is subject to a more stringent QoS constraint. In
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this case, the approach behind the proof is identical to the one employed in Case I. Again, we setθ̃ = θ1

and θ̂ = θ2. Because, otherwise if we havẽθ > θ1 and/or θ̂ > θ2, we impose more strict QoS constraints

than necessary and hence end up supporting only lower arrival rates. Now, for fixedτ , the equations in (44)

and (45) become

R = g(θ1) = − 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

(115)

and

R = h(θ1, θ2) = − 1

θ1

(

logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)TB log2(1+SNR1z1)
})

, (116)

respectively. Note that (116) follows from (45) by noting that θ̂ = θ2 > θ1 = θ̃ in this case. Similarly as

before, the right-hand side of (115) is an increasing function of τ while the right-hand side of (116) is a

decreasing function. Therefore, the equations in (115) and(116) can simultaneously be satisfied by choosing

τ = τ ′ whereτ ′ is solution to

− 1

θ1
logEz1

{

e−τθ1TB log2(1+SNR1z1)
}

= − 1

θ1

(

logEz2

{

e−(1−τ)θ2TB log2(1+SNR2z2)
}

+ logEz1

{

eτ(θ2−θ1)TB log2(1+SNR1z1)
})

. (117)

Choosing values other thañθ = θ1, θ̂ = θ2, andτ = τ ′ will lead to smaller arrival rates. Hence, the effective

capacity is given by

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ ′θ1TB log2(1+SNR1z1)
}

. (118)

Above discussion implicitly assumes thatτ ′ < τ0. If τ ′ exceeds the thresholdτ0, then the optimal value of

the time-sharing parameter is set toτ = τ0. Using similar ideas as in Case I, we can show that the effective

capacity in this case is

RE(θ1, θ2) = − 1

θ1
logEz1

{

e−τ0θ1TB log2(1+SNR1z1)
}

. (119)
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