
ar
X

iv
:1

10
7.

42
86

v1
  [

m
at

h.
D

S]
  2

1 
Ju

l 2
01

1

CREATION OF HOMOCLINIC TANGENCIES IN

HAMILTONIANS BY THE SUSPENSION OF POINCARÉ

SECTIONS

MÁRIO BESSA AND JOÃO LOPES DIAS

Abstract. In this note we show that for any Hamiltonian defined on a
symplectic 4-manifold M and any point p ∈ M , there exists a C2-close
Hamiltonian whose regular energy surface through p is either Anosov
or it contains a homoclinic tangency. Our result is based on a general
construction of Hamiltonian suspensions for given symplectomorphisms
on Poincaré sections already known to yield similar properties.
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keywords: Hamiltonian vector field, Anosov flow, elliptic point, homoclinic
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1. Introduction and statement of the results

A few years ago Palis conjectured that any dynamical system can be ap-
proximated in a certain topology by a hyperbolic system without cycles,
or by a system exhibiting either a homoclinic tangency or a heterodimen-
sional cycle (cf. [14, 15]). Later, Pujals and Sambarino [16] proved this
conjecture for the C1 topology in the context of diffeomorphisms on com-
pact surfaces. Notice that there are no heterodimensional cycles for surface
diffeomorphisms.

A version for flows appeared in [1] stating that on a 3-dimensional compact
manifold, a vector field can be C1-approximated by another satisfying only
one of the following phenomena:

• uniform hyperbolicity with no cycles,
• a homoclinic tangency,
• a singular cycle.

It has been further conjectured ([15, Conjecture 4]) that the last situation
above can be replaced by a singular hyperbolic set (see [12] for the defini-
tion).

Related results can be obtained when restricting to conservative systems.
In fact, any divergence-free vector field defined on a 3-dimensional closed
manifold can be C1-approximated in the same class by a vector field either
Anosov or with a homoclinic tangency associated to a hyperbolic closed
orbit [4]. This was recently generalized in [9] for a d-dimensional closed
manifold, d ≥ 4: any divergence-free vector field can be C1-approximated
by another one satisfying either one of the properties of the 3-dimensional
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2 M. BESSA AND J. LOPES DIAS

case, or with a heterodimensional cycle. In this note we address the problem
of obtaining a version of [4] in the Hamiltonian context.

Let (M,ω) be a compact symplectic C∞ 2d-manifold, d ≥ 2, with a
smooth boundary ∂M . Let Cs(M), 2 ≤ s ≤ ∞, stand for the set of Cs

real-valued functions on M constant on each connected component of ∂M ,
which we call Cs-Hamiltonians. We endow Cs(M) with the Cr-Whitney
topology. For each H ∈ Cs(M) one has the Hamiltonian vector field XH

and the Hamiltonian flow ϕt
H . Consider an energy e ∈ H(M) ⊂ R and

the associated ϕt
H -invariant energy level set H−1(e). An energy surface is

a connected component of H−1(e). We say that it is regular if it does not
contain critical points.

A regular energy surface is Anosov if it is uniformly hyperbolic (cf. [5]). It
is far from Anosov if it is not in the closure of Anosov regular energy surfaces.
Moreover, Anosov regular energy surfaces do not contain singularities or
elliptic closed orbits.

Let us state the main result in this note.

Theorem 1. Let d = 2, H ∈ C2(M) and p ∈M . There exists a Hamilton-
ian C2-close to H whose regular energy surface through p is either Anosov or
else it contains a homoclinic tangency associated to some hyperbolic closed
orbit.

Recall that the existence of homoclinic tangencies is a sufficient condition
to have elliptic points (see [13, 8]). We see that it is also a necessary condition
for, at least, a sufficient C1-close vector field.

Theorem 2. Let d = 2, H ∈ C2(M) and p ∈ M lies in an elliptic closed
orbit of H. Then, there exists a Hamiltonian C2-close to H whose regu-
lar energy surface through p has a homoclinic tangency associated to some
hyperbolic closed orbit.

In the proof of Theorem 2 (section 4) we apply a mechanism introduced
in [10] to create homoclinic intersections by perturbations of area-preserving
maps with elliptic points (see section 2.5). We use that in our context by
finding a Hamiltonian flow (through Theorem 3 below) that yields a Poincaré
map with the same properties – see section 3. Theorem 1 is then a direct
consequence of Theorem 2 and of the Newhouse dichotomy (Theorem 2.3).

The last result in this note is a Hamiltonian suspension theorem, espe-
cially useful for the conversion of perturbative results between symplecto-
morphisms and Hamiltonian flows in any dimension 2d. Indeed, if we per-
turb the Poincaré map of a periodic orbit (cf. section 2.1), there is a nearby
Hamiltonian realizing the new map.

Theorem 3 (Hamiltonian suspension). Let d ≥ 2 and H ∈ C∞(M) with
Poincaré map f at a periodic point p. Then, for any ǫ > 0 there is δ > 0

such that for any symplectomorphism f̃ being δ-C3-close to f , there is a

Hamiltonian H̃ ǫ-C2-close with Poincaré map f̃ .

The proof of the above theorem is contained in section 3. It is based
on the construction using generating functions of an isotopy between f and

f̃ , that extends to a Hamiltonian flow with the required properties. This
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type of suspension of Poincaré maps is already mentioned in [7] when the
manifold is the annulus (see also [6]), but without an explicit construction.

We remark that the result in [10] holds also for real-analytic Hamiltonians.
However, the problem of suspending a real-analytic Poincaré map into a
Hamiltonian flow is of a very different sort because of the lack of real-analytic
bump functions, and remains an open problem. So, in this case, it is required
to find versions of the pertubation results directly for flows.

2. Preliminaries

In this section we assume (M,ω) to be a symplectic 2d-manifold, with
d ≥ 2.

2.1. Poincaré maps. Consider H ∈ C2(M) and a closed orbit O with least
period T > 0 for ϕt

H . At a point p ∈ O consider a transversal Σ ⊂M to the
flow, i.e. a local (2d − 1)-submanifold for which XH is nowhere tangencial.
By choosing e = H(p), define the dimension 2d− 2 symplectic submanifold

Σe = Σ ∩H−1({e}).

Thus, for any x ∈ Σe,

TxH
−1({e}) = TxΣe ⊕ RXH(x),

where RXH(x) stands for the flow direction.
Let U ⊂ M be some open neighbourhood of p and V = U ∩ Σe. The

Poincaré (section) map f : V → Σe is the return map of ϕt
H to Σe. It is

given by

f(x) = ϕ
τ(x)
H (x), x ∈ V,

where τ is the return time to Σe defined implicitely by the relation ϕ
τ(x)
H (x) ∈

Σe and satisfying τ(p) = T . In addition, p is a fixed point of f . Notice
that one needs to assume that U is a small enough neighbourhood of p.
Thus, f is a C1-symplectomorphism between V and its image. Moreover,
any two Poincaré section maps of the same closed orbit are conjugate by a
symplectomorphism.

2.2. Homoclinic tangencies. Take H ∈ C2(M), a non-constant hyper-
bolic closed orbit O and a transversal section at a point p ∈ O. Let W s

p be
the stable manifold at p of the Poincaré map, and W u

p the unstable man-
ifold. We say that O has a homoclinic tangency at q 6= p if the invariant
manifolds W s

p and W u
p have a non transversal intersection, i.e.:

• TqW
s
p ∩ TqW

u
p contains a nonzero vector,

• TqW
s
p ⊕ TqW

u
p ⊕ RX(q) 6= TqH

−1(p).

2.3. Hamiltonian flowtube coordinates. Denote the coordinates in R2d

as (x1, . . . , xd, y1, . . . , yd). The canonical symplectic form is given by

ω0 =
d∑

i=1

dxi ∧ dyi.

The Hamiltonian vector field of any smooth Hamiltonian H on (R2d, ω0) is
then

XH = J∇H,
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where J =
(

0 I
−I 0

)
and I is the d× d identity matrix.

Consider H0 : R
2d → R given by H0 = yd, so that

XH0
=

∂

∂xd
.

Hence, the flow is ϕt
H0

= id+(0, . . . , t, 0, . . . , 0).
The following results provide us with the above coordinates, useful to

perform local perturbations of a Hamiltonian defined on any symplectic
manifold (M,ω).

Theorem 2.1 (Hamiltonian flowbox, cf. e.g. [3]). Let H ∈ Cs(M), s ≥ 2
or s = ∞, and p ∈ M . If dH(p) 6= 0, there exists a neighborhood U ⊂ M

of p and a local Cs−1-symplectomorphism g : (U,ω) → (R2d, ω0) such that
H = H0 ◦ g on U .

By considering neighbourhoods as above taken along a piece of a tra-
jectory, we can find a small tubular neighborhood where the flow is again
straightened. This is the content of the next result.

Theorem 2.2 (Hamiltonian flowtube). Let H ∈ Cs(M), s ≥ 2 or s = ∞,
and a non-closed compact self-avoiding arc of trajectory Γ ⊂ M . There
exists a neighborhood W ⊂ M of Γ and a local Cs−1-symplectomorphism
φ : (W,ω) → (R2d, ω0) such that H = H0 ◦ φ on W .

2.4. Density of elliptic closed orbits. The next result is the Hamiltonian
version of the Newhouse dichotomy [13] for 4-dimensional Hamiltonians.
As previously mentioned, it will be used in the proof of Theorem 1 (see
section 4).

Theorem 2.3 ([2]). Let d = 2. Given an open set U ⊂ M intersecting
a far from Anosov regular energy surface of H ∈ C2(M), there is a C2-
nearby Hamiltonian having an elliptic closed orbit through U . Moreover,
this implies that, for far from Anosov regular energy surfaces of a C2-generic
Hamiltonian, the elliptic closed orbits are dense.

2.5. Creation of homoclinic tangencies. The next result is central to
the proof of Theorem 1. It deals with symplectomorphisms on a symplectic
2-manifold, i.e. area-preserving maps.

Theorem 2.4 (Gelfreich and Turaev [10]). Let r ∈ N ∪ {∞, ω}. Any Cr-
area-preserving map with an elliptic point can be Cr-approximated by an-
other area-preserving map with a homoclinic tangency.

3. Hamiltonian realization of a perturbed Poincaré map

Consider a Hamiltonian flow with a closed orbit and an associated Poincaré
section map in an energy surface. Our goal in this section is to find a nearby
Hamiltonian exhibiting a perturbed Poincaré map (Theorem 3). In order to
prove Theorem 2, we will only make use of the case d = 2. Nevertheless, we
study here the general situation for future use.
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3.1. Suspension of Poincaré maps. Let H ∈ C∞(M). Consider a closed
orbit O with least period T > 0, p ∈ O and e = H(p). The Poincaré map is
given by f : V → Σe as in section 2.1, having a fixed point at p.

The return time τ : V → R+ is close to T . So, choose T0, T1 > 0 such
that T0 + T1 ≤

1
2 min{τ(x) : x ∈ V }. Take the arc of trajectory

Γ = {ϕt
H(p) : T0 ≤ t ≤ T − T1} ⊂ O.

By Theorem 2.2, in a tubular neighbourhood W ⊂ M of Γ we have H =
H0 ◦φ. One can always compose φ with some symplectomorphism ψ so that
S0, S1 ⊂ ψ ◦ φ(W ), where

S0 = {(x1, . . . , xd, y1, . . . , yd) ∈ R
2d : xd = yd = 0}

and S1 = ϕ1
H0

(S0). We assume that φ is in fact ψ ◦ φ in order to simplify
notations. Furthermore,

ϕ1
H0

|S0 = φ ◦ ϕ−T1

H ◦ f ◦ ϕ−T0

H ◦ φ−1,

which is simply given by ϕ1
H0

(x, 0, y, 0) = (x, 1, y, 0) with

(x, y) = (x1, . . . , xd−1, y1, . . . , yd−1) ∈ R
2d−2.

This means that Π ◦ ϕ1
H0

|S0 = id by using the projection Π: R2d → R2d−2,
(x, xd, y, yd) 7→ (x, y).

Given a C∞-symplectomorphism f̃ on V that is C1-close to f , we want

to find a Hamiltonian H̃ having f̃ as Poincaré map. The perturbation is

constructed inside W , hence being enough to find H̃0 = H̃ ◦ φ−1 such that

ϕ1
H̃0

|S0 = φ ◦ ϕ−T1

H ◦ f̃ ◦ ϕ−T0

H ◦ φ−1.

Then, g = Π ◦ ϕ1
H̃0

|S0 is a C∞-symplectomorphism on R2d−2. From the

above considerations we know that for any r ≥ 0,

‖g − id‖Cr ≤ c‖f̃ − f‖Cr

for some cr > 0 depending on H.
Let ρ > 0 and the euclidean open ball

Bρ = {(x, y) ∈ R
2d−2 : ‖(x, y)‖ < ρ}.

The radius ρ is chosen small enough so that Bρ × {0 ≤ xd ≤ 1, |yd| < ρ} ⊂
φ(W ).

Proposition 3.1. There is δ, c > 0 such that for any C∞-symplectomorphism

g compactly supported in Bρ, δ-C
1-close to the identity, we can find H̃0 ∈

C∞(R2d) compactly supported in Bρ verifying

Π ◦ ϕ1
H̃0

|S0 = g

and ∥∥∥H̃0 −H0

∥∥∥
C2

≤ c(1 + ρ+ ρ−1 + ρ‖g − id ‖2C3) ‖g − id‖C1 . (1)

Moreover, if g fixes the origin, then ϕ1
H̃0

(0) = (0, 1, 0, 0).
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We now use the above proposition (to be proved in section 3.2 below) to
complete the proof of Theorem 3. Consider

H̃ =

{
H, on M \W

H + (H̃0 −H0) ◦ φ, otherwise.

Therefore, combining the estimates above and assuming that f̃ is C3-close
to f , one gets

‖H̃ −H‖C2 ≤ c‖f̃ − f‖C1

for some c > 0.

3.2. Proof of Proposition 3.1. Since the group of smooth symplectomor-
phisms isotopic to the identity is path-connected, we can always find an
isotopy gα, α ∈ [0, 1], of symplectomorphisms from the identity to g. The
corresponding non-autonomous vector field Xα = ġα ◦ g

−1
α is symplectic (for

each α), and in fact Hamiltonian since we are in a simply connected space.
The proof of Proposition 3.1 relies on this well-known fact, but it also re-
quires a control on the size of the derivatives of (x, y, α) 7→ gα(x, y). For
this reason we need to construct gα through a simple isotopy of generating
functions, whose norms are easily estimated. Later, by adding a flow direc-
tion coordinate (α = xd) and its symplectic conjugate (the “energy” yd), we
will extend our Hamiltonian to R2d.

For functions F : D → Rm, D ⊂ R2d, consider the Cs-norm, with s ∈
N0 = N ∪ {0},

‖F‖Cs = max
i=1,...,m

max
|σ|≤s

sup
D

∣∣∣∣∣
∂|σ|Fi

∂σ1x1 . . . ∂σ2dyd

∣∣∣∣∣

where σ = (σ1, . . . , σ2d) ∈ N2d
0 and |σ| =

∑
i σi. Moreover, 〈·, ·〉 denotes the

usual euclidean scalar product and we introduce the projections π1(x, y) = x

and π2(x, y) = y.
Let V ∈ C∞(R2d−2) such that

W (x′, y) = 〈x′, y〉+ V (x′, y)

is a generating function of g. More specifically, writing (x′, y′) = g(x, y),
since detD1x

′ 6= 0,

x =
∂W

∂y
(x′, y) and y′ =

∂W

∂x′
(x′, y).

Therefore,

g(x, y) = (x, y)− J∇V ◦G(x, y).

where G(x, y) = (π1g(x, y), y) and ‖∇V ‖C0 = ‖g − id ‖C0 . We assume that
g is sufficiently C1-close to the identity, thus G is a diffeomorphism.

Lemma 3.2. For r ≥ 1, there is cr > 0 such that

‖∇V ‖Cr ≤ cr max{1, ‖G−1‖rCr} ‖g − id ‖Cr .
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Proof. Write φ = g − id and β = G−1 so that φ ◦ β = −J∇V . Recall the
Faà di Bruno formula for the higher derivative chain rule:

Dr(φ◦β) =
∑ r!

k1! . . . kr!1!k1 . . . r!kr
D|k|φ(β) (Dβ, . . . ,Dβ︸ ︷︷ ︸

k1

, . . . ,Drβ, . . . ,Drβ︸ ︷︷ ︸
kr

)

(2)
where the sum is over every k = (k1, . . . , kr) ∈ Nr

0 such that

〈k, (1, 2, . . . , r)〉 = r.

Therefore, there is a constant cr > 0 depending on r, satisfying

‖∇V ‖Cr ≤ cr max{1, ‖β‖rCr} ‖φ‖Cr ,

where we have used that ‖β‖ki
Cki

≤ ‖β‖kiCr ≤ max{1, ‖β‖rCr}. �

Let ℓ ∈ C∞(R) be a bump function verifying

ℓ(α) =

{
1, α ≥ ξ

0, α ≤ 0

for some choice of 0 < ξ < 1 such that ℓ′ > 0 in (0, ξ). We can now construct
the following smooth 1-family of generating functions:

Wα(x
′, y) = 〈x′, y〉+ ℓ(α)V (x′, y).

For each α ∈ R we obtain a C∞-symplectomorphism gα generated by Wα.
Clearly, g0 = id and g1 = g. Hence, gα is a C∞-isotopy between id and g
implicitly given by

gα = id−ℓ(α) J∇V ◦Gα,

where Gα = (π1gα, π2) and ‖gα − id ‖C0 ≤ ‖∇V ‖C0 = ‖g − id ‖C0 .

Lemma 3.3. For r ≥ 1, there is cr > 0 such that for any α ∈ R, if
‖g − id ‖C1 is sufficiently small, then

‖gα − id ‖Cr ≤
cr

1− ‖∇V ‖C1

‖g − id ‖rCr−1‖∇V ‖Cr .

Proof. Write vα = −ℓ(α) J∇V so that ‖vα‖Cr ≤ ‖∇V ‖Cr . Using again the
Faà di Bruno formula,

Dr(gα − id) =
∑

kr=0

ck,rD
|k|vα(Gα) (DGα, . . . ,DGα︸ ︷︷ ︸

k1

, . . . ,Dr−1Gα, . . . ,D
r−1Gα︸ ︷︷ ︸

kr−1

)

+Dvα(Gα)D
rGα,

where ck,r are the coefficients as in (2) and we have split the sum in the terms
corresponding to the vectors k = (k1, . . . , kr−1, 0) and k = (0, . . . , 0, 1).
Taking the norms, with cr > 0 depending on r,

‖gα − id ‖Cr ≤ cr‖vα‖Cr‖gα − id ‖rCr−1 + ‖vα‖C1 ‖gα − id ‖Cr .

Therefore,

‖gα − id ‖Cr ≤
cr

1− ‖vα‖C1

‖gα − id ‖rCr−1‖vα‖Cr .

The claim follows from applying Lemma 3.2. �
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Consider now the C∞-vector field ġα = d
dα
gα on R2d−2 that generates the

isotopy gα. The non-autonomous vector field

Xα = ġα ◦ g−1
α

is symplectic, i.e. ιXα
ω0 is a closed 1-form. By the Poincaré lemma, since our

space is simply-connected, it is also exact. Therefore, for each α there exists
a C∞-function Kα : R

2d−2 → R with compact support such that ιXα
ω0 =

dKα, i.e. ∇Kα = −JXα and using the notation of a Hamiltonian vector
field

XKα
= Xα.

Up to a constant (chosen so that Kα has compact support), it is given by

Kα(x, y) =

∫

[0,(x,y)]
ιXα

ω0 =

∫ 1

0
〈XKα

(s(x, y)), (y,−x)〉 ds, (3)

where the integration is along the straight path [0, (x, y)] that connects (x, y)
to the origin. Notice that the vector field that determines g as the time-1
map is non-autonomous, not preserving the “energy” K. Also, Kα = 0 for
any α 6∈ (0, 1).

We can extend the dimension of the space to R2d by considering the
variables xd = α (seen as the time direction) and yd (the “energy” K).

Let ℓ̃ ∈ C∞(R) be another bump function satisfying

ℓ̃(yd) =

{
1, |yd| ≤ νρ

0, |yd| ≥ ρ

for any choice of 0 < ν < 1, such that ‖ℓ̃‖C0 ≤ 1,

‖ℓ̃′‖C0 ≤
2

(1− ν)ρ
and ‖ℓ̃′′‖C0 ≤

4

(1− ν)ρ2
.

We define the (autonomous) C∞-Hamiltonian H̃0 : R
2d → R as

H̃0(x, xd, y, yd) = H0(yd) +Kxd
(x, y) ℓ̃(yd)

with H0(yd) = yd. Hence,

∇(H̃0 −H0) =

(
ℓ̃
∂K

∂x
, ℓ̃
∂K

∂xd
, ℓ̃
∂K

∂y
, ℓ̃′K

)
. (4)

Notice that outside {xd ∈ (0, 1), |yd| < ρ} ⊂ R2d we have H̃0 = H0. By
contrast, the Hamiltonian vector field for xd ∈ [0, 1] and |yd| ≤ νρ is

X
H̃0

=

(
π1XK , 1, π2XK ,−

∂K

∂xd

)
.

Lemma 3.4. There is δ > 0 and c > 0 such that, if ‖g−id ‖C1 ≤ δ, then (1)
holds.

Proof. We write a dot to represent the derivative with respect to xd and
D for the derivative with respect to (x, y). Recall that XK(x, xd, y, yd) =
ġxd

◦ g−1
xd

(x, y). We will use Lemmas 3.2 and 3.3 without explicit mention.
From (4) we have

∥∥∥H̃0 −H0

∥∥∥
C1

≤ max
{
‖K‖C0 , ‖XK‖C0 , ‖K̇‖C0 , ‖ℓ̃′‖C0 ‖K‖C0

}
.
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Now, the second order derivatives of H̃0 are

∂2H̃0

∂zi∂zj
= ℓ̃

∂2K

∂zi∂zj

∂2H̃0

∂zi∂xd
= ℓ̃

∂K̇

∂zi

∂2H̃0

∂2xd
= ℓ̃ K̈

∂2H̃0

∂zi∂yd
= ℓ̃′

∂K

∂zi

∂2H̃0

∂xd∂yd
= ℓ̃′ K̇

∂2H̃0

∂2yd
= ℓ̃′′K

where z = (x, y) and i, j = 1, . . . , 2d− 2. So,
∥∥∥H̃0 −H0

∥∥∥
C2

≤ max { ‖XK‖C1 , ‖ℓ̃
′‖C0 ‖XK‖C0 , ‖K̈‖C0 ,

max{1, ‖ℓ̃′‖C0}‖K̇‖C0 ,

max{1, ‖ℓ̃′‖C0 , ‖ℓ̃′′‖C0} ‖K‖C0

}
.

By writing v = −J∇V , we have that

‖ġ‖C0 ≤ ‖ℓ‖C1 ‖v‖C0 + ‖v‖C1‖ġ‖C0 .

Therefore,

‖ġ‖C0 ≤
‖ℓ‖C1 ‖g − id ‖C0

1− ‖v‖C1

≤ c ‖g − id‖C0

for some c > 0. Similarly,

‖g̈‖C0 ≤
‖ℓ‖C2 ‖v‖C0 + 2 ‖ℓ‖C1 ‖v‖C1 ‖ġ‖C0 + ‖v‖C2 ‖ġ‖2C0

1− ‖v‖C1

≤ c ‖g − id‖C0

for some c > 0. Moreover,

‖Dġ‖C0 ≤ ‖ℓ‖C1 ‖v‖C1 ‖g‖C1 + ‖v‖C2 ‖g‖C1 ‖ġ‖C0 + ‖v‖C1 ‖Dġ‖C0 ,

thus

‖Dġ‖C0 ≤
‖ℓ‖C1 ‖v‖C1 ‖g‖C1 + ‖v‖C2‖ġ‖C0 ‖g‖C1

1− ‖v‖C1

≤ c ‖g − id‖C1

for some c > 0.
From ẊK = g̈ ◦ g−1 +Dġ ◦ g−1 ġ−1 and DXK = Dġ ◦ g−1Dg−1,

‖XK‖C1 ≤ c ‖g − id‖C1 .

From (3), ‖K‖C0 ≤ ρ ‖XK‖C0 , ‖K̇‖C0 ≤ ρ‖XK‖C1 and also ‖K̈‖C0 ≤

ρ‖ẌK‖C0 . Thus, it remains to bound ‖ẌK‖C0 .
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As before, we obtain the following bounds:

‖
...
g ‖C0 ≤

1

1− ‖v‖C1

( ‖ℓ‖C3 ‖v‖C0 + 3 ‖ℓ‖C2 ‖v‖C1 ‖ġ‖C0

+ 3 ‖ℓ‖C1 ‖v‖C2 ‖ġ‖2C0

+3 ‖ℓ‖C1 ‖v‖C1 ‖g̈‖C0 + ‖v‖C3 ‖ġ‖
3
C0

)

‖D2ġ‖C0 ≤
1

1− ‖v‖C1

( ‖ℓ‖C1 ‖v‖C1 ‖g‖2C1 + ‖ℓ‖C1 ‖v‖C1 ‖D2g‖C0

+ ‖v‖C3 ‖g‖2C1‖ġ‖C0 + ‖v‖C2 ‖D2g‖C0‖ġ‖C0

+2 ‖v‖C2 ‖g‖C1 ‖ġ‖C1)

‖Dg̈‖C0 ≤
1

1− ‖v‖C1

( ‖ℓ‖C2 ‖v‖C1 ‖g‖C1 + 2 ‖ℓ‖C1 ‖v‖C2 ‖g‖C1 ‖ġ‖C0

+ 2 ‖ℓ‖C1 ‖v‖C1 ‖ġ‖C1 + ‖v‖C3 ‖g‖C1‖ġ‖2C0

+2 ‖v‖C2 ‖ġ‖C1‖ġ‖C0 + ‖v‖C2 ‖g‖C1 ‖g̈‖C0)

Finally, we use the fact that ẌK =
...
g ◦ g−1 + 2Dg̈ ◦ g−1 ġ−1 + D2ġ ◦

g−1 (ġ−1, ġ−1) +Dġ ◦ g−1 g̈−1. So,

‖ẌK‖C0 ≤ c
(
1 + ‖g − id ‖2C3

)
‖g − id‖C1

for some constant c > 0. Evaluating all the above estimates together, one
gets ∥∥∥H̃0 −H0

∥∥∥
C2

≤ c
(
1 + ρ+ ρ−1 + ρ‖g − id ‖2C3

)
‖g − id‖C1

for some universal constant c > 0 that only depends on the norms of the
bump functions. �

Remark 3.1. In the above lemma there is the need to bound the size of
higher derivatives of g. This loss of differentiability is caused by our specific
construction of the isotopy gα. It should be possible to use a different isotopy
that avoids this phenomenon. Our choice was done for the sake of simplicity,
since it does not restrict our main results.

The Hamiltonian flow for xd ∈ [0, 1] and |yd| ≤ νρ is given by

ϕt

H̃0

(x, xd, y, yd) =
(
π1gxd+t ◦ g

−1
xd

(x, y),

xd + t,

π2gxd+t ◦ g
−1
xd

(x, y),

yd −

∫ t

0

∂Kxd+s

∂xd
◦ gxd+t ◦ g

−1
xd

(x, y) ds

)
.

Using estimates in the proof of Lemma 3.4, one gets that the increment in
the last coordinate for t ∈ [0, 1] is bounded from above by

∥∥∥∥
∂K

∂xd

∥∥∥∥
C0

≤ ρ‖XK‖C0 ≤ νρ

as long as ‖g − id‖C1 is small. Finally, the time-1 flow acts on the transversal
{(x, 0, y, 0)} by

ϕ1
H̃0

(x, 0, y, 0) =

(
π1g(x, y), 1, π2g(x, y),−

∫ 1

0

∂Ks

∂xd
◦ g(x, y) ds

)
.
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In particular, if g(0) = (0), ϕ1
H̃0

(0) = (0, 1, 0, 0) because ∂
∂xd

K(0, 0) = 0.

4. Proof of Theorems 1 and 2

The proof of Theorem 2 follows from the following steps:

(1) Since elliptic closed orbits are stable, we can find a C∞ approxi-

mation H̃ keeping the same (i.e. its analytic continuation) elliptic
closed orbit.

(2) Consider the C∞ Poincaré map f of ϕt

H̃
on a transversal to the

elliptic closed orbit restricted to an energy surface.

(3) Use Theorem 2.4 to obtain a C∞-symplectomorphim f̃ close to f
with a homoclinic tangency.

(4) Finally, Theorem 3 allows us to construct a Hamiltonian C2-close to

H̃, which realizes the Poincaré map f̃ on the energy surface.

Assume that the energy level H−1({H(p)}) is far from Anosov. The proof
of Theorem 1 follows from Theorem 2 after applying Theorem 2.3 that gives
elliptic closed orbits for some Hamiltonian C2-close.

Finally, we would like to mention a possible alternative strategy to prove
Theorem 2 in the absence of Theorem 2.4. We first observe that an area-
preserving diffeomorphism yielding an irrational invariant curve can be per-
turbed in order to create homoclinic tangencies, as proved in [11]. So, start-
ing from a Hamiltonian with an elliptic closed orbit, one can perturb its tan-
gent map and get a new Hamiltonian (using a version of Franks Lemma[17])
whose Poincaré map is an area-preserving map satisfying a twist condition
along a diophantine invariant curve. KAM theory then assures us the stabil-
ity of this structure, and a suspension of the result in [11] holds homoclinic
tangencies for a nearby Hamiltonian.
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