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On epimorphisms of spherical Moufang

buildings
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Abstract

In this paper we classify the the epimorphisms of irreducible spheri-
cal Moufang buildings (of rank≥ 2) defined over a field. As an applica-
tion we characterize indecomposable epimorphisms of these buildings
as those epimorphisms arising from R-buildings.

1 Introduction

The theory of buildings was introduced by Jacques Tits in the late 60’s in
order to better understand certain classes of (algebraic) groups. This theory
certainly attained this goal and much more. The two most studied subclasses
are the spherical and affine buildings.

The spherical buildings have been classified by Jacques Tits in 1974 ([22])
provided that the rank is at least three. Using the so-called ‘spherical build-
ing at infinity’ of an affine building, Tits also classified in the affine buildings
of rank at least 4 ([23]). This classification also includes non-discrete gener-
alizations of affine buildings, the R-buildings.

Whereas this classification uses spherical buildings to say something about
R-buildings, in the current paper we will use R-buildings to answer a prob-
lem concerning spherical buildings. The question is to classify or characterize
epimorphisms of Moufang spherical buildings. We will show that these cor-
respond to valuations, provided that the building is defined over a field.

∗The author is supported by the Fund for Scientific Research – Flanders (FWO -
Vlaanderen)
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Epimorphisms arising from Moufang R-buildings turn out to be the ‘prim-
itive’ epimorphisms for this class, i.e. if one cannot decompose the epimor-
phism into two proper epimorphisms, then the epimorphism arises directly
from an R-building.

This extends known results for projective spaces (see Section 2.4). For
a precise version of the main results and corollaries we refer to Section 3.
The remaining open class, the one consisting of the polar spaces of pseudo-
quadratic form type defined over a proper skew field is handled by the author
and Petra N. Schwer in a forthcoming paper ([19]) using different, case-
specific methods.

Acknowledgement. The author would like to thank Pierre-Emmanuel
Caprace for suggesting the problem.

2 Preliminaries

2.1 Buildings

Let (W,S) be a Coxeter system, then a weak building of type (W,S) is a
pair (C, δ) consisting of a nonempty set C (called chambers) and a map δ :
C × C → W (called the Weyl distance), such that for every two chambers C
and D the following holds.

(WD1) δ(C,D) = 1 if and only if C = D.

(WD2) If δ(C,D) = w and C ′ ∈ C satisfies δ(C ′, C) = s ∈ S, then δ(C ′, D) ∈
{sw, w}. If moreover l(sw) = l(w) + 1 (where l is the word metric on
W w.r.t. S), then δ(C ′, D) = sw.

(WD3) If δ(C,D) = w, then for any s ∈ S there exists a chamber C ′ ∈ C such
that δ′(C ′, C) = s and δ(C ′, D) = sw.

This weak building is said to be spherical if the Coxeter group W is
finite. The rank of a weak building is defined to be |S|. Two chambers are
s-equivalent (with s ∈ S) if the Weyl distance between them is either s or
the identity element 1 of W . Consider a subset S ′ ⊂ S. The connected
components of C using only equivalences in S ′ are called the S ′-residues,
which are again buildings. The rank one residues (so S ′ = {s}) are also
called (s-)panels. If each panel of the weak building has cardinality at least
3, then we say that (C, δ) is a building.
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A building is irreducible if it cannot be decomposed as a direct product
of two (non-trivial) buildings.

A morphism φ between two (weak) buildings (C, δ) and (C′, δ′) of type
(W,S) is a map from C to C′ preserving s-equivalency for each s ∈ S. If in
addition this map is respectively injective or surjective, then it is respectively
called an endomorphism or an epimorphism. If it is both injective and surjec-
tive then it is an isomorphism. We say that an automorphism g of a building
(C, δ) descends under an epimorphism φ from (C, δ) to (C′, δ′) if there exists
an automorphism g′ of (C′, δ′) such that φ◦g = g′ ◦φ. One easily verifies this
is equivalent to the condition ∀C,D ∈ C : Cφ = Dφ ⇔ Cgφ = Dgφ. Note that
the automorphisms who descend form a subgroup of the full automorphism
group.

Two chambers of a building of spherical building are opposite if the Weyl
distance between them is maximal w.r.t. the word metric on W . An s-
panel and s′-panel are opposite if s and s′ are mapped to each other by
the opposition involution of the Coxeter group (see [2, p. 61]) and contain
opposite chambers. Opposite panels have the property that for each chamber
in one of these panels there is a unique non-opposite chamber in the other
one.

For more information on (spherical) buildings, we refer to [2] and [25].

Remark 2.1 If we speak about an epimorphism of a building, we assume
that its image is not a weak building. Non-type preserving epimorphisms
will not be considered in this paper.

Remark 2.2 Our main results only deal with irreducible buildings. As re-
ducible buildings are direct products of irreducible buildings, the study of
the epimorphisms of these can be brought back to their components.

2.2 Generalized polygons

For the spherical buildings of rank 2, the generalized polygons, we will take
an incidence geometric point of view using the panels as basic objects. We
define them as follows.

Let Γ := (P,L, I) be a rank 2 geometry consisting of a point set P, a
line set L (with P ∩L = ∅), and incidence relation I between P and L. An
element of Γ is a point or line of it. An ordered sequence (x0, x1, . . . , xk) of
elements of Γ is called a path of length k if each two subsequent elements in
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it are incident. We say it stammers if there is an i such that xi and xi+2 are
identical.

The rank 2 geometry Γ = (P,L, I) is a generalized n-gon (n ∈ N, n ≥ 2)
if it satisfies the following axioms.

(GP1) Every element is incident with at least three other elements.

(GP2) For every pair of elements x, y ∈ P ∪L, there exists a non-stammering
path (x0 = x, x1, . . . , xk−1, xk = y) of length at most n

(GP3) The sequence in (GP2) is unique if its length is strictly smaller than n.

Note that this definition is self-dual in the notions point and line. The
chambers here are incident point-line pairs. Panels are the sets of chambers
containing a certain element. The corresponding building is irreducible if
and only if n ≥ 3. We define an apartment to be an ordinary n-gon. A root
is a non-stammering path of length n.

The distance between two elements is the length of a shortest path be-
tween them. Two elements at maximal distance n are said to be opposite. If
x and y are not opposite or equal, then the projection of y on x (denoted by
projxy) is the unique element incident with x closest to y.

Morphisms from this point of view are maps between generalized n-gons,
mapping points to points, lines to lines, such that incident elements are
mapped to incident elements. Endomorphisms and epimorphisms are then
defined as usual.

If the image of a non-stammering path under a epimorphism of the gen-
eralized polygon becomes stammering, we say that the path collapses under
the epimorphism. We will use the same notion for apartments, by considering
a non-stammering path of length 2n defining the apartment.

2.2.1 The Moufang property

Let α := (x0, x1, . . . , xn) be a root of a generalized n-gon Γ with n ≥ 3. A
root elation of α is an automorphism of Γ fixing each element incident with
an element of the subpath (x1, . . . , xn−1). The root group of α is the group
consisting of all root elations of α. We say that α is Moufang if this group
acts transitively on the elements incident with x0 different from x1. One
shows that if this is the case then the group acts sharply transitive on this
set (see for instance [16, Def. 5.2.1]). The generalized polygon Γ is Moufang
if all its roots are.
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Remark 2.3 It is possible to generalize this definition to higher rank (spher-
ical) buildings. An irreducible spherical building of rank at least 3 is auto-
matically Moufang by a result of Tits ([22]).

2.3 Classifications of spherical buildings and the field
of definition

The book [22] of Tits includes a classification of the irreducible spherical
buildings of rank at least 3. Moufang generalized polygons have been classi-
fied by Tits and Weiss in [24].

The aim of this section is to briefly discuss this classification and clarify
what we mean by ‘defined over a field’ and ‘defining field’ in the statement
of the main results and corollaries (Section 3). These notions are not unam-
biguous and will be different than the point of view of [26, Rem 30.29].

2.3.1 Moufang generalized polygons

We start with the Moufang generalized polygons (in which we follow [24]).
Let Σ be an apartment of a generalized Moufang n-gon Γ, and label the
elements of it by xi, with i ∈ Z such that xiIxi+1 and xi = xi+2n. This
apartment will be called the hat-rack. Let Ui be the root group of the root
(xi, xi+1, . . . , xi+n). All of the Ui forms the root group data of Γ associated
to Σ. We will often use subscripts to indicate to which root group an auto-
morphism belongs.

Define U[i,j] to be the group generated by Ui, Ui+1, . . . , Uj (if j < i, then
we let U[i,j] denote the group consisting only of the trivial automorphism).

The following lemmas express the commutation relations between Ui and
Uj when the corresponding roots are not opposite (i.e. i 6≡ j mod 2n).

Lemma 2.4 ([24], Prop. 5.5) If i + 1 ≤ j ≤ i + n − 1, then [Ui, Uj] ≤
U[i+1,j−1]. �

Lemma 2.5 ([24], Prop. 5.6) If i ≤ j ≤ i + n − 1, then the product
UiUi+1 . . . Uj is the group U[i,j], and every element of this group has a unique
decomposition as uiui+1 . . . uj with uk ∈ Uk. �

The last lemma implies that by giving descriptions of the root groups
U1 up to Un and the commutation relations between them, that one can
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completely describe the group U[1,n], moreover this information suffices to
describe the Moufang generalized polygon up to isomorphism.

This reduces the classification to determining the possible root groups
U1, . . . , Un and their commutation relations. Let us briefly list the possibili-
ties (for a detailed description see [24, §16]).

• The triangles T (A).

• The quadrangles QI(K,K0, σ) of involutory type.

• The quadrangles QQ(K,L0, q) of quadratic form type.

• The quadrangles QD(K,K0, L0) of indifferent type.

• The quadrangles QP(K,K0, σ, L0, q) of pseudo-quadratic form type.

• The quadrangles QE(K,L0, q) of type Ei (i = 6, 7, 8).

• The quadrangles QF(K,L0, q) of type F4.

• The hexagons H(J, F,#).

• The octagons O(K, σ).

For the remainder of this paper we will consider the quadrangles of invo-
lutory type to be a subclass of those of pseudo-quadratic form type. However
we will need the class of quadrangles of quadratic and honorary involutory
type. These are quadrangles of quadratic form type where the vector space
L0 over K with quadratic form q can be interpreted as a composition algebra
over K with norm q. These can also interpreted as involutory quadrangles
except when this composition algebra is an octonion algebra (in which case
one calls them honorary).

The underlying field skew field or octonion algebra for all of these cases
is A, K or J where appropriate. We consider quadrangles of quadratic and
honorary involutory type to be of quadratic form type, so they are defined
over the underlying field K, not over the composition algebra.
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2.3.2 Higher rank

In order to describe the higher rank case one considers the following reduc-
tion. Let (C, δ) be a spherical Moufang building of type (W,S). Choose a
chamber C in C. The rank 2 residues containing this chamber form a col-
lection of Moufang generalized polygons, each of which can be described as
in the previous section. The rank 1 residues containing C correspond to the
‘extremal’ root groups U1 and Un of the description of the rank 2 residues.
This data completely determines the building by Tits’ extension result [22,
Th. 4.2.1].

Let us list, without much detail, the possibilities with rank at least three
(after [25, 12.12-19]), with as modification considering involutory type as a
subclass of pseudo-quadratic form type). We also list each time the different
isomorphism classes of rank 2 residues which occur (apart from digons).

• Al(K): T (K).

• Bl(K,L0, q): T (K), QQ(K,L0, q).

• Cl(K,K0, σ) of quadratic or honorary type: T (K),QQ(K0, K,N) (where
N is the norm induced on the composition algebra K over K0).

• BCl(K,K0, σ, L0, q): T (K), QP(K,K0, σ, L0, q).

• El(K) (i = 6, 7, 8): T (K).

• F4(K,F, σ): T (K), T (F ), QQ(F,K,N) (where N is the norm induced
on the composition algebra K over K0).

The first four classes can be considered as continuations of rank 2 cases
(see the last rank 2 residue listed each time).

The underlying skew field or octonion algebra for all these cases is defined
to be K, except for the third case (where we define it to be the field K0) and
sixth case (where it is F ). Note that a spherical Moufang building defined
over a field might have rank 2 residues not defined over a field.

With this convention the only spherical Moufang buildings not defined
over field (and hence not covered by the results of this paper) are the projec-
tive spaces Al(K) where K is a proper skew field or octonion algebra, and
the polar spaces BCl(K,K0, σ, L0, q), not of type Cl(K,K0, σ), where K is
a proper skew field.
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2.4 Known results on epimorphisms of spherical build-
ings

Epimorphisms of generalized n-gons are well studied for generalized triangles
(also known as projective planes). Skornyakov expressed in [20] epimorphisms
in terms of the coordinatizing planar ternary rings as places. Subsequently
the epimorphisms of projective Moufang planes and spaces have been classi-
fied (see [3], [8] and [14]).

For other generalized polygons much less is known. There is a result of
Pasini ([18]) which says that the cardinalities of the preimages of an epimor-
phism between generalized n-gons are either always 1 or always infinite. This
implies that epimorphisms between finite generalized n-gons are always iso-
morphisms. Epimorphisms from a generalized n-gon to a generalized m-gon
with m < n are studied by Gramlich and Van Maldeghem in [9] and [10].

For other Moufang spherical buildings the only result known to the author
are constructions using the theory of affine buildings and their non-discrete
generalizations R-buildings (see [17] and [26]). One spherical building is
then the ‘building at infinity’ of an R-building and the other a residue of it.
We will call such morphisms affine epimorphisms. The R-buildings with an
irreducible Moufang spherical building of rank at least 2 at infinity have been
classified by Tits (see [5] and [23]). Without going in details, R-buildings arise
from valuations of the underlying (alternative) division algebra.

Remark 2.6 The trivial epimorphisms, i.e. isomorphisms, can and will be
considered to be affine epimorphisms in this paper.

Remark 2.7 In the non-Moufang case a wild variety of epimorphisms is
possible. One way to do this is by using free constructions. Another way is
to slightly perturbate the constructions of R-buildings in [21], giving rise to
epimorphisms of translation planes which are not arising from R-buildings.

3 Statement of the main results and corollar-

ies

The first Main Result shows that being Moufang is preserved under epimor-
phisms (note that this is trivial for higher dimensions).
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Main Result 1 The epimorphic image of a Moufang generalized polygon is
again a Moufang polygon.

The second Main Result classifies the epimorphisms of a large class of
spherical Moufang buildings.

Main Result 2 Epimorphisms of an irreducible spherical Moufang building
of rank at least 2 defined over a field, correspond to valuations over the defin-
ing field satisfying the compatibility conditions listed in Section 7.4 for a set
of constants.

The following corollaries indicate that the ‘primitive’ epimorphisms are
the affine ones.

Main Corollary 1 If moreover this valuation has finite rank (which is al-
ways the case if the defining field has finite transcendency degree), then the
epimorphism can be realized by combining a finite number of affine epimor-
phisms.

Main Corollary 2 If an epimorphism of an irreducible spherical Moufang
building of rank at least 2 defined over a field, is not decomposable in two
proper epimorphisms (i.e. not isomorphisms), then it is an affine epimor-
phism.

4 Reducing to the generalized polygon case

The aim of this section is to show how one can obtain epimorphisms between
generalized polygons from higher rank spherical buildings. This will turn out
to be useful when studying Moufang buildings via their rank 2 residues. Let
φ be an epimorphism between spherical buildings (C, δ) and (C′, δ′) of type
(W,S).

Lemma 4.1 If C and D are two chambers of (C, δ) such that δ′(Cφ, Dφ) =
s ∈ S, then there exists a chamber E in C such that Dφ = Eφ and δ(C,E) =
s.

Proof. We start by finding a chamber F of (C, δ) such that F φ is opposite
to both Cφ and Dφ. As an epimorphism only can shorten the (numerical)
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distance between two chambers, one has that F is opposite to both C and
D. If we project the chamber D on the s′-panel containing F (where s′ is the
image of s under the opposition involution) we obtain a chamber G which is
the unique chamber in this panel not opposite D. Clearly, its image is the
unique chamber of the s′-panel containing F φ not opposite to Dφ. As Dφ is
the unique chamber in the s-panel containing Cφ and Dφ not opposite to Gφ,
we have that the projection of the chamber G back on the s-panel containing
C yields a chamber E whose image has to be Dφ. As δ(C,E) has to be s by
the definition of an s-panel, one has proven the lemma. �

Lemma 4.2 Let C be a chamber of (C, δ) and S ′ ⊂ S a subset of size 2.
Then φ induces an epimorphism from the S ′-residue of (C, δ) containing C
to the S ′-residue of (C ′, δ′) containing Cφ.

Proof. The restriction of φ to the S ′-residue of (C, δ) containing C will map
elements into the S ′-residue of (C ′, δ′) containing Cφ by the definition of
epimorphisms and residues. Surjectivity of this morphism is a consequence
of the previous lemma. �

5 Proof of the first Main Result

5.1 Setting

Let Γ := (P,L, I) and Γ′ = (P ′,L′, I′) be two generalized n-gons, φ : Γ → Γ′

an epimorphism between them. Choose a root α := (x0, x1, . . . , xn) of Γ
which does not collapse under φ. (To verify that these indeed exist pick x0

and xn to be two elements of Γ which are mapped to opposite elements, then
each root beginning in x0 and ending in xn cannot collapse as epimorphisms
only shorten distances.)

The main part of the proof is devoted to investigating under which con-
ditions root elations of α descend under φ.

Let g be a root elation of α. It maps an element x−1 incident with x0

but different from x1 to an element x′
−1 such that x−1 6= x1 6= x′

−1. We
will prove that a sufficient condition for the root elation to descend is that
xφ
−1 6= xφ

1 6= x′φ
−1 (which is clearly a necessary condition as well).

Once this is established, the first Main Result will follow quickly.
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5.2 Proof

We start with an auxiliary lemma.

Lemma 5.1 If aφI′bφ, then there exists an element b′ such that bφ = b′φ and
aIb′.

Proof. This is a reformulation of Lemma 5.1 in the language of epimorphisms
between generalized polygons. �

We say that an element x of Γ has Property (*) if for each two elements
a, bIx one has that aφ = bφ if and only if agφ = bgφ.

Proposition 5.2 If each element of Γ has Property (*), then the root elation
descends.

Proof. First of all note that if two elements a and b of Γ have opposite images
under φ, that then they also have opposite images under φ ◦ g (because if
a path does not collapse under φ, then its image under g will neither by
Property (*)).

Suppose that the root elation does not descend, or equivalently that there
exist elements x and y in Γ such that xφ = yφ, but xgφ 6= ygφ. (One also
needs to consider the reverse statement, but this follows from an analogous
exposition for the root elation g−1.) Choose a pair of points x and y mini-
mizing the distance k between them. Note that k has to be bigger than zero
and even, as φ does not map points to lines or vice versa. If k would be 2,
then a and b are both incident with some element c. Property (*) for this
element then gives rise to a contradiction.

Let (y0 := x, y1, . . . , yk := y) be a path of shortest length between x and y.
Remark that xφ = yφi only if i = 0 or k, as otherwise it would contradict the
way we choose the elements x and y (as it is impossible that xgφ = ygφi = ygφ).
In particular this implies that yφ1 = yφk−1. Minimality of k yields ygφ1 = ygφk−1.

Using Lemma 5.1, one can find a path (a0, a1, . . . , an−1 := x, an := y1) of
length n which does not collapse under φ. So aφ0 is opposite yφ1 . Com-
bining this with yφ1 = yφk−1 gives that a0 is opposite yk−1. Let (b0 :=
a0, b1, . . . , bn−1 := y, bn := yk−1) be the unique shortest path from a0 to yk−1

containing y (which cannot collapse either). As xφ equals yφ, and yφ1 = yφk−1

is opposite to aφ0 , one has that a
φ
1 = bφ1 . As the distance between a1 and b1 is

at most 2, this implies that agφ1 = bgφ1 . Now because ygφ1 = ygφk−1 is opposite

to agφ0 , we have that the distance between ygφ1 and agφ1 is n− 1. In particular
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if follows that xgφ = ygφ, which contradicts the way we have chosen x and y.
�

Lemma 5.3 Let (y0, . . . , yn) be a path of length n in Γ which does not col-
lapse under φ and φ ◦ g. If Property (*) is satisfied for yn, then it is also
satisfied for y0.

Proof. Let a and b be two elements incident with y0. Note that yφ0 and
ygφ0 are opposite to respectively yφn and ygφn . Because of this one has that
aφ = bφ if and only if (projyna)

φ = (projynb)
φ, and agφ = bgφ if and only if

(projyna)
gφ = (projynb)

gφ. Property (*) for yn now implies that the conditions
(projyna)

φ = (projynb)
φ and (projyna)

gφ = (projynb)
gφ are equivalent. We

conclude that aφ = bφ if and only if agφ = bgφ, so y0 satisfies Property (*). �

Corollary 5.4 If all elements of a root of an apartment which does not
collapse under φ satisfy Property (*), then all elements of that apartment do.

Proof. The apartment cannot collapse under φ◦g by Property (*), and hence
we can apply the above lemma to obtain that all elements of it satisfy this
property. �

Let Σ be the unique apartment containing x−1, x0, . . . , xn; and Σ′ the
unique apartment containing x′

−1, x0, . . . , xn. So g maps Σ to Σ′. Note that

our assumption xφ
−1, x

′φ
−1 6= xφ

1 implies that both apartments do not collapse
under φ. Let xn+1 be the unique element of Σ opposite x1.

Proposition 5.5 All the elements of Γ satisfy Property (*).

Proof. The elements x1, . . . , xn−1 all satisfy Property (*) as all elements in-
cident with one of them are fixed by g. Applying the above lemma, one
then has that all elements of Σ, except from possibly x0 and xn, satisfy
Property (*). Using Lemma 5.1 one can find an element y2Ix1 such that
xφ
0 6= yφ2 6= xφ

2 . Let (x1, y2, y3, . . . , yn, xn+1) be the unique shortest path from
x1 to xn+1 containing y2. Note that the path obtained by adding x0 or x2

as first element cannot collapse under φ or φ ◦ g by the oppositeness of xφ
1

and xφ
n+1, and Property (*) for x1. The above lemma applied to the path

(yn, yn−1, . . . , y2, x1, x2) implies that yn satisfies Property (*), and applied
to the path (x0, x1, y2, . . . , yn) it implies that x0 satisfies Property (*). One
concludes that all elements of Σ satisfy Property (*).
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Choose an element z of Γ. Let (z, z1, . . . , zk) be a shortest path from z
to an element zk of Σ (‘shortest’ over all elements of Σ). There are exactly
two apartments of Γ containing a root of Σ and the element zk−1. As it is
impossible that both apartments collapse under φ (this would imply that Σ
collapses as well), let Σ′′ be such an apartment which does not collapse. It
is easily seen that this apartment will not collapse under φ ◦ g as zk satisfies
Property (*). So by the above corollary all elements of it satisfy property
(*). By repeating this algorithm (substituting the role of Σ by Σ′′) a finite
number of steps, one sees that z satisfies Property (*). Hence all elements of
Γ satisfy Property (*). �

Corollary 5.6 The root elation g descends.

Proof. By combining the above proposition with Proposition 5.2. �

The first Main Result now follows easily.

Corollary 5.7 The epimorphic image of a Moufang polygon is again a Mou-
fang polygon.

Proof. For every root α′ in Γ′ one can find a root α in Γ mapped to it using
Lemma 5.1. Even stronger, one can find for each two apartments Ξ and Ξ′

containing α two corresponding apartments Σ and Σ′ in Γ. The unique root
elation mapping Σ to Σ′ descends as it has to satisfy the condition stated in
Section 5.1. Hence there is a root elation of α′ mapping Ξ to Ξ′. We conclude
that Γ′ is a Moufang polygon. �

6 Epimorphisms and root groups

In this section we study various general properties that the root groups of a
generalized Moufang polygon with an epimorphism should have. The main
goal is to develop tools to be used in the next section where we invoke the
classification of Moufang polygons and separate into cases.

Let Σ be an apartment of a generalized Moufang n-gon Γ which does not
collapse under an epimorphism φ : Γ → Γ′, and label the elements of it by xi,
with i ∈ Z such that xiIxi+1 and xi = xi+2n. This apartment will be called
the hat-rack. Let Ui be the root group of the root (xi, xi+1, . . . , xi+n). All
of the Ui forms the root group data of Γ associated to Σ. We will often use
subscripts to indicate to which root group an automorphism belongs. Also if
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we identify a root group with, for example, the additive group of a field, then
an element of the field with a subscript i denotes the corresponding element
in the root group Ui.

6.1 Root group labelings of epimorphisms

By Section 5, we have for each root group Ui two subgroups Wi ⊳ Vi < Ui

such that Vi consists of all root elations of Ui who descend, and Wi consists
of those who descend to the trivial automorphism. This implies that the root
groups of the apartment Σφ of Γ′ are the quotients U ′

i := Vi/Wi.
Later on, in Section 6.5 we will see that the subgroup information of U1

and Un suffices to determine the epimorphism uniquely. We will call this
information a root group labeling of the epimorphism. When this information
is described using superlevel sets with respect to some norm (see Section 7.3)
without assuring that these sets form subgroups we speak about a weak root
group labeling of the epimorphism.

For higher rank buildings a similar (weak) root group labeling for epimor-
phisms can be defined (see Section 2.3.2). The rank 2 residues containing
a chosen chamber C form generalized polygons, on which epimorphisms are
induced (see Lemma 4.1). The (weak) root group labelings of these epimor-
phisms are linked together as the rank 1 residues correspond to the U1 and
Un of the generalized n-gons forming the residues (this n may vary over the
possible residues).

In Section 6.5 we will again show that this subgroup information of this
set of root groups suffices.

6.2 Opposite root groups

In this section we investigate the behavior of two opposite root groups Ui and
Uj in Σ (meaning that j ≡ i+n mod 2n). Without loss of generality we can
assume that these are the root groups U0 and Un, who both fix the element
x0. Especially we consider the action of them on the elements incident with
x0.

Remark 6.1 This kind of action is also known as a Moufang set, for a
detailed discussion see [7].

For an element g ∈ U∗
n we define κn(g) to be the unique element of U0

which maps x−1 to xg
1. This defines a bijection from U∗

n to U∗
0 .
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Lemma 6.2 The bijection κn maps (bijectively)

• W ∗
n to U0 \ V0,

• Vn \Wn to V0 \W0,

• Un \ Vn to W ∗
0 .

Proof. First assume that g ∈ W ∗
n , or equivalently that xgφ

1 = xφ
1 . So if κ(g)

would descend, then it would map xφ
1 to xφ

−1, which is impossible for an
element of the root group U ′

0 of Γ′. Hence κn(g) ∈ U0 \ V0.
If one assumed that g ∈ Vn \ Wn, then the unique root elation κn(g) in

U0 which maps xgφ
1 to xφ

−1 will descend by Section 5 (and not to the trivial

one, as g descends and cannot map xφ
1 to xφ

−1), so κn(g) ∈ V0 \W0.
Lastly, assume that g ∈ Un \ Vn. Because g does not descend, we have by

Section 5 that xgφ
1 = xφ

−1, which implies that κn(g) ∈ W ∗
0 .

Each of these maps has to be a bijection because κn is a bijection from
U∗
n to U∗

0 . �

Lemma 6.3 Let vn be an element of Vn \Wn. Then the map g ∈ Un \ Vn 7→
κ−1
n (κn(vn)κn(g))v

−1
n is a bijection from Un \ Vn to W ∗

n .

Proof. The orbit of xvn
1 under W0 or Wn is the preimage of xvnφ under φ.

In particular these orbits coincide. Also note that the groups W0 and W1

act regularly on the orbit. So we can conclude that we have bijection which
maps a w0 ∈ W0 to the unique element wn ∈ Wn such that xvnw0

1 = xwnvn
1

(where we made use of the fact that Wn ⊳ Vn). By the definition of κn we
now have that

xwnvn
1 = xvnw0

1

= x
κn(vn)w0

−1

= x
κ−1
n (κn(vn)w0)

1 .

Hence wn = κ−1
n (κn(vn)w0)v

−1
n . The lemma is now proven because κn is a

bijection from Un \ Vn to W ∗
0 by the previous lemma. �
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6.3 Other pairs of root groups

We now investigate the behavior of non-opposite root groups of the hat-
rack. In particular we want to study the interacting with the commutation
relations between them (see Section 2.3.1).

Remind that U[i,j] is the group generated by Ui, Ui+1, . . . , Uj if i ≤ j
and the trivial group otherwise. We use similar notations V[i,j] and W[i,j] to
denote the subgroup of generated by the subgroups of the form Vk and Wk

respectively.

Lemma 6.4 If i ≤ j ≤ i + n − 1, then the product uiui+1 . . . uj (where
uk ∈ Uk) descends if and only if each of the factors descend.

Proof. We prove this by induction. Assume that the product g := uiui+1 . . . uj

descends. If i = j, then it is trivial that the factors descend, so suppose i < j.
Note that xg

j−1 = x
uj

j−1, hence x
ujφ

j−1 = xgφ
j−1 6= xj+1 (the inequality holds as g

descends and fixes xj+1). The results from Section 5 imply that uj descends.
The product gu−1

j = ui . . . uj−1 descends as well, so by induction all factors
descend. The other direction is trivial. �

Corollary 6.5 If i+ 1 ≤ j ≤ i+ n− 1, then

[Vi, Vj ] ≤ V[i+1,j−1],

[Vi,Wj ] ≤ W[i+1,j−1],

[Wi, Vj ] ≤ W[i+1,j−1].

Proof. Let ui ∈ Ui, and uj ∈ Uj . By the first two of the above lemmas, one
can write [ui, uj] in a unique way as a product ui+1ui+2 . . . uj−1, with uk ∈ Uk.
Now suppose that ui ∈ Vi and uj ∈ Vj, then the product ui+1ui+2 . . . uj−1

descends, so the last lemma implies that ui+1ui+2 . . . uj−1 ∈ V[i+1,j−1]. If
moreover either ui ∈ Wi or uj ∈ Wj , then their commutator descends to
the trivial automorphism of Γ′. So the product ui+1 . . . uj−1 is an element of
W[i+1,j−1] by applying Lemma 2.5 to Γ′. �

6.4 Action of µ-maps

The µ-maps form another type of interaction between the root groups, as the
next lemma describes.
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Lemma 6.6 ([24], Prop. 6.1-2) Let κi : U
∗
i → U∗

i+n be as in Section 6.2.
The automorphism µi(ui) := κi(ui)ui(κ(u

−1
i ))−1 (with ui ∈ U∗

i ) fixes xi and

xi+n, reflects Σ, and U
µi(ui)
j = U2i+n−j for each j ∈ Z. �

Applying Lemma 6.2 this yields the following direct corollary.

Corollary 6.7 Let vi ∈ Vi \Wi, then

V
µi(vi)
j = V2i+n−j,

W
µi(vi)
j = W2i+n−j

for each j ∈ Z. �

The action of various µ-maps can be found explicitly in [24, §32], and
implicitly using [24, Lem. 6.4].

Lemma 6.8 Choose a u1 ∈ U1 and a un ∈ Vn \ Wn. Let [u1, u
−1
n ] =

u2 . . . un−1 (with ui ∈ Ui), then

u1 ∈ V1 ⇔ u2 ∈ V2,

u1 ∈ W1 ⇔ u2 ∈ W2.

Proof. Corollary 6.5 states that the implications from left to right are true. So
suppose that u1 ∈ U1 \V1. By [24, Lem. 6.2, 6.4] one has that [u2, κ1(u

−1
1 )] =

u3 . . . un−1un. As U1 \ V1 is stabilized under inversion as V1 is a subgroup,
it follows by Lemma 6.2 that κ1(u

−1
1 ) ∈ Wn+1. Using Corollary 6.5 and

the assumption that un ∈ Vn \ Wn yields that u2 ∈ U2 \ V2. This proves
u1 ∈ V1 ⇔ u2 ∈ V2. The proof of the second part is analogous. �

6.5 Rigidity and factorizations

We end this section by stating results on how the epimorphism is determined
when certain Vk and Wk are known, and how different epimorphisms are
related.

Lemma 6.9 Let ω := u2 . . . un with ui ∈ Ui for i ∈ {2, . . . , n}. The image
of the element xω

1 under the epimorphism φ is opposite xφ
n+1 if and only if all

the root elations ui descend.

17



Proof. If each of the factors ui ∈ Ui (i ∈ {2, . . . , n}) descend then the product
descends as well, so (xω

1 )
φ will be opposite (xω

n+1)
φ = xφ

n+1. Now suppose
that one of the factors does not descend and let uj be the one with maximal
index j, then one has by the results of Section 5 that (xω

j )
φ = (x

uj ...un

j−1 )φ =

(x
uj+1...uj

j+1 )φ = (xω
j+1)

φ, so the path (xω
1 , x

ω
2 , . . . , x

ω
n+1) collapses, or equivalently

(xω
1 )

φ is not opposite xφ
n+1. �

Proposition 6.10 Suppose we have two root group labelings (given respec-
tively by subgroups Wk ⊳ Vk < Uk and W ′

k ⊳ V ′
k < Uk, with k = 1 or n) of

epimorphisms φ : Γ → Γ1 and φ′ : Γ → Γ2 of the generalized n-gon Γ with
respect to the same hat-rack. If V ′

k ≤ Vk and Wk ≤ W ′
k for k = 1, n, then

there exists an epimorphism φ′′ : Γ1 → Γ2 such that φ′ = φ′′ ◦ φ.

Proof. Note that by Lemma 6.2 and Corollary 6.7 (using elements of V ′
k \W ′

k

for an appropriate index k), similar inclusions hold for the other root groups
corresponding with the hat-rack.

First we show that for each two elements y and z of Γ one has that
yφ = zφ implies yφ

′

= zφ
′

. The hat-rack in Γ contains at least one element x
such that xφ′

is opposite to yφ
′

. Without loss of generality we may assume
that this is the element xn+1. In particular this element xn+1 is opposite to
y. Let ω := u2 . . . un and ω′ := u′

2 . . . u
′
n in U[2,n] (written as products of

root elations with ui, u
′
i ∈ Ui) be the unique elements such that y = xω

1 and
z = xω′

1 . Note that we can do this because of Lemma 2.5 and as the group
U[2,n] fixes the elements xn and xn+1 of the hat-rack while acting regularly on
elements opposite xn+1. By the above lemma we have that ui ∈ V ′

i as yφ
′

is

opposite to xφ′

n+1. As V
′
k ⊂ Vk, it follows that y

φ is opposite to xφ
n+1. Because

yφ = zφ, we obtain that uiu
′−1
i ∈ Wi for i ∈ {2, . . . , n}. Using Wi ≤ W ′

i , we
conclude that yφ

′

= zφ
′

.
This property enables us to construct a surjective map φ′′ such that φ′ =

φ′′ ◦ φ. The only thing left to prove is that φ′′ preserves adjacency. Let a1
and b1 be two incident elements of Γ1. By Lemma 5.1 there exist incident
elements a and b of Γ such that a1 = aφ and b1 = bφ. It follows that aφ

′′

1 = aφ

and bφ
′′

1 = bφ are incident. �

Corollary 6.11 If the subgroups V1, Vn, W1 and Wn are known, then the
epimorphism φ is unique (up to combining it with isomorphisms).

Proof. The above proposition implies that if there are two epimorphisms
φ : Γ → Γ1 and φ′ : Γ → Γ2 with the same subgroups V1, Vn, W1 and
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Wn (with respect to the same hat-rack), that then there exist epimorphisms
φ′′ : Γ1 → Γ2, φ

′′′ : Γ2 → Γ1 such that φ′ = φ′′ ◦φ and φ = φ′′′ ◦φ′. One easily
verifies that φ′′ and φ′′′ are inverses of each other, hence we obtain that the
epimorphism is unique up to an isomorphism. �

Corollary 6.12 The root group labeling of an epimorphism of a spherical
Moufang building defines the epimorphism (up to isomorphisms).

Proof. This follows from the previous corollary and Tits’ extension theo-
rem [22, Th. 4.2.1]. �

7 Proof of the second Main Result and the

corollaries

In contrast with the previous section we now invoke the classification of
irreducible spherical Moufang buildings of rank at least 2 and study what
the properties determined in the previous section imply. This will lead us to
a classification of epimorphisms of those buildings defined over fields.

Sketch of proof. — We start with assuming the existence of an epo-
morphism φ. For deriving necessary conditions we look at the epimorphisms
induced on the rank 2 residues (see Lemma 4.2). In Sections 7.1 up to 7.2,
we study one pair of opposite root groups and show that the subgroups Vi

and Wi arise from a valuation to an ordered abelian group of the under-
lying field of definition. We then use this information to study the other
root groups (Section 7.3) and determine certain conditions that need to be
satisfied (Section 7.4).

The second step is to show that this information suffices to construct an
epimorphism, which is done in Section 7.5. Section 7.6 then concludes the
proof of the second Main Result and the Main Corollaries.

Remark 7.1 From this point on we only work with the root groups, not
with elements of generalized polygons. In particular notations of the form
xi will now denote parametrizations of the root groups, not elements of a
hat-rack as in the previous section. These parametrizations are of the form
xi : M → Ui, where M is some additive algebraic structure.
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7.1 Projective lines

In this section we assume that U0 and Un are isomorphic to the additive group
of an alternative division ring K (later on we will restrict to fields), by maps
xi : K → Ui (i ∈ {1, n}), and that the map κ0 is given by x0(a) 7→ xn(a

−1).
Applying Lemma 6.3 we obtain that the map φa : x0(b) 7→ x0((a

−1 +
b−1)−1− a) is an bijection from U0 \V0 to W ∗

0 for every x0(a) ∈ V0 \W0. The
expression (x0(b−a)φa)−1 simplifies to x0(ab

−1a), which is also an involutory
bijection from U0 \ V0 to W ∗

0 , as V0 and W0 are subgroups of U0.
Choose an element t ∈ K such that x0(t) ∈ V0 \W0. Define the following

subsets of K:

A := {yt−1 ∈ K|x0(y) ∈ U0 \ V0},
B := {yt−1 ∈ K|x0(y) ∈ V0 \W0},
C := {yt−1 ∈ K|x0(y) ∈ W ∗

0 }.

Lemma 7.2 The subset R := B ∪C ∪ {0} forms a subring of K containing
the identity element.

Proof. Observe that y 7→ by−1b interchanges A and C bijectively for every
b ∈ B. This implies that this map stabilizes B. As the identity lies in B, one
also has that the inverse is a map of this form and that squaring stabilizes
B. Lastly remark that y 7→ byb stabilizes all three subsets A, B and C for
every b ∈ B (by combining the maps y 7→ by−1b and y 7→ y−1).

The subset R is an additive subgroup of K as V0 is a subgroup of U0.
So in order to show that R forms a subring, we only need to show that it is
closed under multiplication. First suppose that b and c both lie in B. The
maps y 7→ b−1yb−1 and y 7→ c−1yc−1 stabilize the sets A, B and C. The
combination of both maps bc to (cb)−1. If b and c commute this implies that
bc ∈ B (as taking the inverse interchanges A and C). If b and c do not
commute and bc /∈ B then the sum bc+ cb lies in A (as bc and cb cannot both
lie in A or C at the same time). If b+ c ∈ B, then we know that the square
(b+ c)2 = b2+ c2+ bc+ cb also lies in B, but this is a contradiction as b2 and
c2 are elements of B while bc + cb ∈ A. If b + c ∈ C, then one can obtain
a contradiction in a similar way considering (1 + b + c)2. We conclude that
bc ∈ B.
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Now suppose that b ∈ B and c ∈ C. So 1 + c ∈ B, hence by the previous
paragraph we have that b(1+ c) = b+ bc ∈ B ⊂ R. As R is closed additively,
we have that bc ∈ R.

The last case is handled analogously. Suppose that b, c ∈ C, then 1+ c ∈
B, so b(1 + c) = b+ bc ∈ R, hence again bc ∈ R. �

Lemma 7.3 The set of units of R is B, and K = R ∪ (R∗)−1.

Proof. In order to prove this notice that taking the inverse stabilizes B, and
interchanges A and C. �

Remark 7.4 A ring with these properties is also known as a total subring.

Corollary 7.5 If k is a field, then there exists a valuation ν of K to an
ordered abelian group Λ and the symbol ∞ such that

A = {y ∈ K|ν(y) < 0},
B = {y ∈ K|ν(y) = 0},
C = {y ∈ K|ν(y) > 0}.

Proof. The previous lemma implies that R is a valuation ring, and hence
defines a valuation with the desired properties (see [15]). �

Returning to the root group U0, we now have in the case that K is a field
that

V0 = {x0(a) ∈ U0|ν(a) ≥ l},
W0 = {x0(a) ∈ U0|ν(a) > l},

where l = ν(t). Using Lemma 6.2 one can also describe the subgroups in Un.

Vn = {xn(a) ∈ Un|ν(a) ≥ −l},
Wn = {xn(a) ∈ Un|ν(a) > −l}.

Remark 7.6 Corollary 7.5 is not true for skew fields or octonion algebras,
as a total subring is not necessarily stabilized by inner automorphisms, which
is necessary for obtaining a valuation.
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7.2 Orthogonal Moufang sets

The only case where there are no opposite root groups of the form discussed
in the previous sections are the Moufang quadrangles of exceptional type
and those of indifferent type (so n = 4). The method here is to consider
a full subquadrangle of quadratic form type (full means that we do not
have to restrict the root groups of even index). The epimorphism of the
entire quadrangle implies one of the subquadrangle, but not necessarily to
a thick generalized quadrangle. The ‘full’ property assures us at least some
thickness, and due to the fact that the epimorphism arises by restricting root
groups, one still can consider subgroups Vk andWk and apply the results from
Section 6.

Let us describe this subquadrangle. Let K be a field, L0 a vector space
over K equipped with an anisotropic quadratic form q : L0 → K. Let f
be the bilinear form associated to q. Let the root groups U0, U2 and U4 be
parametrized by the additive group of L0 via isomorphims x0, x2 and x4.
The root groups U1, U3 and U5 are parametrized by the additive group of
the field K via isomorphisms x1, x3 and x5. The map κ0 : U0 → U4 is given
by x0(u) 7→ x4(u/q(u)). Because the subquadrangle is full, we have that
Vk 6= Wk for k even. This is however not guaranteed for those of odd index
(and hence we cannot apply the results from Section 7.1 directly). We also
list the non-trivial commutation relations between the root groups U1, U2,
U3 and U4 (see [24, 16.3]):

[x2(a), x4(b)
−1] = x3(f(a, b)),

[x1(t), x4(a)
−1] = x2(ta)x3(tq(a)).

The existence of such a subquadrangle (and with similar notations) of the
Moufang quadrangles of exceptional type Ei (i = 6, 7, 8) follows from the
description [24, 16.6-7], for those of indifferent type the notations from [24,
16.4] and our notations are related by the following table.

Our notations [24, 16.4]
K K2

L0 L0

q x 7→ x2

Let x4(a) be an element of V4 \W4, and b an element of L0, linear inde-

pendent of a. Denote by L̂0 the two-dimensional subspace of L0 spanned by
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both a and b. We parametrize this two-dimensional subspace by a quadratic
extension F of K, using a map θ : F → L̂0, such that the norm function
N : F → K of this field extension agrees with q and that θ−1(a) is an element
of K (see for example [6, §2.6]). For i = 0, 2 and 4 this subspace implies a

subgroup Ûi of Ui, parametrized by the map xi ◦ θ : F → Ûi.
If the field extension F/K is separable, then we denote by σ the Galois

involution of the extension. If it is inseparable, then σ will be the identity.
Invoking Section 7.1 on Û0 and Û4, we obtain a valuation ω of F such

that (with l := ω(θ−1(a)):

V4 ∩ Û4 = {x4(θ(y)) ∈ Û4|ω(y) ≥ l},
W4 ∩ Û4 = {x4(θ(y)) ∈ Û4|ω(y) > l}.

Note that the restriction of ω to K does not depend of the choice of b. Also
observe that each one-dimensional subspace of L̂0 contains elements which
are mapped to elements of V4 by x4 ◦ θ (and analogously for V0 and V2).

We now claim that the automorphism σ arising from the field extension
leaves the valuation ω invariant. Suppose that this is not the case, so there
exists a w ∈ F such that ω(w) < ω(wσ). Note that the field extension F/K

must be separable and accordingly that the bilinear form f restricted to L̂0 is
non-trivial. Combined with the observation on one-dimensional subspaces of
L̂0, Corollary 6.5 and the commutation relation between U2 and U4 this yields
that the subgroup V3 < U3 contains not only of the identity. Corollary 6.7
then implies that the subgroup V1 < U1 is non-trivial.

By the commutation relations and Lemma 6.8 we have that whenever
x1(t) ∈ V1, then {x2(θ(y)) ∈ Û2|ω(y) ≥ l + ω(t)} ⊂ V2 ∩ Û2. A consequence
of this is t cannot have arbitrary small valuations unless ω is the trivial
valuation, as this would imply that Û2 ⊂ V2 for every choice of b (and hence
U2 = V2). A similar thing is true for choices of x3(t) ∈ V3 by Corollary 6.7.

Let d := w−1+σ, so dσ = d−1 and ω(d) > 0. Hence x4(θ(d
m)) will be an

element of V4 for high enough values ofm. The following element is contained
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in V3 by Corollary 6.5:

[x2(θ(c)), x4(θ(d
m))−1] = x3(f(θ(c), θ(d

m)))

= x3(q(θ(c) + θ(dm))− q(θ(c))− q(θ(dm)))

= x3(N(c + dm)−N(c)−N(dm))

= x3(c
σ(dm) + c(dm)σ)

= x3(cd
m + cd−m)

= x3(c(d
m + d−m)).

The last factor has an arbitrary low valuation using arbitrary large m. This
contradicts the earlier remark that one cannot choose a x3(t) ∈ V3 with t ∈ K
having arbitrary small valuations.

We conclude that σ leaves ω invariant, so for an element x4(θ(f)) ∈ Û4

we have that ω(q(θ(f))) = ω(N(f)) = 2ω(f). As the valuation ω restricted
to K is independent of the choice of b, we finally obtain:

V4 = {x4(v) ∈ U4|ω(q(v)) ≥ 2l},
W4 = {x4(v) ∈ U4|ω(q(v)) > 2l}.

7.3 Implications on the root group sequence

Assume we have an epimorphism φ : Γ → Γ′ between Moufang polygons. We
use the description of the root group sequence as found in [24, §16 and §32]
(parametrizing the root group Ur by a map xr, with r ∈ {1, . . . , n}). One
can define a ‘norm’ function on the algebraic structure defining the other
root groups into the underlying field. We list the functions in question in the
following table:

i odd i even

n = 3 T : id id
n = 4 QQ : id q

QD : a 7→ a a 7→ a2

QP : (a, t) 7→ t id
QE : (a, t) 7→ q(π(a) + t) q
QF : q̂ q

n = 6 H : N id
n = 8 O : id (u, v) 7→ R(u, v) := vσ+2 + uv + uσ
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We will denote the ‘norm’ function on Uj by a generic ηj regardless of type.
The involutory quadrangles QI are not listed as we will treat them as a
subcase of the pseudo-quadratic quadrangles QP . Fix i to be n if Γ is a
quadrangle of quadratic form type or an octagon and 1 otherwise, this for
the rest of this section. Also set j to be 2 when i = n, and n− 2 when i = 1.
The importance of the norm functions is illustrated by the following lemma.

Lemma 7.7 Let u1 ∈ U1 and un ∈ Un be two root elations. If one writes
[u1, u

−1
n ] as a product u2 . . . un−1 (ur ∈ Ur), then ηj(uj) = ±η1(u1)ηn(un).

Proof. By straightforward calculations using the commutations relations found
in [24, §16]. �

By applying the case studies made in Sections 7.1 and 7.2 to the explicit
descriptions in [24, §16 and §32] one observes that if the generalized polygon
is not defined over a (proper) skew field or alternative division algebra, that
then there exists a valuation ν : K ։ Λ ∪ {∞} and l ∈ Λ such that

Vi = {xi(a) ∈ Ui|ν(ηi(a)) ≥ l},
Wi = {xi(a) ∈ Ui|ν(ηi(a)) > l}.

Choose a vn+1−i ∈ Vn+1−i\Wn+1−i, and let k := ν(ηn+1−i(x
−1
n+1−i(vn+1−i))).

One is now able to describe the groups Vj and Wj , and subsequently Vn+1−i

and Wn+1−i.

Lemma 7.8

Vj = {xj(a) ∈ Uj |ν(ηj(a)) ≥ k + l},
Wj = {xj(a) ∈ Uj |ν(ηj(a)) > k + l}.

Proof. We will prove this under the assumption that i = n (so j = 2),

the other case is symmetric. Let u2 ∈ V2, and un := u
(µ1(v1)−1)
2 . Us-

ing [24, Lem. 6.4] this implies that [v1, u
−1
n ] = u2u3 . . . un−1 with ur ∈ Ur

for r ∈ {3, . . . , n − 1}. The previous lemma yields that ν(η2(x
−1
2 (u2))) =

ν(η1(x
−1
1 (u1))) + ν(ηn(x

−1
n (un))) = k + ν(ηn(x

−1
n (un))). The statement now

follows from Corollary 6.7. �

Corollary 7.9

Vn+1−i = {xn+1−i(a) ∈ Un+1−i|ν(ηn+1−i(a)) ≥ k},
Wn+1−i = {xn+1−i(a) ∈ Un+1−i|ν(ηn+1−i(a)) > k}.
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Proof. From the above lemma and Lemmas 6.8 and 7.7. �

We now have a description of V1, Vn,W1 andWn, which suffices to describe
the epimorphism by Corollary 6.11.

The next goal is now to derive compatibility conditions. We start by
describing the other subgroups of interest of Ur with r ∈ {2, . . . , n − 1},
using Corollary 6.7 (and the relations given in [24, §16 and §32]) a finite
number of times. We display this information schematically as a vector
where the n coordinates correspond to respectively U1, . . . , Un, and the value
at a coordinate r is the element of Λ which defines the subgroups Vr and
Wr as a hyperlevel set and strict hyperlevel set respectively with respect to
ν ◦ ηr ◦ x−1

r .

n = 3 T : (l, l + k, k)
n = 4 QP : (k, l + k, l + l′ + k, l)

QQ : (l, 2l + k, l + k, k)
QD,QE ,QF : (k, l + k, 2l + k, l)

n = 6 H : (k, l + k, 3l + 2k, 2l + k, 3l + k, l)
n = 8 O : (l, 2l + l′ + k, l + l′ + k, 2l + 2l′ + k + k′,

l + l′ + 2k − k′, 2l + l′ + k + k′, l + k, k)

The l′ for the quadrangle of pseudo-quadratic form type QP and the
octagon case O is defined as follows. Let x ∈ K such that ν(x) = l, then we
set l′ := ν(xσ). Note that l′ has to be independent of the choice of x. The
element k′ is defined in a similar way.

7.4 Compatibility conditions

In this section we describe the extra conditions who arise from induced epi-
morphisms on the rank 2 residues. These conditions, which we call the com-
patibility conditions, involve the valuation ν and the underlying algebraic
structures.

Remark 7.10 We will not always derive the strongest conditions possible.
This will not be a problem (and is even slightly beneficial) as we will see in
Sections 7.5.1 and 7.5.2.

7.4.1 Digons, Triangles, Quadrangles of indifferent type

We impose no conditions here.
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7.4.2 Quadrangles QP(K,K0, σ, L0, q) of pseudo-quadratic form type

The first compatibility condition involves the involution σ. From the appear-
ance of the l′ in the last list, one has that if x, y ∈ K and ν(x) = ν(y) = l, then
l′ = ν(xσ) = ν(yσ). Note that there exists an x ∈ K such that ν(x) = l. Now
suppose that y, z are elements ofK such that ν(y) = ν(z), then ν(xyz−1) = l.
So ν((xyz−1)σ) = ν(xσ), which implies that ν(yσ) = ν(zσ). Suppose that
there is an y ∈ K such that ν(y) < ν(yσ), then ν(1 + y−1+σ) = ν(1) = 0.
Applying σ yields

0 = ν(1σ) = ν((1 + y−1+σ)σ)

= ν(1 + y1−σ)

= ν(y1−σ) < 0,

which is a contradition. We conclude as first compatibility condition that

∀t ∈ K : ν(t) = ν(tσ).

Note that this implies that l′ = l.
A second compatibility condition involves the skew-hermitian form f . By

the commutation relations between U1 and U3 (and Corollary 6.5), we have
that if (u, t), (v, s) ∈ T with ν(t) ≥ k, ν(s) ≥ 2l+ k, then ν(f(u, v)) ≥ l+ k.
One can simplify this by using substitutions with suitable scalar products to

∀(u, t), (v, s) ∈ T : ν(t), ν(s) ≥ k ⇒ ν(f(u, v)) ≥ k.

7.4.3 Quadrangles QQ(K,L0, q) of quadratic form type

In a similar way as for the second compatibility condition for pseudo-quadratic
forms one obtains (using the commutation relations between U2 and U4) that

∀u, v ∈ L0 : ν(q(u)), ν(q(v)) ≥ k ⇒ ν(f(u, v)) ≥ k.

Remark 7.11 Let us consider the special case that the quadrangle is also
of quadratic or honorary involutory type. So L0 is a composition algebra
equipped over K equipped with norm q. The map ν ′ := ν ◦ q on this com-
position division algebra satisfies ν ′(u.v) = ν ′(u) + ν ′(v). Observe that the
compatibility condition, using scalar multiples in the composition algebra
with an element w with ν ′(w) = k, together with ν being a valuation and
f(u, v) = q(u + v) − q(u) − q(v) implies that the subset {u ∈ L0|ν(u)} is a
total subring. This total subring is closed under inner automorphisms and
hence gives rise to a valuation on L0.
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7.4.4 Quadrangles QE(K,L0, q), QF (K,L0, q)of types F4, E6, E7 and
E8

A list of the compatibility conditions (ten in total) one needs for these cases
is listed in Equation 3 in Section 7.5.3, where φr is the function ν ◦ ηr and ηr
as defined in Section 7.3.

The number of equations is much larger than in the other cases because
the residues of the afffine buildings associated to the generalized Moufang
quadrangles of these types are not fully described yet. When such a descrip-
tion becomes available (as announced in [26, Rem. 21.43 and p. 228]), one
can expect to reduce the number of equations needed substantially.

7.4.5 Hexagons H(J, F,#)

Applying the same argument as for the second compatibility condition for
pseudo-quadratic forms to the root groups U1 and U3 gives

∀u, v ∈ J : ν(N(u)) ≥ k, ν(N(v)) ≥ −k ⇒ ν(T (u, v)) ≥ 0.

7.4.6 Octagons O(K, σ)

The sole compatibility condition for octogonal systems involves the Tits-
endomorphism σ. Analogously to the first compatibility condition for the
pseudo-quadratic case one shows that if one has two elements x, y of K such
that ν(x) = ν(y), that then ν(xσ) = ν(yσ). An equivalent way to state the
condition is ∀x ∈ K : ν(x) = 0 ⇒ ν(xσ) = 0 (to see this consider ν(xy−1)
and ν(xσy−σ)).

7.4.7 The higher rank case

As described with the cases listed in Section 2.3.2, there is at most one rank
two residue containing a given chamber which gives rise to compatibility
conditions. The other residues, different from digons, are triangles either
over the field of definition, or over a composition algebra over this field.
While this algebra is not necessary a field, a valuation on it is given by
Remark 7.11, so we can still apply Section 7.3.
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7.5 Constructing the epimorphism

In this section we assume that one is given a spherical building ∆ defined over
a field K, a valuation ν of the underlying field, a weak root group labelling,
and that the compatibility conditions of the last section are satisfied for
residues which are not generalized digons or triangles.

We will construct the epimorphism in multiple steps, generalizing the
possible rank of the valuation at each step. The first two steps for generalized
quadrangles of exceptional type will be handled seperately.

7.5.1 Valuations of rank one

A rank one valuation is a valuation to the real numbers. Because of this
the compatibility conditions will imply stronger restrictions. For octogonal
systems the compatibility condition is equivalent to ν(xσ) =

√
2ν(x) (see

for instance [13, p. 1114]). We show what happens to the compatibility
conditions consisting of inequalities using quadratic forms as example. The
inequality there implies the following inequality (which can be shown by
using appropriate scalar products):

∀u, v ∈ L∗
0 : ν(f(u, v)) + C ≥ (ν(q(u)) + ν(q(v)))/2,

where C is a constant. By [26, 19.4] this inequality with C = 0 is equivalent
to a condition for the completion of the quadratic form with respect to ν.
However upon taking a closer look at the proof of this proposition it turns
out that you can still show the condition for the completion using the weaker
inequality above. Hence the above inequality is equivalent to

∀u, v ∈ L∗
0 : ν(f(u, v)) ≥ (ν(q(u)) + ν(q(v)))/2.

A similar reasoning for the other inequalities occuring in Moufang polygons,
which are not quadrangles of exceptional type, is possible using [26, Prop
24.9, 25.5 and 21.36].

With the extra conditions we derived here one satisfies exactly the condi-
tions (which can be found in [13] and [26]) for the existence of an R-building
with the given spherical building at infinity, corresponding to the valuation
ν. Using the theory of R-buildings one can obtain a canonical epimorphism
of the spherical building at infinity (being ∆) to a residue such that its weak
root group labelling is exactly the one we started with.

The fact that our compatibility conditions only concern the rank 2 residues
is reflected in the result [26, Th. 16.14] on the existence of R-buildings.
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Remark 7.12 The inequalities we derived in this section are not generally
true if one leaves the rank one case. A consequence is that one cannot use the
theory of Λ-buildings, which is the natural generalization of affne buildings
for arbitrary valuations, to the construct the epimorphism in one step. More
information on Λ-buildings can be found in [4] and [12].

7.5.2 Valuations of finite rank

An abelian ordered group Λ of rank t can be embedded as a subgroup in
the lexicographically ordered group ⊕t

j=1R by Hahn’s embedding theorem
(see [11]). Using this presentation one can define an epimorphism e : Λ →
R : (a1, . . . , at) 7→ a1 of ordered abelian groups. Denote the kernel of this
epimorphism by Λ0. The function ν ′ := e◦ν is then a valuation of K of rank
one.

The claim is now that the compatibility conditions are satisfied for the
valuation ν ′ as well. We again illustrate this with the octogonal sets and
quadratic forms as examples.

For octogonal sets we have to prove that for x ∈ K one has that ν(x) ∈
Λ0 ⇒ ν(xσ) ∈ Λ0 given ν(x) = 0 ⇒ ν(xσ) = 0. Suppose that this is
not the case. Without loss of generality one may additionally assume that
ν(x) < ν(xσ) (otherwise one can consider x−1). Note that ν(1 + xσx−1) = 0,
so ν((1 + xσx−1)σ) = ν(1 + x2x−σ) = 0 . But ν(x2x−σ) < 0 (note that this
is true because ν(x) ∈ Λ0, ν(x

σ) /∈ Λ0), hence ν(1 + x2x−σ) < 0, which is a
contradiction. We conclude that ν(x) ∈ Λ0 ⇒ ν(xσ) ∈ Λ0.

For quadratic forms, note that the inequality

∀u, v ∈ L0 : ν
′(q(u)), ν ′(q(v)) ≥ e(k) ⇒ ν ′(f(u, v)) ≥ e(k)

implies, by using scalar products with elements of the field with valuation in
ker(e), that

∀u, v ∈ L0 : ν(q(u)), ν(q(v)) ≥ k ⇒ ν(f(u, v)) ≥ k.

We can now apply the results of the previous section to the rank one valua-
tion ν ′, and obtain an epimorphism of the spherical building to some other
spherical building which is defined over the residue field of Kν′. The valua-
tion ν of K allows us to define a rank t− 1 valuation ν̄ of Kν′. On this new
spherical building we can repeat the procedure until we have constructed
the desired epimorphism, provided we can show the compatibility conditions
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for this new situation. We will be able to do this except for the Moufang
quadrangles of exceptional type, for which there is no description (yet) of the
possible residues. This is why we postpone this case to the next section.

For compatibility conditions involving an involution or Tits-endomorphism
σ it is clear that the conditions stay true for a residue field. We will de-
scribe the behavior of conditions involving inequalities with the example of
quadratic forms. Note that the previous section applied to ν ′ implies the
stronger inequality

∀u, v ∈ L∗
0 : ν

′(f(u, v)) ≥ (ν ′(q(u)) + ν ′(q(v)))/2.

The residue will be again a quadrangle of quadratic form type, where the
quadratic space L̄ is the quotient {v ∈ L0|ν(q(v)) ≥ e(k)}/{v ∈ L0|ν(q(v)) >
e(k)} on which the residue field Kν′ acts naturally and for which the func-
tion q̄ : L̄ → Kν′ : v̄ 7→ q(v)/t (where .̄ indicated the natural map into L̄ or
Kν′, and t ∈ K is such that ν ′(t) = e(k)) is an anisotropic quadratic func-
tion. See [26, Def. 19.33] for more details to this construction. The original
compatibility condition applied to L̄ yields (keeping in mind the previous
inequality to show independence of choice of representants)

∀u, v ∈ L̄ : ν̄(q̄(ū)), ν(q̄(v̄)) > k − ν(t) ⇒ ν(f̄ (ū, v̄)) ≥ k − ν(t),

where f̄ is the bilinear form associated to q̄. Hence we obtained a compatibil-
ity condition for the residue and we can continue with the construction of the
epimorphism. For other types an analogous treatment is possible (see [26,
Def. 24.50 and 25.28] for detailed descriptions of the residues).

7.5.3 Valuations of finite rank and quadrangles of exceptional
type

In this section we handle Moufang quadrangles of exceptional type F4 or Ei

(i = 6, 7, 8). Combining the valuation ν of finite rank on the underlying field
to the ordered abelian group Λ with the norm functions ηr listed in 7.3, we
obtain maps φr : Ur → Λ (r ∈ {1, 2, 3, 4}). We are now interested in the
interaction between these functions and the action of the µ-maps of elements
of U1 and U4. One observes using the relations in [24, 32.10-11] and [26,
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Prop. 21.10 and 22.4] that (with ur ∈ Ur)

φ4(u
µ1(u1)
2 ) = φ2(u2)− φ1(u1),

φ2(u
µ1(u1)
4 ) = φ4(u4) + φ1(u1), (1)

φ3(u
µ4(u4)
1 ) = φ1(u1) + 2φ4(u4),

φ1(u
µ4(u4)
3 ) = φ3(u3)− 2φ4(u4).

Other identities are not straightforward to obtain, One can also derive that
if [u1, u4] = u2u3, that

φ2(u2) = φ1(u1) + φ4(u4),

φ3(u3) = φ1(u1) + 2φ4(u4).

One can use this in a reasoning similar to [26, Prop 15.25] (which makes
use of the fact that double µ-actions maps the root groups to themselves)
obtaining (where ur, vr, wr ∈ Ur)

φ1(u
µ1(v1)µ1(w1)
1 ) = φ1(u1)− 2φ1(v1) + 2φ1(w1),

φ4(u
µ4(v4)µ4(w4)
4 ) = φ4(u4)− 2φ4(v4) + 2φ4(w4), (2)

φ3(u
µ1(v1)
3 ) = φ3(u3),

φ2(u
µ4(v4)
2 ) = φ2(u2).

The compatibility conditions are now be written as

{u1 ∈ U1|φ(u1) ≥ k} is a subgroup,

{u1 ∈ U1|φ(u1) > k} is a subgroup,

{u4 ∈ U4|φ(u4) ≥ l} is a subgroup,

{u4 ∈ U4|φ(u4) > l} is a subgroup,

φ1(u1) = k, φ3(u3) > k + 2l, [u1, u3] = u2 ⇒ φ2(u2) > k + l,

φ1(u1) > k, φ3(u3) = k + 2l, [u1, u3] = u2 ⇒ φ2(u2) > k + l, (3)

φ1(u1) = k, φ3(u3) = k + 2l, [u1, u3] = u2 ⇒ φ2(u2) ≥ k + l,

φ2(u2) = k + l, φ4(u4) > l, [u2, u4] = u3 ⇒ φ3(u3) > k + 2l,

φ2(u2) > k + l, φ4(u4) = l, [u2, u4] = u3 ⇒ φ3(u3) > k + 2l,

φ2(u2) = k + l, φ4(u4) = l, [u2, u4] = u3 ⇒ φ3(u3) ≥ k + 2l.
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From now on we keep in mind only the derived identities and inequalities and
‘forget’ that we were dealing with an exceptional type case. The approach
for constructing the epimorphism resembles the one from the previous two
sections, but works in a more implicit way. As Λ is of finite rank, one can
find an ordered abelian group epimorphism e : Λ → R, which we compose
with the maps φr to obtain maps φ′

r : Ur → R (r ∈ {1, 2, 3, 4}). We claim
that these maps satisfy the inequalities

[u1, u3] = u2 ⇒ φ′
2(u2) ≥ (φ′

1(u1) + φ′
3(u3))/2,

[u2, u4] = u3 ⇒ φ′
3(u3) ≥ (φ′

2(u2) + φ′
4(u4))/2,

and one has that

{u1 ∈ U1|φ′
1(u1) ≥ t},

{u4 ∈ U4|φ′
4(u4) ≥ t},

with t ∈ R are subgroups. One can prove this by using Equations 1 and 2
which allow us to add multiples of two to the constants k and l in the equal-
ities of 3, . All of this implies that the maps φ′

r form a viable partial valua-
tion in the sense of [26, Def. 15.4], and hence give rise to an R-building (by
adapting [26, Th. 15.21] to the non-discrete case) with the desired first epi-
morphism to a certain residue. The root groups U r with r ∈ {1, 2, 3, 4} are
given by the quotient {ur ∈ Ur|φ′

r(ur) ≥ 0}/{ur ∈ Ur|φ′
r(ur) > 0}. On these

root groups one can define in a natural way functions φr : U r → ker e, which
inherit the same identities and inequalities as derived for the functions φr.
Hence we are back at our starting point and can apply recursion to obtain
the desired epimorphism.

7.5.4 Valuations of arbitrary rank

In this final case we do not pose any conditions on the rank of the valuation
anymore. If K ′ is a finitely generated subfield of the field with definition
K, then one can define a subbuilding ∆(K ′) of ∆ (in certain cases one need
to extend the subfield K ′ to make it closed under an involution or Tits
endomorphism σ or to make sure that certains forms are defined, however
one can still keep the subfield finitely generated).

If C and C ′ are two chambers of ∆, then there exists a finitely generated
subfield K ′ of K such that ∆(K ′) contains C and C ′. If one restricts the val-
uation ν to this subfield then it is of finite rank (because a finitely generated
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field is of finite transcendency and Abhyankar’s inequality ([1, Lem. 1])). So
if one restricts the (weak) root group labeling of the epimorphism to K ′ one
can apply the previous section and obtain an epimorphism φK ′ of ∆(K ′). We
now define the new Weyl distance δ̄ between C and C ′ to be the distance
between the images of these chambers under φK ′. This is independent of the
choice of K ′ by Corollary 6.12.

We now define the building ∆′ to have as chambers the equivalence sets
of chambers having trivial Weyl distance δ̄ from each other, and the distance
between two chambers of ∆′ to be the distance δ̄ of two representants. One
can also construct an epimorphism φ : ∆ → ∆′ which maps each chamber of
∆ into its equivalence set. If this definition is not well-defined, if ∆′ is not
a building or if the map φ not an epimorphism, then one can find a finite
set Ω of chambers of ∆ where a problem with this occurs. By restricting
the field to a certain finitely generated subfield K ′′ one can make sure that
∆(K ′′) contains Ω. But at this point there cannot occur a problem because
of our discussion of valuations of finite rank and the uniquely definedness of
δ̄. Hence φ will be the desired epimorphism.

7.6 Conclusion

In Section 7.3 we determined, given an epimorphism φ, what the possible
the (weak) root group labelings of the epimorphism are, and we derived
some compatibility conditions which need to be fulfilled. We then continued
in Section 7.5 starting from a weak root group labeling and these conditions
to show that for the cases under consideration one could construct an epimor-
phism. Corollary 6.12 now implies that we obtain the original epimorphism
φ again (up to an isomorphism).

This concludes the proof of the second Main Result. The first Main
Corollary follows from Sections 7.5.2 and 7.5.3, the second from Sections 7.5.1
and 7.5.3 combined with Proposition 6.10.
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