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Abstract

A two-hop wireless communication link in which a source sertthta to a destination with the aid of an
intermediate relay node is studied. It is assumed that tisare direct link between the source and the destination, and
the relay forwards the information to the destination by kEyipg the decode-and-forward scheme. Both the source
and intermediate relay nodes are assumed to operate umdisticdl quality of service (QoS) constraints imposed
as limitations on the buffer overflow probabilities. The rimaxm constant arrival rates that can be supported by this
two-hop link in the presence of QoS constraints are chatiaettby determining the effective capacity of such links
as a function of the QoS parameters and signal-to-noisasratithe source and relay, and the fading distributions of
the links. The analysis is performed for both full-duplexidralf-duplex relaying. Through this study, the impact upon
the throughput of having buffer constraints at the souratiatermediate relay nodes is identified. The interactions
between the buffer constraints in different nodes and hay Hifect the performance are studied. The optimal time-

sharing parameter in half-duplex relaying is determinedi performance with half-duplex relaying is investigated.

Index Terms

Two-hop wireless links, fading channels, effective catyacjuality of service (QoS) constraints, buffer violation

probability, full-duplex and half-duplex relaying.

I. INTRODUCTION

Fueled by the fourth generation (4G) wireless standardsyrtsphones and tablets, social networking

tools and video-sharing sites, wireless transmission oftimedia content has significantly increased in

The authors are with the Department of Electrical EngimegriUniversity of Nebraska-Lincoln, Lincoln, NE 68588 (eifs:
dgiao726@huskers.unl.edu, gursoy@engr.unl.edu, wai@eengr.unl.edu).

This work was supported by the National Science FoundatiaeuGrants CNS—0834753, and CCF-0917265.

July 20, 2011 DRAFT


http://arxiv.org/abs/1107.4346v1

volume and is expected to be the dominant traffic in data conications. Such wireless multimedia traffic
requires certain quality-of-service (QoS) guaranteehabdcceptable performance and quality levels can be
met for the end-users. For instance, in voice over IP (ValRgractive-video (e.g., videoconferencing), and
streaming-video applications in wireless systems, latéha key QoS metric. In such cases, information has
to be communicated with minimal delay. Hence, certain gaidis on the queue length should be imposed in
order to have the data not wait too long in the buffer at thesinatter. At the same time, satisfying these QoS
considerations is challenging in wireless communicaticenarios. Due to mobility, changing environment
and multipath fading, the power of the received signal, amack the instantaneous rates supported by the
channel, fluctuate randomlyl[1]. In such a volatile envir@emt providing deterministic delay guarantees
either is not possible or, when it is possible, requires §stesn to operate pessimistically and achieve low
performance underutilizing the resources. Thereforegless systems are better suited to support statistical
QoS guarantees.

In [2], Chang employed the effective bandwidth theory tolyre systems operating under statistical QoS
constraints. These constraints are imposed on buffer tioolgrobabilities and are specified by the QoS
exponent, which is defined as

I log Pr{@ > Qmax}
im =

Qmax—oo Qmax

—0, (1)

where () is the queue length in steady state afgax iS a threshold indicating the maximal tolerable
gueue length. If the above limiting formulation is satisfilten the buffer violation probability behaves as
Pr{Q > Qmax} ~ e “m=x for large Q... Therefore, QoS exponefitis the exponential decay rate of the
buffer overflow probability for largemax. A larger 6 implies a lower probability of violating the queue
length and is a more stringent QoS constraint/ In [3], CharmyZajic characterized the effective bandwidths
of the time varying departure processes.|In [4], Chang amuri#s applied the effective bandwidth theory
to high-speed digital networks. More recently, Wu and Negi5] defined the dual concept of effective
capacity, which provides the maximum constant arrival theg can be supported by a given departure

or service process while satisfying statistical QoS camsts. The analysis and application of effective



capacity in various settings have attracted much inteexsintly (see e.gl [6]-[13] and references therein).
For instance, optimal power control policies that maximilze effective capacity of a point-to-point link
have been derived in [6]. In [10], the authors study the rpldtinput single-output (MISO) channels and
determine the optimal transmit strategies with covarigeeeback when effective capacity is adopted as the
performance metric. In_[11], effective capacity in a timeision-based downlink system is characterized,
and optimal scheduling schemes that achieve the pointseohdbndary of the effective capacity region are
identified.

In this paper, we consider two-hop wireless links and inges¢ the throughput in the presence of QoS
constraints by studying the effective capacity. We notd tieéerences/[12] and [13] have also recently
investigated the effective capacity of relay channelsgTand Zhang in[12] analyzed the power allocation
policies in relay networks under the assumption that thayrelode has no buffer constraints. Parag and
Chamberland in [13] provided a queueing analysis of a Hiytteetwork with constant rate for each link.
However, they assumed that there is no congestion at thematkate nodes. In this work, as a significant
departure from previous studies, we assume that both thees@nd the relay nodes are subject to QoS
constraints specified by the QoS exponehtandf,. Now, we face a more challenging scenario in which
the buffer constraints at the source and relay interact.elhegr, we consider a general relay channel model
in which the fading coefficients for each link can have aditrdistributions. We concentrate on the decode-
and-forward (DF) relaying scheme. Assuming that the relpgrates in full-duplex or half-duplex mode,
we determine the effective capacity as a functiorfpfand 6,. Through this analysis, we characterize the
impact of the presence of QoS constraints at the relay amdadlbalf-duplex operation on the throughput
of the two-hop link.

The rest of this paper is organized as follows. In Sectioth®, system model and necessary preliminaries
are provided. In Section Ill, we describe our main resultsthomn effective capacity and present numerical

results. Finally, in Section IV, we conclude the paper. Ltaggroofs are relegated to the Appendix.



Fig. 1. The system model.

II. SYSTEM MODEL AND PRELIMINARIES
A. System Model

The two-hop communication link is depicted in Figlte 1. listinodel, sourceS is sending information
to the destinatioD with the help of the intermediate relay notke We assume that there is no direct link
betweenS and D (which, for instance, holds, if these nodes are sufficiefattyapart in distance). Both the
source and the intermediate relay node operate under QaSraims (i.e., buffer constraints) specified by
the QoS exponent® andd,, respectively. Hence, the source and relay buffer viotagimbabilities should,

for some largel),,..., satisfy

Pr{Q; > Quax} ~ ¢~ "19m= (2)

and

Pr{Q; > Quax} = e~ "%, 3)

respectively. Above(), and (@, denote the stationary queue lengths at the source and rekpgctively.

We consider both full-duplex and half-duplex relay openatiThe full-duplex relay can receive and
transmit simultaneously while the half-duplex relay fiistdns and then transmits. Therefore, reception and
transmission at the half-duplex relay occur in non-overiag intervals.

Next, we identify the discrete-time input and output reaghips. In the™ symbol duration, the signal

Y, received at the relay from the source and the sigfjaleceived at the destination from the relay can be



expressed as

Yo li] = gu[i] Xu[i] + nal] (4)

Yali] = go[i] Xa[i] + nald] %)

where X for j = {1, 2} denote the inputs for the link$s— R andR — D, respectively. More specificallyy;

is the signal sent from the source aid is sent from the relay. The inputs are subject to individwarage
energy constraint&{|X;|*} < P;/B,j = {1,2} where B is the bandwidth. Assuming that the symbol rate
is B complex symbols per second, we can easily see that the syemeogy constraint of®;/B implies
that the channel input has a power constraint?pf We assume that the fading coefficientsj = {1, 2}

are jointly stationary and ergodic discrete-time procesaad we denote the magnitude-square of the fading
coefficients byz;[i] = |g;[i]|*>. Above, in the channel input-output relationships, theseaa@iomponent;[i] is

a zero-mean, circularly symmetric, complex Gaussian randariable with variancé&{|n;[i]|*} = N, for

j = 1,2. The additive Gaussian noise sampfes|[i]} are assumed to form an independent and identically

o

J
N;B"

distributed (i.i.d.) sequence. We denote the signal-tsencatios asngr; =

B. Effective Capacity

We first state the following result from [3], which identifitee QoS exponent for given arrival and
departure processes under certain conditions.

Theorem 1 ([3]): Consider a queueing system, and suppose that the queueblis atad that both the
arrival process:[n],n = 1,2,... and service processn|,n = 1,2, ... satisfy the Gartner-Ellis limit, i.e.,
for all & > 0, there exists a differentiable asymptotic logarithmic nemtngenerating function (LMGF)

A 4(0) defined

1 0375 ali]
Aa(0) = Tim 8Bl 3 6)

n—o0 n

Throughout the text, logarithm expressed without a baeg,lag(-), refers to the natural logarithiog, (-).



and a differentiable asymptotic LMGkK.(¢) defined as

log E{e? iz clil}

n—o00 n
If there exists a uniqué* > 0 such that
A4(07) + Ac(=07) =0, (8)
then
hm log PI"{Q > Qmax} — _9* (9)
Q@max—oo Qmax
where( is the stationary queue length. |

Now, we discuss the implications of this result on the tw-tiok we study. Assume that the constant
arrival rate at the source B > 0, and the channels operate at their capacities. To satieftt constraint

at the source, we should have

™
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(10)

whered is the solution to

Asr(_é)

R=——=
0

(11)

and A,,.(0) is the LMGF of the instantaneous capacity of the- R link.
According to [3], the LMGF of the departure process from tharse, or equivalently the arrival process

to the relay node, is given by
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A(0) = ] ] . (12)
RO+ Ay (0 —0), 0
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Therefore, in order to satisfy the QoS of the intermedialayreaodeR, we must have
0> 6, (13)
whered is the solution to
A(B) + Aa(—0) = 0. (14)

Above, A,4(0) is the LMGF of the instantaneous capacity of lRe- D link.

After these characterizations, effective capacity of the-hop communication model can be formulated
as follows.

Definition 1: The effective capacity of the two-hop communication linkiwthe QoS constraints specified
by 0, at the source ané, at the relay node is given by

RE(91, 92) = sup R (15)
ReR

whereR is the collection of constant arrival ratésfor which the solutiond andd of (I1) and [14) satisfy
6 > 6, andd > 6,, respectively. Hence, effective capacity is the maximumstant arrival rate that can be

supported by the two-hop link in the presence of QoS comgait both the source and relay nodes.

[1l. EFFECTIVE CAPACITY OF A TWO-HOP LINK IN BLOCK FADING CHANNELS

We assume that the channel state information of the I§%ksR andR — D is available atS andR, and
the channel state information of the lidk — D is available atR andD. The transmission power levels at
the source and the intermediate-hop node are fixed and hengewer control is employed (i.e., nodes are
subject to short-term power constraints). We further agstimt the channel capacity for each link can be
achieved, i.e., the service processes are equal to th@iaseous Shannon capacities of the links. Moreover,
we consider a block fading scenario in which the fading staysstant for a block o’ seconds and change

independently from one block to another.



A. Full-Duplex Relay

In this part, we consider the full-duplex relay. The instargous capacities of ttfee— R andR — D links

in each block are given, respectively, by

TBlogy(1+sNrizy) and TBlogy(l+ SNRyz2) (16)

in the units of bits per block or equivalently bits p@r seconds. These can be regarded as the service
processes at the source and relay.
Under the block fading assumption, the logarithmic momemegating functions for the service processes

of links S — R andR — D as functions of) are given by [6]

Asr(e) = log Ezl {66TBlog2(l+SNR1z1)} (17)
Ard(e) = log Ezg {66TBlog2(l+SNR2zg)} (18)
and as a result
R9, 0<6<6
A(8) = . (19)

V
™

RO + logE., {6(9—5)T310g2(1+SNR121)} .0

With these formulations foA,,, A,4, andA,, we can now more explicitly express the equations in (11) and

([14) as

1 ~
R = g(@) = _5 log Ezl {e—GTBlog2(1+SNR1z1)} (20)

and

_% logE,, {e—éTB log2(1+SNR222)}

_% (1OgE22 {e—éTBlog2(1+SNR222)} +logE,, {e(é—é)TBlog2(1+SNR1z1)}) i

(@]
IA
>
IN
D™

R=h(0,0) =

Vv
™

(21)

2Due to the assumption that the fading changes independémily one block to another, we can, for instance, simplify 8)Aa =

037 4 ali] . n prefali] . n fali] . 6all]
log E{e 1 } _ hmnaoo log [T E{e } _ 11mn~>oo > logE{e } _ hmnaoo n log]Eie } _ 10g ]E{eea[l]}.
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respectively.

We seek to identify the constant arrival rateghat can be supported in the presence of QoS constraints
specified by the QoS exponerttsfor the S — R link and #, for the R — D link. In this quest, we have the
following characterization. The rates, which simultaneously satisfy the equations[inl (20) dnd (&ith
somed > 6, andd > 6,, are the arrival rates that can be supported by the two-hémihile having the buffer
violation probabilities, for larg&),..x, behave approximately 8{Q, > Quax} A~ ¢ @msx < ¢=01Qmax gngd
Pr{Q, > Quax} ~ e 0Qmx < ¢=0:20mx where, and Q, are the stationary queue lengths at the source
and relay, respectively. We first establish an upper bounthese arrival rates.

Proposition 1: The constant arrival rates, which can be supported by thehtvmwlink in the presence of

QoS constraints with QoS exponertsandf, at the source and relay, respectively, are upper bounded by

R < min {_ei logE,, {6—91T310g2(1+SNR121)} 7 _ei logE., {e—GQTBlogz(l—i-SNRzm)}} ) (22)
1 2

Proof: We can see fron(10) and (20) that

R= _% IOg E21 {e—éTBlogQ(l—i-SNRlzl)} < _el IOg E21 {e—GlTB log2(1+SNRlzl)} ) (23)
1

Note that the inequality above follows from the assumptibat® > 6, and the fact that—%fé) =

—5logE., {e—‘;TBlogz(”SNRlzl)} is a decreasing function of since largerd implies a faster decay in
the buffer violation probabilities and hence more string@oS constraints. Another upper bound can be
obtained through the following arguments. Consider thalidec scenario in which th& — R link is
deterministic (i.e., there is no fading) and can support @nystant arrival rate? (i.e., the capacity of this
link is unbounded and® — D link is the bottleneck). In such a case, the arriving data icamediately

be sent without waiting and consequently there is no needudtfering at the source. Hence, any source
QoS constraint can be satisfied. More specifically, if theviserrate matches the constant arrival rate, the

equation in[(I11) holds for ang, i.e.,

(—0R) = R (24)



where instantaneous service rate is assumed to be equal toristant arrival rat& (rather than the random
quantity T'Blog,(1 + SNR;z;) as we have in the fading channel case). Since no bufferingws nequired
at the source, we can freely impose the most strict QoS ainttrand assum@to be unbounded as well.

Then, we have) < 6 for any d. With this, we see from(21) that
1 5 1
R— -3 logE,, {e—GTBlog2(1+SNR2zz)} < - logE,, {6—92T310g2(1+SNR2z2)} (25)

where, similarly as before, the inequality is due to the agxion thatd > 6,. Combining the bounds in

(23) and [(2b), we can equivalently write
1 1
R < min {_8_1 logE,, {6_91T310g2(1+SNR121)} 7 _9_2 logE., {e—GQTBlogz(l—i-SNRzm)}} (26)

concluding the proof. [ |

Remark 1:Note that—7-log E., {e~"7Ble:(#SNRiz0 L s the effective capacity of th8 — R. link with
QoS exponent;. Similarly, — ;- log E., {e~%7Plea:(+SNR=)1 s the effective capacity of thR — D link
with QoS exponent,. Hence, the arrival rates that can be supported by the tydthk are upper bounded
by the minimum of the effective capacities of the individliaks.

Below, we identify, for full-duplex relaying, the effecavcapacity of the two-hop link, i.e., maximum of
the arrival rates that can be supported in the two-hop linthenpresence of QoS constraints. According to
[3], we know that the queues are not stable if the averagermasion rate of linkR — D is less than the
average transmission rate of lis— R. Therefore, in order to ensure stability, we assume thatomelition
E., {logy(1 + sNRry21)} < E,,{log,(1 4+ SNRyz5)} is satisfied in the following result.

Theorem 2:The effective capacity of the two-hop communication systsma function ofd; and 6, is

given by the following:

Case l: If 61 262,

RE(91> 92) — min { o i log Ezl {6—91TBlog2(l+SNR1z1)} ’ _el log Ez2 {6—62T810g2(1+SNR2z2)} } (27)
2

10



Case ll: If 01 < 6y andeg SH_,

1
RE(917 92) _ _9_ log ., {e—elTB log2(1+SNR1z1)} (28)
1

wheref is the unique value of for which we have the following equality satisfied:

_Hl log E., {e—GlTBlogz(l—i-SNRlzl)} _ 9l<log E., {e—GTBlog2(1+SNR222)}
1 1

+logE,, {6(6)—91)TB 10g2(1+SNR121)} ) (29)

Case I11: Assumef; < 6, andfy > 6.

Il.a If _é logE., {6—92T810g2(1+SNR222)} > _é logE., {e—egTBlogQ(l-i-SNRlzl)}' then
1 0
Re(f1,02) = — - log B, {7 TPhmShRa | (30)
whered* is the smallest solution to
_l log E, {e—éTBlog2(1+SNR1z1)} _ l(log E, {e—egTBlog2(1+SNR2zz)}
6 ' 0 ’
+ log E21 {e(ﬁg—é)TB log2(1+SNR1z1)} ) . (31)

H1Lb: If —L logE,, {e-#TBlea(#SNR2)1 o L og R, {e 2TPle(tSNRiz) L and

_é logE., {6—92T310g2(1+SNR2zz)} >TB 10g2(1 + SNRIZme),
Ri(61,6,) = _% log E., {e—é*TBlog2(1+SNR1z1)} (32)
wherez; min IS the essential infimum of;, andé* is the solution to
_% logE., {6—éTBlog2(1+SNR1z1)} _ _9% logE,, {6—92TBlog2(1+SNR222)} . (33)
[11.c: Otherwise,
Ri(61,05) = _9% logE,, {e—ﬁgTBlog2(1+SNR2zg)} ' (34)

11



Proof: See AppendiX_A.

Remark 2:We see that in Case | in which, > 6,, the effective capacity upper bound identified in
Propositior_ 1L is attained.

Remark 3:Note that if6; > 6, then the source is operating under more stringent QoS reomist then

the relay. In this case, if we have

_ei IOgEzl {6—91T310g2(1+SNR121)} < _el log Ezg {e—ezTBlog2(l+SNR222)} , (35)
1 2

then
1 —01TBlogy(1+SNR; 21)
Ris(61,05) = —- log E., {e 1TBlog, } (36)
1

Therefore, under these assumptions, the effective cgpacequal to the effective capacity of ttee— R

link, and the performance is not affected by the presencéh@fbuffer constraints at the relay no#e

This is because of the fact that the effective bandwidth ef departure process from the source can be

completely supported by thR — D link when the QoS exponent imposed at the relay nBdis smaller.
The inequality in[(3b) is, for instance, satisfied wherand z; (which are the fading powers in tie— R

andR — D links) have the same distribution, and we hawe, < sNRrR,. We can easily see that

1 1
——log EZ2 {e—GQTB 10g2(1+SNR222)} > ——log EZQ {6—01TB log2(1+SNR222)} (37)

‘92 91
> _ei IOg E21 {6—01TB log2(1+SNR1z1)} (38)

1

where [37) and(38) follow from the facts that; log E. {e~?7P1oe(1+SNR) i 3 decreasing function if,
and a increasing function isNrR This discussion also suggests that even if the source teisenader more

strict buffer constraints, if the fading in thR — D link is worse than that in th& — R link and/or the

12



signal-to-noise ratio of the relay is smaller, i.enrR, > SNR,, then we can have
1 1
,RE(ebe2)::rnn1{ — g log s, {e TRl INRA L o tog B, [T el r SR } (39)

_ _Hi logE., {6—92TBlog2(1+SNR222)} ’ (40)
2

and hence experience tiie — D link as the bottleneck.

B. Half-Duplex Relay

In the case of half-duplex relaying with a fixed time-sharpayameterr € (0, 1), we assume that the
source first transmits in thefraction of the block ofl” seconds during which the relay listens. Subsequently,
in the remaining1 — 7) fraction of the time, the relay transmits to the destinatidance, the transmission

or service rates (in bits péf seconds) at the source and relay become
TT'B 10g2(1 + SNRl,Zl) and (1 — T)TB 10g2(1 + SNRQZQ). (41)

Now, the logarithmic moment generating functions for theviee processes of linkS — R andR — D as

functions of# are given by

Aﬂ(e) — 10g E21 {ereTB log2(1+SNRlzl)} (42)

Aﬂ[(e) _ 10g EZ2 {e(l—T)BTB log2(1+SNR2zg)} (43)
and as a result, we have

R, 0<6<80

Ar(0) =

RA + logE,, {67(0—9)TB10g2(1+SNR121)}’ 0> 0

With these expressions, equations[in] (11) (14) can beewyifor fixedr, as

~ 1 5
R= g(e) _ _5 lOgEzl {e—TGTBlog2(1+SNR121)} (44)

13



and

_% logE,, {e—(l—T)éTB 1og2(1+SNRQZ2)}

_% (logEZQ {e—(l—r)éTBlog2(1+SNR2zg)} +logE,, {eT(é—é)TBlogQ(l-l-SNRlzl)}) 0

(@]
IN
Ny
IA
™

v
SSY

(45)

respectively. As in full-duplex relaying, the ratésfor which the equations in_(44) and (45) are simultane-
ously satisfied for somé > 6, andé > 6, are the rates that can be supported by the two-hop link in the
presence of QoS constraints specifiedbgndd,. The following result provides the effective capacity, ahi

is defined as the supremum of such rates. Similarly as indiytlex relaying, we assume that the average
transmission rate of th8 — R link is less than the average transmission rate ofRhe D link in order to
ensure stability in the buffers. Therefore, we supdosérlog,(1+sSNR21)} < E.,{(1—7) log,(14+SNRy22) }.
Accordingly, in the following result, we assume that thesibée values ofr for half-duplex relaying are
upper bounded by

Ezg {10g2(1 + SNRQZQ)}
E21{10g2(1 + SNRlzl)} + Ezz {IOgQ(l + SNRQZQ)} '

(46)

T<T9=

Theorem 3:In half-duplex relaying, the effective capacity of the tWwop communication link with

statistical QoS constraints at the source and the inteatedelay nodes is given by

Casel 6y >6y: Rp(th,0) = —eilloglazl {e—fﬁlTBlogﬂHSNRlzﬂ} (47)
Casell 6, < 0y: Rp(6y,0,) = _9% logE,, {e-felTBlogﬂHSNRlzﬂ} (48)
where7 = min{r, 7%} and7* is the solution to
_ ellog E., {e—relTBlogQ(l—i-SNRlzl)} _ _el logE,, {e—(l—T)GQTB log2(1+SNR222)} (49)
1 2

14
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Fig. 2. The relay model.

and7 = min{ry, 7'} andr’ is the solution to

. ei log Ezl {6—7'91TB log2(1+SNR1z1)}
1

_ _el ( log E22 {6_(1—7)92TB log,(14+SNRx22) } + 10g E21 {67'(92 -601)TB 10g2(1+SNR1Z1)} ) . (50)
1

Proof : See AppendixB.

C. Numerical Results

We consider the relay model depicted in Hig. 2. The sourday,rand destination nodes are located on
a straight line. The distance between the source and thénadish is normalized to 1. Let the distance
between the source and the relay nodellee(0, 1). Then, the distance between the relay and the destination
is 1 —d. We assume the fading distributions f8— R andR — D links follow independent Rayleigh fading
with meansE{z,} = 1/d* andE{z,} = 1/(1 —d)*, respectively, where we assume that the path doss4.

We assume thanr, = 0 dB andé; = 0.01 in the following numerical results.

In Fig.[3, we plot the effective capacity as a function of th@Sonstraints of the full-duplex relay node
for different snr, values. We fixd = 0.5, in which case th& — R andR — D links have the same channel
conditions. From the figure, we can see that the effectivaafgpdoes not decrease for a certain range of
6,, and this range is increased by increassng,. Motivated by this observation, we plot the value®f
up to which the effective capacity is unaffected, as a fuomctf snR, in Fig.[4. Note that for all values of
the pair(sNRr 6,) below the curve shown in the figure, the QoS constraints ofe¢tey node do not impose

any negative effect on the effective capacity. This proside with useful insight on the design of wireless

15
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Fig. 3. The effective capacity as a function@f. d = 0.5.
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systems. In Figll5, we plot the effective capacity cavaries. We assumé, = {0.001,0.01,0.05,0.1}.
We are interested in the range in which the condition for Istajueues (as stated above Theofdm 2) is
satisfied. More specifically, we note that the optirdal lower bounded by the value at which we have
E., {log,(1 + sNRryz1)} = E.,{log,(1 + SNRyz2)}. We can see from the figure that for sméil (i.e., for
0, = 0.001 andéd, = 0.01), the effective capacity curves overlap. In these caSesR link is the bottleneck
and the throughput is determined by the effective capaditthis link. When 6, is greater thar¢; (i.e.,
whenfy, = 0.05 or 0.1), it is interesting that the effective capacity decreasss &nd then increases until the
S — R link becomes again the bottleneck, in which case the curvedap. This tells us that with stringent
QoS constraints at the relay, having symmetric channel itond for the linksS — R andR — D, i.e.,
havingd = 0.5, generally leads to lower performance.

In Fig.[8, we plot the effective capacity as a functiordgffor half-duplex relaying. We set = 0.5. From
the figure, we can find that the effective capacity stays emtdbor smallé,, i.e., the QoS constraints at

the relay node does not impose any negative effect on thetigecapacity of the system. We can also see
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Fig. 6. The effective capacity as a function®f. d = 0.5. SNR, = {3, 10,20} dB.

that assNRr, increases, larger QoS constraints at the relay node cangp®itad while having the effective
capacity of the system unaltered. One stark difference ffoenfull-duplex relay is that asnr, increases,
the effective capacity of the system increases as well eversrhall 6,. This is due to the nature of the
half-duplex operation. ASNR, increases, more time can be allocated to the transmissiarebe the source
and relay nodes while satisfying_(46).

In Fig.[d, we plot the effective capacity dsandf, varies. We assumsnr, = 3 dB. As we can see from
the figure, there exists an optimathat maximizes the effective capacity of the system. Besitltee optimal
d increases a#, increases. This is due to the fact that as the QoS constrairttse relay node become
more stringent, the effective bandwidth supported bylhe D link decreases and this link becomes the
bottleneck of the system. In order to counterbalance thgaitnee effect, the channel conditions of tRe- D
link should be improved, which results in a largérlt is also interesting that the curve is nearly flat for
small 6, whend is large. So, we plot the effective capacity &wvaries forf, = {0.001,0.01,0.1} in Fig.

[8. Confirming the observation in Figl 7, we see that the twaewsifor, = 0.001 andf, = 0.01 overlap
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Effective capacity (bps/Hz)

Fig. 7. The effective capacity v.g. and6,. SNR, = 3 dB.

asd increases. This is because the upperbound-fspecified in[(46) is achieved for both curves.

IV. CONCLUSION

In this paper, we have analyzed the maximum arrival ratescdua be supported by a two-hop commu-
nication link in which the source and relay nodes are bothesutio statistical QoS constraints. We have
determined the effective capacity in the block-fading scEnas a function of the signal-to-noise ratio levels
SNR; and sNr, and the QoS exponents and 6, for both full-duplex and half-duplex relaying. Through
this analysis, we have quantified the throughput of a two-lwp operating under buffer constraints. In
particular, we have shown that effective capacity can hafferent characterizations depending on how
buffer constraints at the source and relay or more spedyfibaw ¢, andfd, compare. We have noted that
if 8, > 65, the upper bound on the effective capacity is attained. Wee lsdso seen that under certain
conditions depending on thenr levels and fading distributions§ — R link becomes the bottleneck and
buffer constraints at the relay do not incur performancesdeswhen the QoS exponeft is sufficiently

small but nonzero. In the numerical results, the threshotdhf above which the effective capacity starts

19



161

1.4

o =
) = (V)

Effective capacity (bps/Hz)

o
)

0.4

0.2
0

Fig. 8. The effective capacity atvaries. SNR = 3 dB. 6> = {0.001, 0.01, 0.1}.

diminishing is identified and is shown to increase with iasiagsnRr,. In a simple linear setting, we have
numerically investigated the impact of the location of tekay on the effective capacity for different values
of the QoS exponents. In half-duplex relaying, we have datezd the optimal time-sharing parameter

In the numerical results, we have had several interestisgrohtions. We have shown that as s level

at the relay node increases, the effective capacity of tilséeBy increases for all,. Additionally, as the
QoS constraints at the relay node become more stringent,axe dbserved that the effective capacity of
the system can be increased by improving the channel condiin theR — D link through having the

relay node approach the destination.
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APPENDIX
A. Proof of Theorerl2

Case | 0, > 05:

For this case, we can show that the upper bound_ih (22) cantdieed. First assume that
1 —05TBlog,(1+SNRy > 1 —0,TBlog,(1+SNRy =
g, o8-, {e 027 B log,(1+SNR, 2>} <~ losE., {e 017 B log, (1+SNRy 1>}. (51)

Hence, the second term on the right-hand sid€af (22) is timénmim one. Now, sef = 6, in (21)). Assume
thatd > 6 = 6, whered is the solution to[{20). The validity of this assumption Wit shown later below.

Under these assumptions, we see from (21) that

1 N
R=h(0,0,) = % logE., {6—92T31°g2<1+SNR2Z2>} for all 6 > 0 = 0. (52)

Now, in order to show that this rate can be supported, we hay@dve that the equation if_(20) is also

satisfied for this choice oR, i.e., we should have
_ 1 —602TBlogy(14+SNRaz2) | _ /7Y _ 1 —0TBlog,(1+SNR; z1)
R= 3 logE,, {e 2 } =g(0) = élogIEZ1 {e 2 } (53)
for somed satisfyingd > 6; andd > 6 = 6,. From [51) and[{52), we have
R S _l log Ez1 {6—91TB10g2(1+SNR1Z1)} . (54)
01

Since—1logE,, {e~0TBls01+SNRiz)1 s g decreasing function & (54) implies that there existsé> 6,

such that
1 : 1
R=—>logE, {efrBlon SN L < ~5r g, [t on(SNRi) | (55)

showing that [(583) holds. Note that in Case I, the originaluagstion is thatd; > 6,. Then, we have

6 > 6, > 6 = 6,. Hence, in case |, we satisfy> 6 = 6,, verifying the earlier assumption. In summary, we
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have shown thaf{20) anf(21) simultaneously holdéor 6, andé = 6, when we have

R = min {—el log E21 {6—91TB 10g2(1+SNR121)} 7 _ei IOg E22 {e—GQTB 10g2(1+SNR222)}} (56)
1 2
_ _el log ]EZ2 {6—92TB 10g2(1+SNR222)} ) (57)
2

Hence, the upper bound ih (22) can be achieved and this isffinetiee capacity.

Above, we have assumed that the second terriih (22) is thermamione. On the other hand, if we have
1 — o SNR; z 1 - o z
_9_1 log ., {6 01T Blogy(1+SNRy 1)} < _9_2 logE., {6 62T Blog, (1+SNR; 2)} ’ (58)

similar arguments follow. In particular, we can chodse 6, in this case, and have fro (20)

1

R=g(0:) = %

lOg E21 {e—GlTBlog2(1+SNRlzl)} ) (59)

Through a similar approach as above, we can show fhat (21peaatisfied witd > 6, for this choice of

R and establish that the upper bound[in](22) is again attained.

Case ll: 0, < 0, and b, < 0:

Suppose that the effective capacity is decided byStheR link andd = 6, returns the highesk. Hence,

we setf = 6, in (20) and have

1
R = _9_1 10g E21 {e—GlTB log2(1+SNR1z1)} . (60)

Clearly, this rate can be supported by te- R link while the QoS constraint at the source is satisfied. In
order to prove that this rate is viable for the two-hop linkle presence of the QoS constraint at the relay,
we have to show that the equality in {21) is satisfied as welstomed > 6,. Note that the assumption in
Case Il isf = 6, < 6,. Then, having > 6, implies thatd > = 6,. Consequently, in order to satisfy {21),

we should have

R 1 (log E., {e—éTB log2(1+SNR222)} +1logE,, {e(é—Gl)TBlog2(1+SNR121)}) (61)
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where we have used the assumption that ;. Our goal is to see whethér (60) afdl(61) for sahe 6, can

be satisfied simultaneously. In this quest, we first showrséyeoperties of the function on the right-hand

side of [61).

Lemma 1:Consider the function

f(@) — _ei (IOgE {e—GTBlog2(1+SNR222)} 4 IOgE {6(9—91)TBlog2(l+SNRlzl)}) for 6 > 0. (62)

1

This function has the following properties:

a) f(#) is a continuous function of.

b) f(0) = _% logE {6—91T310g2(1+SNR121)}_

c) The first derivative off (4) with respect tad at § = 0 is positive, i.e.,f(0) > 0. Hence,f(6) is initially
an increasing function in the vicinity of the origin dsncreases.

d) f(0) is a concave function of.

e) If TBlogy(1 + SNRi 21 max) > T'Blogy(1 + SNRyz2 min) Where zj .y is the essential supremum of the
random variablez; and z,.,;, iS the essential infimum of,, then there exists & > 0 such that
f(6%) =0.

Proof:

a) The continuity can be shown by noting the continuity of tbgarithm and exponential functions
and employing the Dominated Convergence Theorem and Moao@onvergence Theorem for the
justification of the interchange of the limit and expectasioFor the first expectation in_(62), we can
apply the Dominated Convergence Theorem by observing tleahave|e =075 10s2(1+SNRe22)| < 1 for
all # > 0 and the bounding function is integrable, i.&{1} = 1 < oco. For the second expectation,
we immediately note that(®—¢1)75le:(1+SNRiz1) is nonnegative and increases with increasthgand
consequently we can use the Monotone Convergence Theorgastify the interchange of limit and
expectation.

b) This property can be readily seen by evaluating the foncatd = 0.
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c) The first derivative off with respect t&# can be evaluated as

gy L —E., {e0TBloe2(1+SNR2) T Blog, (1 + SNRyzp ) }
f0) = _9_1 E., {e—eTBlogQ(l-i‘SNRzzz)}
E,, {e(0-00TBlog(1+SNR=)T Blog, (1 4 SNRy21) }
K., {c@—00TBlog,(1+SNRiz1)} : (63)
Then, £(0) can be written as
. TB Ezl{e_elTB logy (14+-SNRy 21) 10g2(1 + SNRlzl)}
f0) == (Em{logm + SNRyzp)} — B, {c- A TBonASNR =] - (64)
Let us define
Ez 6—91TBlog2(1+SNRlzl) lo 1 -+ SNR; 2
a(0y) = E., {log,(1 + SNRy25) } — i 2l 121)} (65)

E21 {6—91TB 10g2(1+SNR121)}

We can see that(0) = E,, {log,(1+SNRy22) } —E., {log,(1+SNR;21) } > 0 (due to our original assumption

to ensure stability). The first derivative ef¢;) with respect to); is

1

i =TB
Oé(@l) (E21{e—elTBlog2(1+SNR121)})2

X <E21{6—91TB logy(1+SNRy 21) (log2(1 + SNRlzl))z}Ezl{e_elTB log2(1+SNR1z1)}
2
— (B fe TSR logy (1 4 51 21)} ) ) (66)

By Cauchy-Schwarz inequality, we know tHB{ X2 E{Y?} > (E{XY})*. Then, denoting

X = \/e—"lTBlogz(HSNRlZl) (logy(1 4 SNRiz))” and Y = Ve 0:iTBlos;(1+SNRiz1) | we easily see that

a(fy) > 0 for all #;. Thus,«(6;) is an increasing function and we hau€d,) > «(0) > 0. Hence,

f£(0) > 0.

24



d) The second derivative gf with respect tod can be expressed as

1 1
f(e) - _0_1 <(E22 {e—GTBlog2(1+SNR222)})2

% <E22 {e—QTB logy (14+SNRx22) (TB 10g2(1 + SNR222))2} Ez2 {e—QTB log2(1+SNR2zg)}

2
— (Ez2 {e‘eTBlOg?(HSNRQZQ)TB log, (1 + SNRQZQ)}) )

1
(E., {6(0—01)T310g2(1+SNR1z1)})2

X (Ezl {6(6—61)TB 10g2(1+SNR121) (TB 10g2(1 + SNRlZl))z} Ezl {6(9—91)TB 1og2(1+SNR121)}

_|_

2
_ (E21 {6(0—91)TB10g2(1+SNR1z1)TB logy(1 + SNR1Z1)}> )) (67)
<0 (68)

where Cauchy-Schwarz inequality is used again. With tharatterization, we establish thdtis a
concave function of.

e) We first expresg(0) in the following form:

f(e) _ _Hl <10g Ez2 {e—GTBlog2(1+SNR222)} + lOg E21 {6(6—61)TBlog2(l+SNR1zl)}) (69)
1
_ ﬁ _ llogE {e—GTBlog2(1+SNR222)} (11— i 1 log E {6(0—01)TBlog2(1+SNR1z1)}
0, 0 2 0/)60—06, o
0
~ 5 (Ec(6) = Bal0 - 02) (70)
where
1
Ec() = - logE., {e—GTBlog2(1+SNR222)} (71)

is the virtual effective capacity with respect épand

_ 01 1 (6—61)TBlogs(1+SNR; 21)
Ep(0—61) = <1 9) 70, logE,, {e }
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is the virtual effective bandwidth with respect do- #,. Similar to the discussion in [5], we know that
Ec(0) is decreasing irf. Moreover, wher¥ = 0, we haveE-(0) = E,, {T'Blog,(1 + SNRyz3)}, and
asf — oo, Ec(0) approaches the delay limited capacity [9], i.€s(6) — T'Blogy(1 + SNRy22 min)
wherez, ,,;, is the essential infimum of the random variabje Furthermore £z (6 — 6,) is an increasing
function ofd. Foré < 6,, Eg(60—60;) has a negative value. At= 6,, we haveE (0, —6,) = E(0) = 0.
As 0 — oo, Eg(0 — 0;) approaches the highest rate of the- R link, i.e., Eg(0 — 0;) — T'Blog,(1 +
SNR; 21 max) Where z; .y iS the essential supremum of the random variahleTherefore, as long as
TBlogy(1 + SNR 21 max) > T'Blogy(1 + SNRy22 min), the decreasing curv&(#) and increasing curve
Eg(60—0,) will meet at some poim = 6* > 0 at which we havef (6*) = g—l (Ec(0*) — Eg(0* —61)) = 0.

A numerical result provides a visualization of the abovedssion. In Figl.®, we plot the virtual effective
capacity and virtual effective bandwidth normalized By as a function off in the Rayleigh fading
channel. We assume that= 2 ms, B = 10° Hz, 6, = 0.01, sNr, = 0 dB, andsNr, = 10 dB. Note that
we havez; .« = oo andz; i, = 0 in the Rayleigh fading model. [ |
Recall that we are seeking to establish whethel (60) &nd ¢éd)simultaneously be satisfied for some

6 > 6,. With the definition of the functiorf(-) whose properties are delineated in Lenima 1, the equations

in (60) and [(61l) can be combined to write
A 1
f(@) _ _9_1 log Ez1 {6—01TBlog2(1+SNR121)} . (72)

Hence, our goal is to see whether the equatioi in (72) can tisfisd for somed > 6,. In Lemmall, we
have noted that the functiofi(f) is equal to the right-hand side of (72) @at= 0, and then it increases. At
some point,f(#) approaches zero. Since it is a concave function, we imnedgiaee thaif () is a function
that initially increases, hits a peak value, and then s@etseasing. This leads us to conclude tfi&t)
becomes equal to the right-hand side [ofl (72) once again aé sonigqued > 0. Let us denote this unique

point asd. Hence,

f(e_) _ = log Ez1 {6—61TBlog2(1+SNR1z1)} ) (73)
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Fig. 9. The virtual effective capacity and virtual effeetibandwidth as a function d@f in Rayleigh fading channels with full-duplex relay.
E{Z1} = E{ZQ} =1.

If @ > 6,, then [72) is satisfied fof = 6 > 6,. Therefore,[[60) and (61) are satisfied simultaneouslyceen
the arrival rate
R— _Hi logE., {6—91T310g2(1+SNR1z1)} (74)
1
can be supported by the two-hop link. Since this rate is areuppund on the arrival rates as proved in
PropositiorL_L, this arrival rate is the effective capaqiygving (28) in Theoreri]2.

It is important to note that the above result implicitly as&s thatl’ B log, (1 +SNR; 21 max) > 1T'Blog,(1+
SNRy22 min) Which is a condition in part €) of Lemma 1. Note that if this didion does not hold, then it
means that the maximum service rate from the source is equal lower than the minimum service rate
from the relay. Hence, the relay can immediately support amiyal rate without requiring any buffering.
The bottleneck is th& — R link and arrival rates are limited by the effective capaaitythis link. Therefore,

we again have effective capacity of the two-hop link given(®§).
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Case I11: Assumet; < 6, andfy > 6:

Above, we have discussed the case in whick> 6. If, on the other handd < #,, then [72) and
consequently[{81) cannot be satisfied for saine 6,. Hence, the arrival rate ifi (V¥4) cannot be supported

by the two-hop link, and we need to consider possibly smadess, i.e.,
R = g<é> _ _% IOgEzl {e—éTBlogQ(l—i-SNRlzl)} (75)

for somed > 6,. The rate given above is supported by the two-hop link if theation

g(0) = 1(6,0) (76)

is satisfied for somé > 6, andd > 6,. Recall that the functio is defined in[(21) as

_% log E., {e—éTB log2(1+SNR222)}

_% (lOgEZ2 {e—éTBlog2(1+SNR222)} —|—10gEzl {e(é—é)TBlogQ(l—i-SNRlzl)})

o
VAN
>
VAN
™

hd,0) = (77)

Ny
Vv
™

We first note that for fixed, h(0, 0) is a decreasing function éfbecause a increases, the QoS constraints
at the relay become more stringent and consequently lowes m@n be supported by the relay. Therefore,
in order to identify the highest arrival ratés we consider the smallest allowed valuefo&nd set) = 6.

We now consider the equation
g(0) = h(0,0,) (78)
and seek whether this equation is satisfied for sémed;. At § = 6, the left-hand side of (78) becomes

g(@l) — —Hi log Ezl {6—91TBlog2(1+SNRlzl)} (79)
1
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while the right-hand side is

1

h<817 92> _ _H_ <10g E22 {6—62TB10g2(1+SNR222)} + 10g E21 {6(92—01)TBlog2(1+SNR1zl)}) (80)
1

= f(02) (81)

where f(-) is the function defined in Lemnid 1. Note that our assumptiothis case ig), > . Recalling

(73), we know that

£(8) = —5-logE, {e s SR L (), (62)
61
Then, from the properties of and the assumption th&t > 6, we immediately see that
1 —01TBlog,(1+SNRy 21)
F(82) = h(61,62) < —- log E., {e " TPIm= SN} — (), (83)
1

Therefore, abl = 6;, the left-hand side of (78) is larger than the value at thatrigand side.

Now, let us consider the values@t= 6,. The left-hand and right-hand sides bf(78) become, reisméyt

9(6,) = _9_12 log E,, {6—92T310g2(1+SNR1z1)} (84)
and
h(0,0,) = _9_12 logE,, {6—92TBlog2(1+SNRgzg)} (85)
If we have

1 1
9(92) — _9_2 lOgEzl {6—92TBlog2(l+SNR1zl)} < h(eg, 92) _ _0_2 IOgEz2 {6—92TB10g2(1+SNR222)} ’ (86)

then the left-hand side of (8) is smaller that the value @& tight-hand side at,. Therefore, being

continuous functionsy(6) and i (6, ;) meet at somé; < 6 < 6,. Denote the smallest value 6ffor which
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we haveg(d) = h(0,6,) as#*. Then, the highest rate that can be supported by the twoihkps
R=g(0") = —% log E,, { ¢~ TFea1+SNR = | (87)

Above result is obtained under the assumption @) < h(6.,6,). Let us now consider the other
possibility in whichg(6,) > h(6s,6,). For this case, we first have the following lemma.
Lemma 2: Assume thaiy(6s) > h(6s,65). Then,h(0,6,) is an increasing function of for 6 < 6,.

Proof: For 6 < 6, we can express

1 ~
h(f,0,) = — <10gE22 {e—GQTBlogQ(l—l-SNRgzz)} +logE,, {6(92—9)T310g2(1+SNR1z1)}) . (88)

The first derivative ofi(6, 6,) with respect td is

h(év 92) = ﬁ

| (éEzl {00 BIos 14 SNR)T B 1og, (1 + shRy 21) }

e(02—0)T Blog,(14+SNR; 21)

+ log E21 {e(ﬁg—é)TB 10g2(1+SNR121)} + log Ezg {6—92TB logy (14+SNRx22) }) ] (89)

Let us define

E., {6(92_9”31°g2(1+SNR121)TB log, (1 + SNRlzl)}

E., {6(92—§)T1310g2(1+SNR1Z1)}

B(0) =0

+1ogE,, {e(Gg—é)TBlogQ(l—i-SNRlzl)} +logE,, {e—ezTBlogQ(HSNRm)}_ (90)

We can show thaB(f) is nonnegative.

The first derivative of3(f) with respect tdd is

. ] _
0) — _E. { (02-0)TBlogy (14+SNRiz1) (P B 1+ SNR 2}
B(0) (E., {6(92_§)TB10g2(1+SNR121)})2( 1€ ( 0gy(1 + SNRy21))

x E,, {6(92—9)T310g2(1+SNR1z1)} + (E21 {e(ez—é)TB1og2(1+SNR1z1)TB log, (1 + SNRlzl)})2> (91)

<0 (92)

30



where Cauchy-Schwarz inequality is used forl (92). Thegef6td) is a decreasing function @ and hence

for § < 6, we have

B(6) > B(6:) = 6,E., {TBlogy(1 + sNriz)} + log E., {e—"ﬂB 1°g2<1+SNR2Z2>} (93)

1
= —0, (_TBE21{10g2(1 + SNRlzl)} o 9_ log EZ2 {e—GQTBlogz(l-i-SNRzzz)}) (94)

2

Note that our assumption is that
9(92) _ _ei 10g E21 {6—62T310g2(1+SNR1z1)} > h(@g, 92) _ _ei 10g EZ2 {e—GQTBlogg(l-l-SNRzzz)} ) (95)
2 2
SinceTBE., {log,(1 + SNR z1)} > —L logE,, {e~%TBle(14+SNRiz)1 "the above inequality implies that
1 2 05 1
1

TBE21{10g2(1 + SNRl,Zl)} > _9_2 log ., {6—62T310g2(1+SNR2z2)} (96)

which further implies that3(6,) > 0. Finally, we immediately see that

- 1 - 1
h(0,02) = 55(9) > ﬁﬁ(ez) >0 (97)
proving thath(d, 6,) is an increasing function of for 6 < 6. [

In effect, we have shown that if(6,, 6,) < g(6-), thenh(8,6,) < g(6,) for all § < 6,. Note that since

¢(0) is a decreasing functiom,(6,) < g(f) for all § < 6,. Combining these, we observe that
h(B,60,) < g(fs) < g(f) VO < 6y. (98)

Therefore, the equality(d) = h(6,6,) cannot be satisfied for an§s < # < 6,. Hence, we should have

0 > 0,. Note that ford > 6,, h(f,6,), which can be expressed as

. 1
H(0.62) = — - g E., (et mon SR | (99)
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is a constant for gived,. On the other hand,
~ 1 -
g(e) — _5 IOg E21 {e—GTBlog2(1+SNR1z1)} (100)

is a decreasing function with minimum value given by

~111’I1 g(@) =TB 10g2(1 + SNRlzl,min) (101)

6— 00
wherez; ,in IS the essential infimum of;. Hence, if

. 1
TBogy(1 + SNR 21min) < h(6,6) = —- log E., {e—"ﬂB 1°g2<1+SNR2Z2>} , (102)
2

then the equatio(d) = h(f,6,) can be satisfied at sonte= 6* > 6,, and the maximum arrival rate is

given by
R = g(f) =~ logE,, {7 TPe0+SNR) | (103)
9*
If, on the other hand,
~ 1
T Blogy(1 + SNRy 21 min) > h(6,02) = ~a logE,, {6‘92T31°g2(1+3NR222)} : (104)
2
the bottleneck is th&® — D link, and the highest arrival rate that can be supported bytwo-hop link is
R = _i logE, {e—GQTB log2(1+SNR222)} ) (105)
0, :

Note that this arrival rate is smaller than the smallest iptessransmission rate of the source and hence no

buffering is needed at the source in this extreme case. [ |
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B. Proof of Theorerl3

We first identify the following upper bound on the rates tham de supported with half-duplex relaying
in the two-hop link:

R< sup min {_el IOg Ezl {6—T61TB log2(1+SNR121)} : _el log Ez2 {e—(l—T)BzTB 10g2(1+SNR222)}} (106)
1 2

T€[0,70)
B 1

- _ —701TBlogy(1+SNRy 21)
g o8Ex, {e } (107)

where7 = min{r, 7"} and7* is the solution to
_eil IOg E21 {6—791T310g2(1+SNR121)} _ _9_]'2 IOg EZ2 {e—(l—T)GgTB10g2(1+SNR222)} (108)

and 7, as defined in[(46), is the upper bound on the time-sharingnpeterr. Above, [106) can be easily
obtained by using a similar approach as in the proof of Prtipadl. (107) follows from the fact that
the first term inside the minimization ifh_(106) is an incregsfunction of - while the second term is a
decreasing function. Hence, the upper boundinl(106) is miaed at7* at which the two terms inside the
minimization are equal to each other.7if < 7, the optimal value of- is selected as*. If, on the other
hand, ™ exceeds the upper bound, i.ef, > 7y, then the optimal value is.

Casel 0, > 6s:

In this case in which the QoS constraint at the source is mwiegent, we can show that the upper
bound in [I0V) can be achieved or be approached arbitrddbely. Let us sef = 6;, 6 = 6,, and choose

the time-sharing parameter as= 7 = min{, 7*}. Now, the equation in_(44) becomes
1 .
R = 9(91) _ _9_ log E21 {6—791TB10g2(1+SNR1z1)} ‘ (109)
1
Sincef = 6, < 6 = 6, by our assumption in Case [ {45) reduces to
1 —(1—7)02T Blog, (1+SNRy 22)
R = h(61,6) = = logE., {e 2T B log, (1+SNRez2 } . (110)
2

Now, first assume that = 7*. As seen in[(108), we have, by the definition7df that the right-hand sides
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of (109) and[(110) are equal and therefore these equatiensimultaneously satisfied.
Next, consider the other possibility in which= min{r, 7"} = 7, which implies thatr, < 7*. Note

again thatr* is the value ofr at which the functions

1
91 IOg E21 {e—TelTB log2(1+SNR1z1)} (111)
and
1
7 IOg E22 {e—(l—T)GQTB10g2(1+SNR222)} (112)

are equal. Note that the function in_(111) increases witheiasingr while the function in[(112) decreases.

They meet at*. Therefore, atr = 75 < 7%, we have
1 - 08, (1+-SNR; = 1 (-~ 08, (1+-SNRy =
7 logE., {6 0617 Blogy(1+SNR, 1>} < o logE,, {e (1-70)02T Blog, (1+SNR, 2>}. (113)
Hence, the rate
R= _el log E21 {6—7091TB10g2(1+SNR1z1)} (114)
1

can be supported. More specifically, the equationslin (44) @%) can simultaneously be satisfied by
settingd = 6,, T = 7, and also by choosing > 6, so that the right-hand side df {45) becomes smaller
than—é logE., {e—(l—To)02TBlog2(1+SNR2zg)} and matche&% logE., {e—melTBlog2(1+SNR1z1)}l

One subtlety in the above argument is the following. Notd thiea have the strict inequality < 7.
Hence, we cannot actually set = 7, but we can select a value of that is arbitrarily close tor.
Therefore, since the function in_(111) increases with iasieg 7, we can approach the maximum rate
— 5 logE,, {e-0TBlee(11SNRiz) L arbitrarily closely. Because the effective capacity is mizdi as the

supremum of rates (see e.gJ(1F)= —& logE., {e N TBle2(1+SNRiz)1 s indeed the effective capacity.

1
01
Case Il 0; < 6y:

We now consider the scenario in which the relay node is stiltpea more stringent QoS constraint. In
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this case, the approach behind the proof is identical to tteemployed in Case I. Again, we et 6,
andf = 0,. Because, otherwise if we hade> 0, and/orf > Ay, we impose more strict QoS constraints
than necessary and hence end up supporting only lower laraitess. Now, for fixedr, the equations i (44)

and [45) become

1
R=g(0h) = — - 10g E,, {0 TPosa11SNR e | (115)

0

and

1
R = h(6,,6,) = -5 <log E., {e—(l—T)GQTB10g2(1+SNR222)} +1ogE,, {67—(02—91)TB10g2(1+SNR121)}) . (116)
1

respectively. Note thaf {T16) follows frori {45) by notingatld = 6, > 6, = 6 in this case. Similarly as
before, the right-hand side df (I15) is an increasing fumctf = while the right-hand side of (116) is a
decreasing function. Therefore, the equation$ in](115)(@&&8) can simultaneously be satisfied by choosing

7 = 7" wherer’ is solution to

_ei IOg Ez1 {6—7'91TB log2(1+SNR1z1)}
1

_ _Hi <10g Ezg {6—(1—7')62TBlog2(1+SNR2zg)} + IOg Ez1 {67(92—91)TB10g2(1+SNR1z1)}) ) (117)
1

Choosing values other thah= 6,, 0 = 0,, andT = 7 will lead to smaller arrival rates. Hence, the effective

capacity is given by
1 /
RE(ela 92) _ _9_1 log E21 {6—7 91TBlog2(1+SNR1z1)} ) (118)

Above discussion implicitly assumes thdt< 7,. If 7' exceeds the threshotg, then the optimal value of
the time-sharing parameter is sette= 7. Using similar ideas as in Case |, we can show that the effecti

capacity in this case is

1
RE(917 92) — _6_ IOg Ezl {6—7091TB log2(1+SNR1z1)} ) (119)
1
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