On epimorphisms of spherical Moufang buildings

Koen Struyve*

July 22, 2011

Abstract

In this paper we classify the the epimorphisms of irreducible spherical Moufang buildings (of rank ≥ 2) defined over a field. As an application we characterize indecomposable epimorphisms of these buildings as those epimorphisms arising from \mathbb{R}-buildings.

1 Introduction

The theory of buildings was introduced by Jacques Tits in the late 60's in order to better understand certain classes of (algebraic) groups. This theory certainly attained this goal and much more. The two most studied subclasses are the spherical and affine buildings.

The spherical buildings have been classified by Jacques Tits in 1974 ([22]) provided that the rank is at least three. Using the so-called 'spherical building at infinity' of an affine building, Tits also classified in the affine buildings of rank at least 4 ([23]). This classification also includes non-discrete generalizations of affine buildings, the \mathbb{R}-buildings.

Whereas this classification uses spherical buildings to say something about \mathbb{R}-buildings, in the current paper we will use \mathbb{R}-buildings to answer a problem concerning spherical buildings. The question is to classify or characterize epimorphisms of Moufang spherical buildings. We will show that these correspond to valuations, provided that the building is defined over a field.

[^0]Epimorphisms arising from Moufang \mathbb{R}-buildings turn out to be the 'primitive' epimorphisms for this class, i.e. if one cannot decompose the epimorphism into two proper epimorphisms, then the epimorphism arises directly from an \mathbb{R}-building.

This extends known results for projective spaces (see Section 2.4). For a precise version of the main results and corollaries we refer to Section 3. The remaining open class, the one consisting of the polar spaces of pseudoquadratic form type defined over a proper skew field is handled by the author and Petra N. Schwer in a forthcoming paper ([19]) using different, casespecific methods.

Acknowledgement. The author would like to thank Pierre-Emmanuel Caprace for suggesting the problem.

2 Preliminaries

2.1 Buildings

Let (W, S) be a Coxeter system, then a weak building of type (W, S) is a pair (\mathcal{C}, δ) consisting of a nonempty set \mathcal{C} (called chambers) and a map δ : $\mathcal{C} \times \mathcal{C} \rightarrow W$ (called the Weyl distance), such that for every two chambers C and D the following holds.
(WD1) $\delta(C, D)=1$ if and only if $C=D$.
(WD2) If $\delta(C, D)=w$ and $C^{\prime} \in \mathcal{C}$ satisfies $\delta\left(C^{\prime}, C\right)=s \in S$, then $\delta\left(C^{\prime}, D\right) \in$ $\{s w, w\}$. If moreover $l(s w)=l(w)+1$ (where l is the word metric on W w.r.t. $S)$, then $\delta\left(C^{\prime}, D\right)=s w$.
(WD3) If $\delta(C, D)=w$, then for any $s \in S$ there exists a chamber $C^{\prime} \in \mathcal{C}$ such that $\delta^{\prime}\left(C^{\prime}, C\right)=s$ and $\delta\left(C^{\prime}, D\right)=s w$.

This weak building is said to be spherical if the Coxeter group W is finite. The rank of a weak building is defined to be $|S|$. Two chambers are s-equivalent (with $s \in S$) if the Weyl distance between them is either s or the identity element 1 of W. Consider a subset $S^{\prime} \subset S$. The connected components of \mathcal{C} using only equivalences in S^{\prime} are called the S^{\prime}-residues, which are again buildings. The rank one residues (so $S^{\prime}=\{s\}$) are also called (s-)panels. If each panel of the weak building has cardinality at least 3 , then we say that (\mathcal{C}, δ) is a building.

A building is irreducible if it cannot be decomposed as a direct product of two (non-trivial) buildings.

A morphism ϕ between two (weak) buildings (\mathcal{C}, δ) and $\left(\mathcal{C}^{\prime}, \delta^{\prime}\right)$ of type (W, S) is a map from \mathcal{C} to \mathcal{C}^{\prime} preserving s-equivalency for each $s \in S$. If in addition this map is respectively injective or surjective, then it is respectively called an endomorphism or an epimorphism. If it is both injective and surjective then it is an isomorphism. We say that an automorphism g of a building (\mathcal{C}, δ) descends under an epimorphism ϕ from (\mathcal{C}, δ) to $\left(\mathcal{C}^{\prime}, \delta^{\prime}\right)$ if there exists an automorphism g^{\prime} of $\left(\mathcal{C}^{\prime}, \delta^{\prime}\right)$ such that $\phi \circ g=g^{\prime} \circ \phi$. One easily verifies this is equivalent to the condition $\forall C, D \in \mathcal{C}: C^{\phi}=D^{\phi} \Leftrightarrow C^{g \phi}=D^{g \phi}$. Note that the automorphisms who descend form a subgroup of the full automorphism group.

Two chambers of a building of spherical building are opposite if the Weyl distance between them is maximal w.r.t. the word metric on W. An s panel and s^{\prime}-panel are opposite if s and s^{\prime} are mapped to each other by the opposition involution of the Coxeter group (see [2, p. 61]) and contain opposite chambers. Opposite panels have the property that for each chamber in one of these panels there is a unique non-opposite chamber in the other one.

For more information on (spherical) buildings, we refer to [2] and [25].
Remark 2.1 If we speak about an epimorphism of a building, we assume that its image is not a weak building. Non-type preserving epimorphisms will not be considered in this paper.

Remark 2.2 Our main results only deal with irreducible buildings. As reducible buildings are direct products of irreducible buildings, the study of the epimorphisms of these can be brought back to their components.

2.2 Generalized polygons

For the spherical buildings of rank 2, the generalized polygons, we will take an incidence geometric point of view using the panels as basic objects. We define them as follows.

Let $\Gamma:=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a rank 2 geometry consisting of a point set \mathcal{P}, a line set \mathcal{L} (with $\mathcal{P} \cap \mathcal{L}=\emptyset$), and incidence relation I between \mathcal{P} and \mathcal{L}. An element of Γ is a point or line of it. An ordered sequence $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ of elements of Γ is called a path of length k if each two subsequent elements in
it are incident. We say it stammers if there is an i such that x_{i} and x_{i+2} are identical.

The rank 2 geometry $\Gamma=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a generalized n-gon $(n \in \mathbb{N}, n \geq 2)$ if it satisfies the following axioms.
(GP1) Every element is incident with at least three other elements.
(GP2) For every pair of elements $x, y \in \mathcal{P} \cup \mathcal{L}$, there exists a non-stammering path $\left(x_{0}=x, x_{1}, \ldots, x_{k-1}, x_{k}=y\right)$ of length at most n
(GP3) The sequence in (GP2) is unique if its length is strictly smaller than n.
Note that this definition is self-dual in the notions point and line. The chambers here are incident point-line pairs. Panels are the sets of chambers containing a certain element. The corresponding building is irreducible if and only if $n \geq 3$. We define an apartment to be an ordinary n-gon. A root is a non-stammering path of length n.

The distance between two elements is the length of a shortest path between them. Two elements at maximal distance n are said to be opposite. If x and y are not opposite or equal, then the projection of y on x (denoted by $\operatorname{proj}_{x} y$) is the unique element incident with x closest to y.

Morphisms from this point of view are maps between generalized n-gons, mapping points to points, lines to lines, such that incident elements are mapped to incident elements. Endomorphisms and epimorphisms are then defined as usual.

If the image of a non-stammering path under a epimorphism of the generalized polygon becomes stammering, we say that the path collapses under the epimorphism. We will use the same notion for apartments, by considering a non-stammering path of length $2 n$ defining the apartment.

2.2.1 The Moufang property

Let $\alpha:=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a root of a generalized n-gon Γ with $n \geq 3$. A root elation of α is an automorphism of Γ fixing each element incident with an element of the subpath $\left(x_{1}, \ldots, x_{n-1}\right)$. The root group of α is the group consisting of all root elations of α. We say that α is Moufang if this group acts transitively on the elements incident with x_{0} different from x_{1}. One shows that if this is the case then the group acts sharply transitive on this set (see for instance [16, Def. 5.2.1]). The generalized polygon Γ is Moufang if all its roots are.

Remark 2.3 It is possible to generalize this definition to higher rank (spherical) buildings. An irreducible spherical building of rank at least 3 is automatically Moufang by a result of Tits ([22]).

2.3 Classifications of spherical buildings and the field of definition

The book [22] of Tits includes a classification of the irreducible spherical buildings of rank at least 3. Moufang generalized polygons have been classified by Tits and Weiss in [24].

The aim of this section is to briefly discuss this classification and clarify what we mean by 'defined over a field' and 'defining field' in the statement of the main results and corollaries (Section 3). These notions are not unambiguous and will be different than the point of view of [26, Rem 30.29].

2.3.1 Moufang generalized polygons

We start with the Moufang generalized polygons (in which we follow [24). Let Σ be an apartment of a generalized Moufang n-gon Γ, and label the elements of it by x_{i}, with $i \in \mathbb{Z}$ such that $x_{i} \mathrm{I} x_{i+1}$ and $x_{i}=x_{i+2 n}$. This apartment will be called the hat-rack. Let U_{i} be the root group of the root $\left(x_{i}, x_{i+1}, \ldots, x_{i+n}\right)$. All of the U_{i} forms the root group data of Γ associated to Σ. We will often use subscripts to indicate to which root group an automorphism belongs.

Define $U_{[i, j]}$ to be the group generated by $U_{i}, U_{i+1}, \ldots, U_{j}$ (if $j<i$, then we let $U_{[i, j]}$ denote the group consisting only of the trivial automorphism).

The following lemmas express the commutation relations between U_{i} and U_{j} when the corresponding roots are not opposite (i.e. $i \not \equiv j \bmod 2 n$).

Lemma 2.4 ([24], Prop. 5.5) If $i+1 \leq j \leq i+n-1$, then $\left[U_{i}, U_{j}\right] \leq$ $U_{[i+1, j-1]}$.

Lemma 2.5 ([24], Prop. 5.6) If $i \leq j \leq i+n-1$, then the product $U_{i} U_{i+1} \ldots U_{j}$ is the group $U_{[i, j]}$, and every element of this group has a unique decomposition as $u_{i} u_{i+1} \ldots u_{j}$ with $u_{k} \in U_{k}$.

The last lemma implies that by giving descriptions of the root groups U_{1} up to U_{n} and the commutation relations between them, that one can
completely describe the group $U_{[1, n]}$, moreover this information suffices to describe the Moufang generalized polygon up to isomorphism.

This reduces the classification to determining the possible root groups U_{1}, \ldots, U_{n} and their commutation relations. Let us briefly list the possibilities (for a detailed description see [24, §16]).

- The triangles $\mathcal{T}(A)$.
- The quadrangles $\mathcal{Q}_{\mathcal{I}}\left(K, K_{0}, \sigma\right)$ of involutory type.
- The quadrangles $\mathcal{Q}_{\mathcal{Q}}\left(K, L_{0}, q\right)$ of quadratic form type.
- The quadrangles $\mathcal{Q}_{\mathcal{D}}\left(K, K_{0}, L_{0}\right)$ of indifferent type.
- The quadrangles $\mathcal{Q}_{\mathcal{P}}\left(K, K_{0}, \sigma, L_{0}, q\right)$ of pseudo-quadratic form type.
- The quadrangles $\mathcal{Q}_{\mathcal{E}}\left(K, L_{0}, q\right)$ of type $\mathrm{E}_{i}(i=6,7,8)$.
- The quadrangles $\mathcal{Q}_{\mathcal{F}}\left(K, L_{0}, q\right)$ of type F_{4}.
- The hexagons $\mathcal{H}(J, F, \#)$.
- The octagons $\mathcal{O}(K, \sigma)$.

For the remainder of this paper we will consider the quadrangles of involutory type to be a subclass of those of pseudo-quadratic form type. However we will need the class of quadrangles of quadratic and honorary involutory type. These are quadrangles of quadratic form type where the vector space L_{0} over K with quadratic form q can be interpreted as a composition algebra over K with norm q. These can also interpreted as involutory quadrangles except when this composition algebra is an octonion algebra (in which case one calls them honorary).

The underlying field skew field or octonion algebra for all of these cases is A, K or J where appropriate. We consider quadrangles of quadratic and honorary involutory type to be of quadratic form type, so they are defined over the underlying field K, not over the composition algebra.

2.3.2 Higher rank

In order to describe the higher rank case one considers the following reduction. Let (\mathcal{C}, δ) be a spherical Moufang building of type (W, S). Choose a chamber C in \mathcal{C}. The rank 2 residues containing this chamber form a collection of Moufang generalized polygons, each of which can be described as in the previous section. The rank 1 residues containing C correspond to the 'extremal' root groups U_{1} and U_{n} of the description of the rank 2 residues. This data completely determines the building by Tits' extension result [22, Th. 4.2.1].

Let us list, without much detail, the possibilities with rank at least three (after [25, 12.12-19]), with as modification considering involutory type as a subclass of pseudo-quadratic form type). We also list each time the different isomorphism classes of rank 2 residues which occur (apart from digons).

- $\mathbf{A}_{l}(K): \mathcal{T}(K)$.
- $\mathbf{B}_{l}\left(K, L_{0}, q\right): \mathcal{T}(K), \mathcal{Q}_{\mathcal{Q}}\left(K, L_{0}, q\right)$.
- $\mathbf{C}_{l}\left(K, K_{0}, \sigma\right)$ of quadratic or honorary type: $\mathcal{T}(K), \mathcal{Q}_{\mathcal{Q}}\left(K_{0}, K, N\right)$ (where N is the norm induced on the composition algebra K over $\left.K_{0}\right)$.
- $\mathbf{B C}_{l}\left(K, K_{0}, \sigma, L_{0}, q\right): \mathcal{T}(K), \mathcal{Q}_{\mathcal{P}}\left(K, K_{0}, \sigma, L_{0}, q\right)$.
- $\mathbf{E}_{l}(K)(i=6,7,8): \mathcal{T}(K)$.
- $\mathbf{F}_{4}(K, F, \sigma): \mathcal{T}(K), \mathcal{T}(F), \mathcal{Q}_{\mathcal{Q}}(F, K, N)$ (where N is the norm induced on the composition algebra K over K_{0}).

The first four classes can be considered as continuations of rank 2 cases (see the last rank 2 residue listed each time).

The underlying skew field or octonion algebra for all these cases is defined to be K, except for the third case (where we define it to be the field K_{0}) and sixth case (where it is F). Note that a spherical Moufang building defined over a field might have rank 2 residues not defined over a field.

With this convention the only spherical Moufang buildings not defined over field (and hence not covered by the results of this paper) are the projective spaces $\mathbf{A}_{l}(K)$ where K is a proper skew field or octonion algebra, and the polar spaces $\mathbf{B C} C_{l}\left(K, K_{0}, \sigma, L_{0}, q\right)$, not of type $\mathbf{C}_{l}\left(K, K_{0}, \sigma\right)$, where K is a proper skew field.

2.4 Known results on epimorphisms of spherical buildings

Epimorphisms of generalized n-gons are well studied for generalized triangles (also known as projective planes). Skornyakov expressed in [20] epimorphisms in terms of the coordinatizing planar ternary rings as places. Subsequently the epimorphisms of projective Moufang planes and spaces have been classified (see [3], 8] and [14]).

For other generalized polygons much less is known. There is a result of Pasini ([18]) which says that the cardinalities of the preimages of an epimorphism between generalized n-gons are either always 1 or always infinite. This implies that epimorphisms between finite generalized n-gons are always isomorphisms. Epimorphisms from a generalized n-gon to a generalized m-gon with $m<n$ are studied by Gramlich and Van Maldeghem in 9 and 10 .

For other Moufang spherical buildings the only result known to the author are constructions using the theory of affine buildings and their non-discrete generalizations \mathbb{R}-buildings (see [17] and [26]). One spherical building is then the 'building at infinity' of an \mathbb{R}-building and the other a residue of it. We will call such morphisms affine epimorphisms. The \mathbb{R}-buildings with an irreducible Moufang spherical building of rank at least 2 at infinity have been classified by Tits (see [5] and [23]). Without going in details, \mathbb{R}-buildings arise from valuations of the underlying (alternative) division algebra.

Remark 2.6 The trivial epimorphisms, i.e. isomorphisms, can and will be considered to be affine epimorphisms in this paper.

Remark 2.7 In the non-Moufang case a wild variety of epimorphisms is possible. One way to do this is by using free constructions. Another way is to slightly perturbate the constructions of \mathbb{R}-buildings in [21], giving rise to epimorphisms of translation planes which are not arising from \mathbb{R}-buildings.

3 Statement of the main results and corollaries

The first Main Result shows that being Moufang is preserved under epimorphisms (note that this is trivial for higher dimensions).

Main Result 1 The epimorphic image of a Moufang generalized polygon is again a Moufang polygon.

The second Main Result classifies the epimorphisms of a large class of spherical Moufang buildings.

Main Result 2 Epimorphisms of an irreducible spherical Moufang building of rank at least 2 defined over a field, correspond to valuations over the defining field satisfying the compatibility conditions listed in Section 7.4 for a set of constants.

The following corollaries indicate that the 'primitive' epimorphisms are the affine ones.

Main Corollary 1 If moreover this valuation has finite rank (which is always the case if the defining field has finite transcendency degree), then the epimorphism can be realized by combining a finite number of affine epimorphisms.

Main Corollary 2 If an epimorphism of an irreducible spherical Moufang building of rank at least 2 defined over a field, is not decomposable in two proper epimorphisms (i.e. not isomorphisms), then it is an affine epimorphism.

4 Reducing to the generalized polygon case

The aim of this section is to show how one can obtain epimorphisms between generalized polygons from higher rank spherical buildings. This will turn out to be useful when studying Moufang buildings via their rank 2 residues. Let ϕ be an epimorphism between spherical buildings (\mathcal{C}, δ) and $\left(\mathcal{C}^{\prime}, \delta^{\prime}\right)$ of type (W, S).

Lemma 4.1 If C and D are two chambers of (\mathcal{C}, δ) such that $\delta^{\prime}\left(C^{\phi}, D^{\phi}\right)=$ $s \in S$, then there exists a chamber E in \mathcal{C} such that $D^{\phi}=E^{\phi}$ and $\delta(C, E)=$ s.

Proof. We start by finding a chamber F of (\mathcal{C}, δ) such that F^{ϕ} is opposite to both C^{ϕ} and D^{ϕ}. As an epimorphism only can shorten the (numerical)
distance between two chambers, one has that F is opposite to both C and D. If we project the chamber D on the s^{\prime}-panel containing F (where s^{\prime} is the image of s under the opposition involution) we obtain a chamber G which is the unique chamber in this panel not opposite D. Clearly, its image is the unique chamber of the s^{\prime}-panel containing F^{ϕ} not opposite to D^{ϕ}. As D^{ϕ} is the unique chamber in the s-panel containing C^{ϕ} and D^{ϕ} not opposite to G^{ϕ}, we have that the projection of the chamber G back on the s-panel containing C yields a chamber E whose image has to be D^{ϕ}. As $\delta(C, E)$ has to be s by the definition of an s-panel, one has proven the lemma.

Lemma 4.2 Let C be a chamber of (C, δ) and $S^{\prime} \subset S$ a subset of size 2. Then ϕ induces an epimorphism from the S^{\prime}-residue of (C, δ) containing C to the S^{\prime}-residue of $\left(C^{\prime}, \delta^{\prime}\right)$ containing C^{ϕ}.

Proof. The restriction of ϕ to the S^{\prime}-residue of (C, δ) containing C will map elements into the S^{\prime}-residue of $\left(C^{\prime}, \delta^{\prime}\right)$ containing C^{ϕ} by the definition of epimorphisms and residues. Surjectivity of this morphism is a consequence of the previous lemma.

5 Proof of the first Main Result

5.1 Setting

Let $\Gamma:=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ and $\Gamma^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be two generalized n-gons, $\phi: \Gamma \rightarrow \Gamma^{\prime}$ an epimorphism between them. Choose a root $\alpha:=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of Γ which does not collapse under ϕ. (To verify that these indeed exist pick x_{0} and x_{n} to be two elements of Γ which are mapped to opposite elements, then each root beginning in x_{0} and ending in x_{n} cannot collapse as epimorphisms only shorten distances.)

The main part of the proof is devoted to investigating under which conditions root elations of α descend under ϕ.

Let g be a root elation of α. It maps an element x_{-1} incident with x_{0} but different from x_{1} to an element x_{-1}^{\prime} such that $x_{-1} \neq x_{1} \neq x_{-1}^{\prime}$. We will prove that a sufficient condition for the root elation to descend is that $x_{-1}^{\phi} \neq x_{1}^{\phi} \neq x_{-1}^{\phi}$ (which is clearly a necessary condition as well).

Once this is established, the first Main Result will follow quickly.

5.2 Proof

We start with an auxiliary lemma.
Lemma 5.1 If $a^{\phi} \mathrm{I}^{\prime} b^{\phi}$, then there exists an element b^{\prime} such that $b^{\phi}=b^{\prime \phi}$ and $a \mathrm{I} b^{\prime}$ 。

Proof. This is a reformulation of Lemma 5.1 in the language of epimorphisms between generalized polygons.

We say that an element x of Γ has Property $\left(^{*}\right)$ if for each two elements $a, b \mathrm{I} x$ one has that $a^{\phi}=b^{\phi}$ if and only if $a^{g \phi}=b^{g \phi}$.

Proposition 5.2 If each element of Γ has Property $\left({ }^{*}\right)$, then the root elation descends.

Proof. First of all note that if two elements a and b of Γ have opposite images under ϕ, that then they also have opposite images under $\phi \circ g$ (because if a path does not collapse under ϕ, then its image under g will neither by Property (*)).

Suppose that the root elation does not descend, or equivalently that there exist elements x and y in Γ such that $x^{\phi}=y^{\phi}$, but $x^{g \phi} \neq y^{g \phi}$. (One also needs to consider the reverse statement, but this follows from an analogous exposition for the root elation g^{-1}.) Choose a pair of points x and y minimizing the distance k between them. Note that k has to be bigger than zero and even, as ϕ does not map points to lines or vice versa. If k would be 2, then a and b are both incident with some element c. Property $(*)$ for this element then gives rise to a contradiction.

Let $\left(y_{0}:=x, y_{1}, \ldots, y_{k}:=y\right)$ be a path of shortest length between x and y. Remark that $x^{\phi}=y_{i}^{\phi}$ only if $i=0$ or k, as otherwise it would contradict the way we choose the elements x and y (as it is impossible that $x^{g \phi}=y_{i}^{g \phi}=y^{g \phi}$). In particular this implies that $y_{1}^{\phi}=y_{k-1}^{\phi}$. Minimality of k yields $y_{1}^{g \phi}=y_{k-1}^{g \phi}$.

Using Lemma 5.1, one can find a path $\left(a_{0}, a_{1}, \ldots, a_{n-1}:=x, a_{n}:=y_{1}\right)$ of length n which does not collapse under ϕ. So a_{0}^{ϕ} is opposite y_{1}^{ϕ}. Combining this with $y_{1}^{\phi}=y_{k-1}^{\phi}$ gives that a_{0} is opposite y_{k-1}. Let $\left(b_{0}:=\right.$ $\left.a_{0}, b_{1}, \ldots, b_{n-1}:=y, b_{n}:=y_{k-1}\right)$ be the unique shortest path from a_{0} to y_{k-1} containing y (which cannot collapse either). As x^{ϕ} equals y^{ϕ}, and $y_{1}^{\phi}=y_{k-1}^{\phi}$ is opposite to a_{0}^{ϕ}, one has that $a_{1}^{\phi}=b_{1}^{\phi}$. As the distance between a_{1} and b_{1} is at most 2 , this implies that $a_{1}^{g \phi}=b_{1}^{g \phi}$. Now because $y_{1}^{g \phi}=y_{k-1}^{g \phi}$ is opposite to $a_{0}^{g \phi}$, we have that the distance between $y_{1}^{g \phi}$ and $a_{1}^{g \phi}$ is $n-1$. In particular
if follows that $x^{g \phi}=y^{g \phi}$, which contradicts the way we have chosen x and y.

Lemma 5.3 Let $\left(y_{0}, \ldots, y_{n}\right)$ be a path of length n in Γ which does not collapse under ϕ and $\phi \circ g$. If Property $\left(^{*}\right)$ is satisfied for y_{n}, then it is also satisfied for y_{0}.

Proof. Let a and b be two elements incident with y_{0}. Note that y_{0}^{ϕ} and $y_{0}^{g \phi}$ are opposite to respectively y_{n}^{ϕ} and $y_{n}^{g \phi}$. Because of this one has that $a^{\phi}=b^{\phi}$ if and only if $\left(\operatorname{proj}_{y_{n}} a\right)^{\phi}=\left(\operatorname{proj}_{y_{n}} b\right)^{\phi}$, and $a^{g \phi}=b^{g \phi}$ if and only if $\left(\operatorname{proj}_{y_{n}} a\right)^{g \phi}=\left(\operatorname{proj}_{y_{n}} b\right)^{g \phi}$. Property $(*)$ for y_{n} now implies that the conditions $\left(\operatorname{proj}_{y_{n}} a\right)^{\phi}=\left(\operatorname{proj}_{y_{n}} b\right)^{\phi}$ and $\left(\operatorname{proj}_{y_{n}} a\right)^{g \phi}=\left(\operatorname{proj}_{y_{n}} b\right)^{g \phi}$ are equivalent. We conclude that $a^{\phi}=b^{\phi}$ if and only if $a^{g \phi}=b^{g \phi}$, so y_{0} satisfies Property $\left(^{*}\right)$.

Corollary 5.4 If all elements of a root of an apartment which does not collapse under ϕ satisfy Property (${ }^{*}$), then all elements of that apartment do.

Proof. The apartment cannot collapse under $\phi \circ g$ by Property $(*)$, and hence we can apply the above lemma to obtain that all elements of it satisfy this property.

Let Σ be the unique apartment containing $x_{-1}, x_{0}, \ldots, x_{n}$; and Σ^{\prime} the unique apartment containing $x_{-1}^{\prime}, x_{0}, \ldots, x_{n}$. So g maps Σ to Σ^{\prime}. Note that our assumption $x_{-1}^{\phi}, x_{-1}^{\phi} \neq x_{1}^{\phi}$ implies that both apartments do not collapse under ϕ. Let x_{n+1} be the unique element of Σ opposite x_{1}.

Proposition 5.5 All the elements of Γ satisfy Property (*).
Proof. The elements x_{1}, \ldots, x_{n-1} all satisfy Property $\left(^{*}\right)$ as all elements incident with one of them are fixed by g. Applying the above lemma, one then has that all elements of Σ, except from possibly x_{0} and x_{n}, satisfy Property (${ }^{*}$). Using Lemma 5.1 one can find an element $y_{2} I x_{1}$ such that $x_{0}^{\phi} \neq y_{2}^{\phi} \neq x_{2}^{\phi}$. Let $\left(x_{1}, y_{2}, y_{3}, \ldots, y_{n}, x_{n+1}\right)$ be the unique shortest path from x_{1} to x_{n+1} containing y_{2}. Note that the path obtained by adding x_{0} or x_{2} as first element cannot collapse under ϕ or $\phi \circ g$ by the oppositeness of x_{1}^{ϕ} and x_{n+1}^{ϕ}, and Property $\left(^{*}\right)$ for x_{1}. The above lemma applied to the path $\left(y_{n}, y_{n-1}, \ldots, y_{2}, x_{1}, x_{2}\right)$ implies that y_{n} satisfies Property $\left(^{*}\right)$, and applied to the path $\left(x_{0}, x_{1}, y_{2}, \ldots, y_{n}\right)$ it implies that x_{0} satisfies Property $\left(^{*}\right)$. One concludes that all elements of Σ satisfy Property (*).

Choose an element z of Γ. Let $\left(z, z_{1}, \ldots, z_{k}\right)$ be a shortest path from z to an element z_{k} of Σ ('shortest' over all elements of Σ). There are exactly two apartments of Γ containing a root of Σ and the element z_{k-1}. As it is impossible that both apartments collapse under ϕ (this would imply that Σ collapses as well), let $\Sigma^{\prime \prime}$ be such an apartment which does not collapse. It is easily seen that this apartment will not collapse under $\phi \circ g$ as z_{k} satisfies Property $\left(^{*}\right)$. So by the above corollary all elements of it satisfy property $\left(^{*}\right)$. By repeating this algorithm (substituting the role of Σ by $\Sigma^{\prime \prime}$) a finite number of steps, one sees that z satisfies Property $\left(^{*}\right)$. Hence all elements of Γ satisfy Property (*).

Corollary 5.6 The root elation g descends.
Proof. By combining the above proposition with Proposition 5.2,
The first Main Result now follows easily.
Corollary 5.7 The epimorphic image of a Moufang polygon is again a Moufang polygon.

Proof. For every root α^{\prime} in Γ^{\prime} one can find a root α in Γ mapped to it using Lemma 5.1. Even stronger, one can find for each two apartments Ξ and Ξ^{\prime} containing α two corresponding apartments Σ and Σ^{\prime} in Γ. The unique root elation mapping Σ to Σ^{\prime} descends as it has to satisfy the condition stated in Section 5.1. Hence there is a root elation of α^{\prime} mapping Ξ to Ξ^{\prime}. We conclude that Γ^{\prime} is a Moufang polygon.

6 Epimorphisms and root groups

In this section we study various general properties that the root groups of a generalized Moufang polygon with an epimorphism should have. The main goal is to develop tools to be used in the next section where we invoke the classification of Moufang polygons and separate into cases.

Let Σ be an apartment of a generalized Moufang n-gon Γ which does not collapse under an epimorphism $\phi: \Gamma \rightarrow \Gamma^{\prime}$, and label the elements of it by x_{i}, with $i \in \mathbb{Z}$ such that $x_{i} \mathrm{I} x_{i+1}$ and $x_{i}=x_{i+2 n}$. This apartment will be called the hat-rack. Let U_{i} be the root group of the root $\left(x_{i}, x_{i+1}, \ldots, x_{i+n}\right)$. All of the U_{i} forms the root group data of Γ associated to Σ. We will often use subscripts to indicate to which root group an automorphism belongs. Also if
we identify a root group with, for example, the additive group of a field, then an element of the field with a subscript i denotes the corresponding element in the root group U_{i}.

6.1 Root group labelings of epimorphisms

By Section 5, we have for each root group U_{i} two subgroups $W_{i} \triangleleft V_{i}<U_{i}$ such that V_{i} consists of all root elations of U_{i} who descend, and W_{i} consists of those who descend to the trivial automorphism. This implies that the root groups of the apartment Σ^{ϕ} of Γ^{\prime} are the quotients $U_{i}^{\prime}:=V_{i} / W_{i}$.

Later on, in Section 6.5 we will see that the subgroup information of U_{1} and U_{n} suffices to determine the epimorphism uniquely. We will call this information a root group labeling of the epimorphism. When this information is described using superlevel sets with respect to some norm (see Section 7.3) without assuring that these sets form subgroups we speak about a weak root group labeling of the epimorphism.

For higher rank buildings a similar (weak) root group labeling for epimorphisms can be defined (see Section 2.3.2). The rank 2 residues containing a chosen chamber C form generalized polygons, on which epimorphisms are induced (see Lemma 4.1). The (weak) root group labelings of these epimorphisms are linked together as the rank 1 residues correspond to the U_{1} and U_{n} of the generalized n-gons forming the residues (this n may vary over the possible residues).

In Section 6.5 we will again show that this subgroup information of this set of root groups suffices.

6.2 Opposite root groups

In this section we investigate the behavior of two opposite root groups U_{i} and U_{j} in $\Sigma($ meaning that $j \equiv i+n \bmod 2 n)$. Without loss of generality we can assume that these are the root groups U_{0} and U_{n}, who both fix the element x_{0}. Especially we consider the action of them on the elements incident with x_{0}.

Remark 6.1 This kind of action is also known as a Moufang set, for a detailed discussion see [7].

For an element $g \in U_{n}^{*}$ we define $\kappa_{n}(g)$ to be the unique element of U_{0} which maps x_{-1} to x_{1}^{g}. This defines a bijection from U_{n}^{*} to U_{0}^{*}.

Lemma 6.2 The bijection κ_{n} maps (bijectively)

- W_{n}^{*} to $U_{0} \backslash V_{0}$,
- $V_{n} \backslash W_{n}$ to $V_{0} \backslash W_{0}$,
- $U_{n} \backslash V_{n}$ to W_{0}^{*}.

Proof. First assume that $g \in W_{n}^{*}$, or equivalently that $x_{1}^{g \phi}=x_{1}^{\phi}$. So if $\kappa(g)$ would descend, then it would map x_{1}^{ϕ} to x_{-1}^{ϕ}, which is impossible for an element of the root group U_{0}^{\prime} of Γ^{\prime}. Hence $\kappa_{n}(g) \in U_{0} \backslash V_{0}$.

If one assumed that $g \in V_{n} \backslash W_{n}$, then the unique root elation $\kappa_{n}(g)$ in U_{0} which maps $x_{1}^{g \phi}$ to x_{-1}^{ϕ} will descend by Section 5 (and not to the trivial one, as g descends and cannot map x_{1}^{ϕ} to $\left.x_{-1}^{\phi}\right)$, so $\kappa_{n}(g) \in V_{0} \backslash W_{0}$.

Lastly, assume that $g \in U_{n} \backslash V_{n}$. Because g does not descend, we have by Section 5 that $x_{1}^{g \phi}=x_{-1}^{\phi}$, which implies that $\kappa_{n}(g) \in W_{0}^{*}$.

Each of these maps has to be a bijection because κ_{n} is a bijection from U_{n}^{*} to U_{0}^{*}.

Lemma 6.3 Let v_{n} be an element of $V_{n} \backslash W_{n}$. Then the map $g \in U_{n} \backslash V_{n} \mapsto$ $\kappa_{n}^{-1}\left(\kappa_{n}\left(v_{n}\right) \kappa_{n}(g)\right) v_{n}^{-1}$ is a bijection from $U_{n} \backslash V_{n}$ to W_{n}^{*}.

Proof. The orbit of $x_{1}^{v_{n}}$ under W_{0} or W_{n} is the preimage of $x^{v_{n} \phi}$ under ϕ. In particular these orbits coincide. Also note that the groups W_{0} and W_{1} act regularly on the orbit. So we can conclude that we have bijection which maps a $w_{0} \in W_{0}$ to the unique element $w_{n} \in W_{n}$ such that $x_{1}^{v_{n} w_{0}}=x_{1}^{w_{n} v_{n}}$ (where we made use of the fact that $W_{n} \triangleleft V_{n}$). By the definition of κ_{n} we now have that

$$
\begin{aligned}
x_{1}^{w_{n} v_{n}} & =x_{1}^{v_{n} w_{0}} \\
& =x_{-1}^{\kappa_{n}\left(v_{n}\right) w_{0}} \\
& =x_{1}^{\kappa_{n}^{-1}\left(\kappa_{n}\left(v_{n}\right) w_{0}\right)} .
\end{aligned}
$$

Hence $w_{n}=\kappa_{n}^{-1}\left(\kappa_{n}\left(v_{n}\right) w_{0}\right) v_{n}^{-1}$. The lemma is now proven because κ_{n} is a bijection from $U_{n} \backslash V_{n}$ to W_{0}^{*} by the previous lemma.

6.3 Other pairs of root groups

We now investigate the behavior of non-opposite root groups of the hatrack. In particular we want to study the interacting with the commutation relations between them (see Section 2.3.1).

Remind that $U_{[i, j]}$ is the group generated by $U_{i}, U_{i+1}, \ldots, U_{j}$ if $i \leq j$ and the trivial group otherwise. We use similar notations $V_{[i, j]}$ and $W_{[i, j]}$ to denote the subgroup of generated by the subgroups of the form V_{k} and W_{k} respectively.

Lemma 6.4 If $i \leq j \leq i+n-1$, then the product $u_{i} u_{i+1} \ldots u_{j}$ (where $u_{k} \in U_{k}$) descends if and only if each of the factors descend.

Proof. We prove this by induction. Assume that the product $g:=u_{i} u_{i+1} \ldots u_{j}$ descends. If $i=j$, then it is trivial that the factors descend, so suppose $i<j$. Note that $x_{j-1}^{g}=x_{j-1}^{u_{j}}$, hence $x_{j-1}^{u_{j} \phi}=x_{j-1}^{g \phi} \neq x_{j+1}$ (the inequality holds as g descends and fixes x_{j+1}). The results from Section 5 imply that u_{j} descends. The product $g u_{j}^{-1}=u_{i} \ldots u_{j-1}$ descends as well, so by induction all factors descend. The other direction is trivial.

Corollary 6.5 If $i+1 \leq j \leq i+n-1$, then

$$
\begin{aligned}
{\left[V_{i}, V_{j}\right] } & \leq V_{[i+1, j-1]}, \\
{\left[V_{i}, W_{j}\right] } & \leq W_{[i+1, j-1]}, \\
{\left[W_{i}, V_{j}\right] } & \leq W_{[i+1, j-1]} .
\end{aligned}
$$

Proof. Let $u_{i} \in U_{i}$, and $u_{j} \in U_{j}$. By the first two of the above lemmas, one can write $\left[u_{i}, u_{j}\right]$ in a unique way as a product $u_{i+1} u_{i+2} \ldots u_{j-1}$, with $u_{k} \in U_{k}$. Now suppose that $u_{i} \in V_{i}$ and $u_{j} \in V_{j}$, then the product $u_{i+1} u_{i+2} \ldots u_{j-1}$ descends, so the last lemma implies that $u_{i+1} u_{i+2} \ldots u_{j-1} \in V_{[i+1, j-1]}$. If moreover either $u_{i} \in W_{i}$ or $u_{j} \in W_{j}$, then their commutator descends to the trivial automorphism of Γ^{\prime}. So the product $u_{i+1} \ldots u_{j-1}$ is an element of $W_{[i+1, j-1]}$ by applying Lemma 2.5 to Γ^{\prime}.

6.4 Action of μ-maps

The μ-maps form another type of interaction between the root groups, as the next lemma describes.

Lemma 6.6 ([24], Prop. 6.1-2) Let $\kappa_{i}: U_{i}^{*} \rightarrow U_{i+n}^{*}$ be as in Section 6.2. The automorphism $\mu_{i}\left(u_{i}\right):=\kappa_{i}\left(u_{i}\right) u_{i}\left(\kappa\left(u_{i}^{-1}\right)\right)^{-1}$ (with $\left.u_{i} \in U_{i}^{*}\right)$ fixes x_{i} and x_{i+n}, reflects Σ, and $U_{j}^{\mu_{i}\left(u_{i}\right)}=U_{2 i+n-j}$ for each $j \in \mathbb{Z}$.

Applying Lemma 6.2 this yields the following direct corollary.
Corollary 6.7 Let $v_{i} \in V_{i} \backslash W_{i}$, then

$$
\begin{aligned}
V_{j}^{\mu_{i}\left(v_{i}\right)} & =V_{2 i+n-j}, \\
W_{j}^{\mu_{i}\left(v_{i}\right)} & =W_{2 i+n-j}
\end{aligned}
$$

for each $j \in \mathbb{Z}$.
The action of various μ-maps can be found explicitly in [24, §32], and implicitly using [24, Lem. 6.4].

Lemma 6.8 Choose a $u_{1} \in U_{1}$ and a $u_{n} \in V_{n} \backslash W_{n}$. Let $\left[u_{1}, u_{n}^{-1}\right]=$ $u_{2} \ldots u_{n-1}$ (with $u_{i} \in U_{i}$), then

$$
\begin{gathered}
u_{1} \in V_{1} \Leftrightarrow u_{2} \in V_{2}, \\
u_{1} \in W_{1} \Leftrightarrow u_{2} \in W_{2} .
\end{gathered}
$$

Proof. Corollary 6.5states that the implications from left to right are true. So suppose that $u_{1} \in U_{1} \backslash V_{1}$. By [24, Lem. 6.2, 6.4] one has that $\left[u_{2}, \kappa_{1}\left(u_{1}^{-1}\right)\right]=$ $u_{3} \ldots u_{n-1} u_{n}$. As $U_{1} \backslash V_{1}$ is stabilized under inversion as V_{1} is a subgroup, it follows by Lemma 6.2 that $\kappa_{1}\left(u_{1}^{-1}\right) \in W_{n+1}$. Using Corollary 6.5 and the assumption that $u_{n} \in V_{n} \backslash W_{n}$ yields that $u_{2} \in U_{2} \backslash V_{2}$. This proves $u_{1} \in V_{1} \Leftrightarrow u_{2} \in V_{2}$. The proof of the second part is analogous.

6.5 Rigidity and factorizations

We end this section by stating results on how the epimorphism is determined when certain V_{k} and W_{k} are known, and how different epimorphisms are related.

Lemma 6.9 Let $\omega:=u_{2} \ldots u_{n}$ with $u_{i} \in U_{i}$ for $i \in\{2, \ldots, n\}$. The image of the element x_{1}^{ω} under the epimorphism ϕ is opposite x_{n+1}^{ϕ} if and only if all the root elations u_{i} descend.

Proof. If each of the factors $u_{i} \in U_{i}(i \in\{2, \ldots, n\})$ descend then the product descends as well, so $\left(x_{1}^{\omega}\right)^{\phi}$ will be opposite $\left(x_{n+1}^{\omega}\right)^{\phi}=x_{n+1}^{\phi}$. Now suppose that one of the factors does not descend and let u_{j} be the one with maximal index j, then one has by the results of Section 5 that $\left(x_{j}^{\omega}\right)^{\phi}=\left(x_{j-1}^{u_{j} \ldots u_{n}}\right)^{\phi}=$ $\left(x_{j+1}^{u_{j+1} \ldots u_{j}}\right)^{\phi}=\left(x_{j+1}^{\omega}\right)^{\phi}$, so the path $\left(x_{1}^{\omega}, x_{2}^{\omega}, \ldots, x_{n+1}^{\omega}\right)$ collapses, or equivalently $\left(x_{1}^{\omega}\right)^{\phi}$ is not opposite x_{n+1}^{ϕ}.

Proposition 6.10 Suppose we have two root group labelings (given respectively by subgroups $W_{k} \triangleleft V_{k}<U_{k}$ and $W_{k}^{\prime} \triangleleft V_{k}^{\prime}<U_{k}$, with $k=1$ or n) of epimorphisms $\phi: \Gamma \rightarrow \Gamma_{1}$ and $\phi^{\prime}: \Gamma \rightarrow \Gamma_{2}$ of the generalized n-gon Γ with respect to the same hat-rack. If $V_{k}^{\prime} \leq V_{k}$ and $W_{k} \leq W_{k}^{\prime}$ for $k=1$, n, then there exists an epimorphism $\phi^{\prime \prime}: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\phi^{\prime}=\phi^{\prime \prime} \circ \phi$.

Proof. Note that by Lemma 6.2 and Corollary 6.7 (using elements of $V_{k}^{\prime} \backslash W_{k}^{\prime}$ for an appropriate index k), similar inclusions hold for the other root groups corresponding with the hat-rack.

First we show that for each two elements y and z of Γ one has that $y^{\phi}=z^{\phi}$ implies $y^{\phi^{\prime}}=z^{\phi^{\prime}}$. The hat-rack in Γ contains at least one element x such that $x^{\phi^{\prime}}$ is opposite to $y^{\phi^{\prime}}$. Without loss of generality we may assume that this is the element x_{n+1}. In particular this element x_{n+1} is opposite to y. Let $\omega:=u_{2} \ldots u_{n}$ and $\omega^{\prime}:=u_{2}^{\prime} \ldots u_{n}^{\prime}$ in $U_{[2, n]}$ (written as products of root elations with $u_{i}, u_{i}^{\prime} \in U_{i}$) be the unique elements such that $y=x_{1}^{\omega}$ and $z=x_{1}^{\omega^{\prime}}$. Note that we can do this because of Lemma 2.5 and as the group $U_{[2, n]}$ fixes the elements x_{n} and x_{n+1} of the hat-rack while acting regularly on elements opposite x_{n+1}. By the above lemma we have that $u_{i} \in V_{i}^{\prime}$ as $y^{\phi^{\prime}}$ is opposite to $x_{n+1}^{\phi^{\prime}}$. As $V_{k}^{\prime} \subset V_{k}$, it follows that y^{ϕ} is opposite to x_{n+1}^{ϕ}. Because $y^{\phi}=z^{\phi}$, we obtain that $u_{i} u_{i}^{\prime-1} \in W_{i}$ for $i \in\{2, \ldots, n\}$. Using $W_{i} \leq W_{i}^{\prime}$, we conclude that $y^{\phi^{\prime}}=z^{\phi^{\prime}}$.

This property enables us to construct a surjective map $\phi^{\prime \prime}$ such that $\phi^{\prime}=$ $\phi^{\prime \prime} \circ \phi$. The only thing left to prove is that $\phi^{\prime \prime}$ preserves adjacency. Let a_{1} and b_{1} be two incident elements of Γ_{1}. By Lemma 5.1 there exist incident elements a and b of Γ such that $a_{1}=a^{\phi}$ and $b_{1}=b^{\phi}$. It follows that $a_{1}^{\phi^{\prime \prime}}=a^{\phi}$ and $b_{1}^{\phi^{\prime \prime}}=b^{\phi}$ are incident.

Corollary 6.11 If the subgroups V_{1}, V_{n}, W_{1} and W_{n} are known, then the epimorphism ϕ is unique (up to combining it with isomorphisms).

Proof. The above proposition implies that if there are two epimorphisms $\phi: \Gamma \rightarrow \Gamma_{1}$ and $\phi^{\prime}: \Gamma \rightarrow \Gamma_{2}$ with the same subgroups V_{1}, V_{n}, W_{1} and
W_{n} (with respect to the same hat-rack), that then there exist epimorphisms $\phi^{\prime \prime}: \Gamma_{1} \rightarrow \Gamma_{2}, \phi^{\prime \prime \prime}: \Gamma_{2} \rightarrow \Gamma_{1}$ such that $\phi^{\prime}=\phi^{\prime \prime} \circ \phi$ and $\phi=\phi^{\prime \prime \prime} \circ \phi^{\prime}$. One easily verifies that $\phi^{\prime \prime}$ and $\phi^{\prime \prime \prime}$ are inverses of each other, hence we obtain that the epimorphism is unique up to an isomorphism.

Corollary 6.12 The root group labeling of an epimorphism of a spherical Moufang building defines the epimorphism (up to isomorphisms).

Proof. This follows from the previous corollary and Tits' extension theorem [22, Th. 4.2.1].

7 Proof of the second Main Result and the corollaries

In contrast with the previous section we now invoke the classification of irreducible spherical Moufang buildings of rank at least 2 and study what the properties determined in the previous section imply. This will lead us to a classification of epimorphisms of those buildings defined over fields.

Sketch of proof. - We start with assuming the existence of an epomorphism ϕ. For deriving necessary conditions we look at the epimorphisms induced on the rank 2 residues (see Lemma 4.2). In Sections 7.1 up to 7.2 , we study one pair of opposite root groups and show that the subgroups V_{i} and W_{i} arise from a valuation to an ordered abelian group of the underlying field of definition. We then use this information to study the other root groups (Section 7.3) and determine certain conditions that need to be satisfied (Section 7.4).

The second step is to show that this information suffices to construct an epimorphism, which is done in Section 7.5. Section 7.6 then concludes the proof of the second Main Result and the Main Corollaries.

Remark 7.1 From this point on we only work with the root groups, not with elements of generalized polygons. In particular notations of the form x_{i} will now denote parametrizations of the root groups, not elements of a hat-rack as in the previous section. These parametrizations are of the form $x_{i}: M \rightarrow U_{i}$, where M is some additive algebraic structure.

7.1 Projective lines

In this section we assume that U_{0} and U_{n} are isomorphic to the additive group of an alternative division ring K (later on we will restrict to fields), by maps $x_{i}: K \rightarrow U_{i}(i \in\{1, n\})$, and that the map κ_{0} is given by $x_{0}(a) \mapsto x_{n}\left(a^{-1}\right)$.

Applying Lemma 6.3 we obtain that the map $\phi_{a}: x_{0}(b) \mapsto x_{0}\left(\left(a^{-1}+\right.\right.$ $\left.\left.b^{-1}\right)^{-1}-a\right)$ is an bijection from $U_{0} \backslash V_{0}$ to W_{0}^{*} for every $x_{0}(a) \in V_{0} \backslash W_{0}$. The expression $\left(x_{0}(b-a)^{\phi_{a}}\right)^{-1}$ simplifies to $x_{0}\left(a b^{-1} a\right)$, which is also an involutory bijection from $U_{0} \backslash V_{0}$ to W_{0}^{*}, as V_{0} and W_{0} are subgroups of U_{0}.

Choose an element $t \in K$ such that $x_{0}(t) \in V_{0} \backslash W_{0}$. Define the following subsets of K :

$$
\begin{aligned}
& A:=\left\{y t^{-1} \in K \mid x_{0}(y) \in U_{0} \backslash V_{0}\right\}, \\
& B:=\left\{y t^{-1} \in K \mid x_{0}(y) \in V_{0} \backslash W_{0}\right\}, \\
& C:=\left\{y t^{-1} \in K \mid x_{0}(y) \in W_{0}^{*}\right\} .
\end{aligned}
$$

Lemma 7.2 The subset $R:=B \cup C \cup\{0\}$ forms a subring of K containing the identity element.

Proof. Observe that $y \mapsto b y^{-1} b$ interchanges A and C bijectively for every $b \in B$. This implies that this map stabilizes B. As the identity lies in B, one also has that the inverse is a map of this form and that squaring stabilizes B. Lastly remark that $y \mapsto b y b$ stabilizes all three subsets A, B and C for every $b \in B$ (by combining the maps $y \mapsto b y^{-1} b$ and $y \mapsto y^{-1}$).

The subset R is an additive subgroup of K as V_{0} is a subgroup of U_{0}. So in order to show that R forms a subring, we only need to show that it is closed under multiplication. First suppose that b and c both lie in B. The maps $y \mapsto b^{-1} y b^{-1}$ and $y \mapsto c^{-1} y c^{-1}$ stabilize the sets A, B and C. The combination of both maps $b c$ to $(c b)^{-1}$. If b and c commute this implies that $b c \in B$ (as taking the inverse interchanges A and C). If b and c do not commute and $b c \notin B$ then the sum $b c+c b$ lies in A (as $b c$ and $c b$ cannot both lie in A or C at the same time). If $b+c \in B$, then we know that the square $(b+c)^{2}=b^{2}+c^{2}+b c+c b$ also lies in B, but this is a contradiction as b^{2} and c^{2} are elements of B while $b c+c b \in A$. If $b+c \in C$, then one can obtain a contradiction in a similar way considering $(1+b+c)^{2}$. We conclude that $b c \in B$.

Now suppose that $b \in B$ and $c \in C$. So $1+c \in B$, hence by the previous paragraph we have that $b(1+c)=b+b c \in B \subset R$. As R is closed additively, we have that $b c \in R$.

The last case is handled analogously. Suppose that $b, c \in C$, then $1+c \in$ B, so $b(1+c)=b+b c \in R$, hence again $b c \in R$.

Lemma 7.3 The set of units of R is B, and $K=R \cup\left(R^{*}\right)^{-1}$.
Proof. In order to prove this notice that taking the inverse stabilizes B, and interchanges A and C.

Remark 7.4 A ring with these properties is also known as a total subring.
Corollary 7.5 If k is a field, then there exists a valuation ν of K to an ordered abelian group Λ and the symbol ∞ such that

$$
\begin{aligned}
& A=\{y \in K \mid \nu(y)<0\}, \\
& B=\{y \in K \mid \nu(y)=0\}, \\
& C=\{y \in K \mid \nu(y)>0\} .
\end{aligned}
$$

Proof. The previous lemma implies that R is a valuation ring, and hence defines a valuation with the desired properties (see [15]).

Returning to the root group U_{0}, we now have in the case that K is a field that

$$
\begin{aligned}
V_{0} & =\left\{x_{0}(a) \in U_{0} \mid \nu(a) \geq l\right\}, \\
W_{0} & =\left\{x_{0}(a) \in U_{0} \mid \nu(a)>l\right\},
\end{aligned}
$$

where $l=\nu(t)$. Using Lemma 6.2 one can also describe the subgroups in U_{n}.

$$
\begin{aligned}
V_{n} & =\left\{x_{n}(a) \in U_{n} \mid \nu(a) \geq-l\right\}, \\
W_{n} & =\left\{x_{n}(a) \in U_{n} \mid \nu(a)>-l\right\} .
\end{aligned}
$$

Remark 7.6 Corollary 7.5 is not true for skew fields or octonion algebras, as a total subring is not necessarily stabilized by inner automorphisms, which is necessary for obtaining a valuation.

7.2 Orthogonal Moufang sets

The only case where there are no opposite root groups of the form discussed in the previous sections are the Moufang quadrangles of exceptional type and those of indifferent type (so $n=4$). The method here is to consider a full subquadrangle of quadratic form type (full means that we do not have to restrict the root groups of even index). The epimorphism of the entire quadrangle implies one of the subquadrangle, but not necessarily to a thick generalized quadrangle. The 'full' property assures us at least some thickness, and due to the fact that the epimorphism arises by restricting root groups, one still can consider subgroups V_{k} and W_{k} and apply the results from Section 6 .

Let us describe this subquadrangle. Let K be a field, L_{0} a vector space over K equipped with an anisotropic quadratic form $q: L_{0} \rightarrow K$. Let f be the bilinear form associated to q. Let the root groups U_{0}, U_{2} and U_{4} be parametrized by the additive group of L_{0} via isomorphims x_{0}, x_{2} and x_{4}. The root groups U_{1}, U_{3} and U_{5} are parametrized by the additive group of the field K via isomorphisms x_{1}, x_{3} and x_{5}. The map $\kappa_{0}: U_{0} \rightarrow U_{4}$ is given by $x_{0}(u) \mapsto x_{4}(u / q(u))$. Because the subquadrangle is full, we have that $V_{k} \neq W_{k}$ for k even. This is however not guaranteed for those of odd index (and hence we cannot apply the results from Section 7.1 directly). We also list the non-trivial commutation relations between the root groups U_{1}, U_{2}, U_{3} and U_{4} (see [24, 16.3]):

$$
\begin{aligned}
& {\left[x_{2}(a), x_{4}(b)^{-1}\right]=x_{3}(f(a, b))} \\
& {\left[x_{1}(t), x_{4}(a)^{-1}\right]=x_{2}(t a) x_{3}(t q(a))}
\end{aligned}
$$

The existence of such a subquadrangle (and with similar notations) of the Moufang quadrangles of exceptional type $\mathrm{E}_{i}(i=6,7,8)$ follows from the description [24, 16.6-7], for those of indifferent type the notations from [24, 16.4] and our notations are related by the following table.

Our notations	$[24,16.4]$
K	K^{2}
L_{0}	L_{0}
q	$x \mapsto x^{2}$

Let $x_{4}(a)$ be an element of $V_{4} \backslash W_{4}$, and b an element of L_{0}, linear independent of a. Denote by \widehat{L}_{0} the two-dimensional subspace of L_{0} spanned by
both a and b. We parametrize this two-dimensional subspace by a quadratic extension F of K, using a map $\theta: F \rightarrow \widehat{L}_{0}$, such that the norm function $N: F \rightarrow K$ of this field extension agrees with q and that $\theta^{-1}(a)$ is an element of K (see for example [6, §2.6]). For $i=0,2$ and 4 this subspace implies a subgroup \widehat{U}_{i} of U_{i}, parametrized by the map $x_{i} \circ \theta: F \rightarrow \widehat{U}_{i}$.

If the field extension F / K is separable, then we denote by σ the Galois involution of the extension. If it is inseparable, then σ will be the identity.

Invoking Section 7.1 on \widehat{U}_{0} and \widehat{U}_{4}, we obtain a valuation ω of F such that (with $l:=\omega\left(\theta^{-1}(a)\right)$:

$$
\begin{aligned}
V_{4} \cap \widehat{U}_{4} & =\left\{x_{4}(\theta(y)) \in \widehat{U}_{4} \mid \omega(y) \geq l\right\}, \\
W_{4} \cap \widehat{U}_{4} & =\left\{x_{4}(\theta(y)) \in \widehat{U}_{4} \mid \omega(y)>l\right\} .
\end{aligned}
$$

Note that the restriction of ω to K does not depend of the choice of b. Also observe that each one-dimensional subspace of \widehat{L}_{0} contains elements which are mapped to elements of V_{4} by $x_{4} \circ \theta$ (and analogously for V_{0} and V_{2}).

We now claim that the automorphism σ arising from the field extension leaves the valuation ω invariant. Suppose that this is not the case, so there exists a $w \in F$ such that $\omega(w)<\omega\left(w^{\sigma}\right)$. Note that the field extension F / K must be separable and accordingly that the bilinear form f restricted to \widehat{L}_{0} is non-trivial. Combined with the observation on one-dimensional subspaces of \widehat{L}_{0}, Corollary 6.5 and the commutation relation between U_{2} and U_{4} this yields that the subgroup $V_{3}<U_{3}$ contains not only of the identity. Corollary 6.7 then implies that the subgroup $V_{1}<U_{1}$ is non-trivial.

By the commutation relations and Lemma 6.8 we have that whenever $x_{1}(t) \in V_{1}$, then $\left\{x_{2}(\theta(y)) \in \widehat{U}_{2} \mid \omega(y) \geq l+\omega(t)\right\} \subset V_{2} \cap \widehat{U}_{2}$. A consequence of this is t cannot have arbitrary small valuations unless ω is the trivial valuation, as this would imply that $\widehat{U}_{2} \subset V_{2}$ for every choice of b (and hence $U_{2}=V_{2}$). A similar thing is true for choices of $x_{3}(t) \in V_{3}$ by Corollary 6.7.

Let $d:=w^{-1+\sigma}$, so $d^{\sigma}=d^{-1}$ and $\omega(d)>0$. Hence $x_{4}\left(\theta\left(d^{m}\right)\right)$ will be an element of V_{4} for high enough values of m. The following element is contained
in V_{3} by Corollary 6.5:

$$
\begin{aligned}
{\left[x_{2}(\theta(c)), x_{4}\left(\theta\left(d^{m}\right)\right)^{-1}\right] } & =x_{3}\left(f\left(\theta(c), \theta\left(d^{m}\right)\right)\right) \\
& =x_{3}\left(q\left(\theta(c)+\theta\left(d^{m}\right)\right)-q(\theta(c))-q\left(\theta\left(d^{m}\right)\right)\right) \\
& =x_{3}\left(N\left(c+d^{m}\right)-N(c)-N\left(d^{m}\right)\right) \\
& =x_{3}\left(c^{\sigma}\left(d^{m}\right)+c\left(d^{m}\right)^{\sigma}\right) \\
& =x_{3}\left(c d^{m}+c d^{-m}\right) \\
& =x_{3}\left(c\left(d^{m}+d^{-m}\right)\right) .
\end{aligned}
$$

The last factor has an arbitrary low valuation using arbitrary large m. This contradicts the earlier remark that one cannot choose a $x_{3}(t) \in V_{3}$ with $t \in K$ having arbitrary small valuations.

We conclude that σ leaves ω invariant, so for an element $x_{4}(\theta(f)) \in \widehat{U}_{4}$ we have that $\omega(q(\theta(f)))=\omega(N(f))=2 \omega(f)$. As the valuation ω restricted to K is independent of the choice of b, we finally obtain:

$$
\begin{aligned}
V_{4} & =\left\{x_{4}(v) \in U_{4} \mid \omega(q(v)) \geq 2 l\right\}, \\
W_{4} & =\left\{x_{4}(v) \in U_{4} \mid \omega(q(v))>2 l\right\} .
\end{aligned}
$$

7.3 Implications on the root group sequence

Assume we have an epimorphism $\phi: \Gamma \rightarrow \Gamma^{\prime}$ between Moufang polygons. We use the description of the root group sequence as found in [24, $\S 16$ and $\S 32]$ (parametrizing the root group U_{r} by a map x_{r}, with $r \in\{1, \ldots, n\}$). One can define a 'norm' function on the algebraic structure defining the other root groups into the underlying field. We list the functions in question in the following table:

$$
\begin{array}{rccc}
& & \underline{i \text { odd }} & \underline{i \text { even }} \\
\underline{n=3} & \mathcal{T}: & \text { id } & \text { id } \\
\underline{n=4} \mathcal{Q}_{\mathcal{Q}}: & \text { id } & q \\
& \mathcal{Q}_{\mathcal{D}}: & a \mapsto a & a \mapsto a^{2} \\
\mathcal{Q}_{\mathcal{P}}: & (a, t) \mapsto t & \text { id } \\
\mathcal{Q}_{\mathcal{E}}: & (a, t) \mapsto q(\pi(a)+t) & q \\
\mathcal{Q}_{\mathcal{F}}: & \hat{q} & q \\
\underline{n=6} & \mathcal{H}: & N & \text { id } \\
\underline{n=8} & \mathcal{O}: & \text { id } & (u, v) \mapsto R(u, v):=v^{\sigma+2}+u v+u^{\sigma}
\end{array}
$$

We will denote the 'norm' function on U_{j} by a generic η_{j} regardless of type. The involutory quadrangles $\mathcal{Q}_{\mathcal{I}}$ are not listed as we will treat them as a subcase of the pseudo-quadratic quadrangles $\mathcal{Q}_{\mathcal{P}}$. Fix i to be n if Γ is a quadrangle of quadratic form type or an octagon and 1 otherwise, this for the rest of this section. Also set j to be 2 when $i=n$, and $n-2$ when $i=1$. The importance of the norm functions is illustrated by the following lemma.

Lemma 7.7 Let $u_{1} \in U_{1}$ and $u_{n} \in U_{n}$ be two root elations. If one writes $\left[u_{1}, u_{n}^{-1}\right]$ as a product $u_{2} \ldots u_{n-1}\left(u_{r} \in U_{r}\right)$, then $\eta_{j}\left(u_{j}\right)= \pm \eta_{1}\left(u_{1}\right) \eta_{n}\left(u_{n}\right)$.

Proof. By straightforward calculations using the commutations relations found in [24, §16].

By applying the case studies made in Sections 7.1 and 7.2 to the explicit descriptions in [24, $\S 16$ and $\S 32]$ one observes that if the generalized polygon is not defined over a (proper) skew field or alternative division algebra, that then there exists a valuation $\nu: K \rightarrow \Lambda \cup\{\infty\}$ and $l \in \Lambda$ such that

$$
\begin{aligned}
V_{i} & =\left\{x_{i}(a) \in U_{i} \mid \nu\left(\eta_{i}(a)\right) \geq l\right\} \\
W_{i} & =\left\{x_{i}(a) \in U_{i} \mid \nu\left(\eta_{i}(a)\right)>l\right\} .
\end{aligned}
$$

Choose a $v_{n+1-i} \in V_{n+1-i} \backslash W_{n+1-i}$, and let $k:=\nu\left(\eta_{n+1-i}\left(x_{n+1-i}^{-1}\left(v_{n+1-i}\right)\right)\right)$. One is now able to describe the groups V_{j} and W_{j}, and subsequently V_{n+1-i} and W_{n+1-i}.

Lemma 7.8

$$
\begin{aligned}
V_{j} & =\left\{x_{j}(a) \in U_{j} \mid \nu\left(\eta_{j}(a)\right) \geq k+l\right\} \\
W_{j} & =\left\{x_{j}(a) \in U_{j} \mid \nu\left(\eta_{j}(a)\right)>k+l\right\} .
\end{aligned}
$$

Proof. We will prove this under the assumption that $i=n$ (so $j=2$), the other case is symmetric. Let $u_{2} \in V_{2}$, and $u_{n}:=u_{2}^{\left(\mu_{1}\left(v_{1}\right)^{-1}\right)}$. Using [24, Lem. 6.4] this implies that $\left[v_{1}, u_{n}^{-1}\right]=u_{2} u_{3} \ldots u_{n-1}$ with $u_{r} \in U_{r}$ for $r \in\{3, \ldots, n-1\}$. The previous lemma yields that $\nu\left(\eta_{2}\left(x_{2}^{-1}\left(u_{2}\right)\right)\right)=$ $\nu\left(\eta_{1}\left(x_{1}^{-1}\left(u_{1}\right)\right)\right)+\nu\left(\eta_{n}\left(x_{n}^{-1}\left(u_{n}\right)\right)\right)=k+\nu\left(\eta_{n}\left(x_{n}^{-1}\left(u_{n}\right)\right)\right)$. The statement now follows from Corollary 6.7.

Corollary 7.9

$$
\begin{aligned}
V_{n+1-i} & =\left\{x_{n+1-i}(a) \in U_{n+1-i} \mid \nu\left(\eta_{n+1-i}(a)\right) \geq k\right\}, \\
W_{n+1-i} & =\left\{x_{n+1-i}(a) \in U_{n+1-i} \mid \nu\left(\eta_{n+1-i}(a)\right)>k\right\} .
\end{aligned}
$$

Proof. From the above lemma and Lemmas 6.8 and 7.7 .
We now have a description of V_{1}, V_{n}, W_{1} and W_{n}, which suffices to describe the epimorphism by Corollary 6.11.

The next goal is now to derive compatibility conditions. We start by describing the other subgroups of interest of U_{r} with $r \in\{2, \ldots, n-1\}$, using Corollary 6.7 (and the relations given in [24, §16 and §32]) a finite number of times. We display this information schematically as a vector where the n coordinates correspond to respectively U_{1}, \ldots, U_{n}, and the value at a coordinate r is the element of Λ which defines the subgroups V_{r} and W_{r} as a hyperlevel set and strict hyperlevel set respectively with respect to $\nu \circ \eta_{r} \circ x_{r}^{-1}$.

$$
\begin{array}{lcc}
\underline{n=3} & \mathcal{T}: & (l, l+k, k) \\
\underline{n=4} & \mathcal{Q}_{\mathcal{P}}: & \left(k, l+k, l+l^{\prime}+k, l\right) \\
& \mathcal{Q}_{\mathcal{Q}}: & (l, 2 l+k, l+k, k) \\
& \mathcal{Q}_{\mathcal{D}}, \mathcal{Q}_{\mathcal{E}}, \mathcal{Q}_{\mathcal{F}}: & (k, l+k, 2 l+k, l) \\
\underline{n=6} & \mathcal{H}: & (k, l+k, 3 l+2 k, 2 l+k, 3 l+k, l) \\
\underline{n=8} & \mathcal{O}: & \left(l, 2 l+l^{\prime}+k, l+l^{\prime}+k, 2 l+2 l^{\prime}+k+k^{\prime},\right. \\
& & \left.l+l^{\prime}+2 k-k^{\prime}, 2 l+l^{\prime}+k+k^{\prime}, l+k, k\right)
\end{array}
$$

The l^{\prime} for the quadrangle of pseudo-quadratic form type $\mathcal{Q}_{\mathcal{P}}$ and the octagon case \mathcal{O} is defined as follows. Let $x \in K$ such that $\nu(x)=l$, then we set $l^{\prime}:=\nu\left(x^{\sigma}\right)$. Note that l^{\prime} has to be independent of the choice of x. The element k^{\prime} is defined in a similar way.

7.4 Compatibility conditions

In this section we describe the extra conditions who arise from induced epimorphisms on the rank 2 residues. These conditions, which we call the compatibility conditions, involve the valuation ν and the underlying algebraic structures.

Remark 7.10 We will not always derive the strongest conditions possible. This will not be a problem (and is even slightly beneficial) as we will see in Sections 7.5.1 and 7.5.2.

7.4.1 Digons, Triangles, Quadrangles of indifferent type

We impose no conditions here.

7.4.2 Quadrangles $\mathcal{Q}_{\mathcal{P}}\left(K, K_{0}, \sigma, L_{0}, q\right)$ of pseudo-quadratic form type

The first compatibility condition involves the involution σ. From the appearance of the l^{\prime} in the last list, one has that if $x, y \in K$ and $\nu(x)=\nu(y)=l$, then $l^{\prime}=\nu\left(x^{\sigma}\right)=\nu\left(y^{\sigma}\right)$. Note that there exists an $x \in K$ such that $\nu(x)=l$. Now suppose that y, z are elements of K such that $\nu(y)=\nu(z)$, then $\nu\left(x y z^{-1}\right)=l$. So $\nu\left(\left(x y z^{-1}\right)^{\sigma}\right)=\nu\left(x^{\sigma}\right)$, which implies that $\nu\left(y^{\sigma}\right)=\nu\left(z^{\sigma}\right)$. Suppose that there is an $y \in K$ such that $\nu(y)<\nu\left(y^{\sigma}\right)$, then $\nu\left(1+y^{-1+\sigma}\right)=\nu(1)=0$. Applying σ yields

$$
\begin{aligned}
0=\nu\left(1^{\sigma}\right) & =\nu\left(\left(1+y^{-1+\sigma}\right)^{\sigma}\right) \\
& =\nu\left(1+y^{1-\sigma}\right) \\
& =\nu\left(y^{1-\sigma}\right)<0
\end{aligned}
$$

which is a contradition. We conclude as first compatibility condition that

$$
\forall t \in K: \nu(t)=\nu\left(t^{\sigma}\right)
$$

Note that this implies that $l^{\prime}=l$.
A second compatibility condition involves the skew-hermitian form f. By the commutation relations between U_{1} and U_{3} (and Corollary 6.5), we have that if $(u, t),(v, s) \in T$ with $\nu(t) \geq k, \nu(s) \geq 2 l+k$, then $\nu(f(u, v)) \geq l+k$. One can simplify this by using substitutions with suitable scalar products to

$$
\forall(u, t),(v, s) \in T: \nu(t), \nu(s) \geq k \Rightarrow \nu(f(u, v)) \geq k
$$

7.4.3 Quadrangles $\mathcal{Q}_{\mathcal{Q}}\left(K, L_{0}, q\right)$ of quadratic form type

In a similar way as for the second compatibility condition for pseudo-quadratic forms one obtains (using the commutation relations between U_{2} and U_{4}) that

$$
\forall u, v \in L_{0}: \nu(q(u)), \nu(q(v)) \geq k \Rightarrow \nu(f(u, v)) \geq k
$$

Remark 7.11 Let us consider the special case that the quadrangle is also of quadratic or honorary involutory type. So L_{0} is a composition algebra equipped over K equipped with norm q. The map $\nu^{\prime}:=\nu \circ q$ on this composition division algebra satisfies $\nu^{\prime}(u . v)=\nu^{\prime}(u)+\nu^{\prime}(v)$. Observe that the compatibility condition, using scalar multiples in the composition algebra with an element w with $\nu^{\prime}(w)=k$, together with ν being a valuation and $f(u, v)=q(u+v)-q(u)-q(v)$ implies that the subset $\left\{u \in L_{0} \mid \nu(u)\right\}$ is a total subring. This total subring is closed under inner automorphisms and hence gives rise to a valuation on L_{0}.

7.4.4 Quadrangles $\mathcal{Q}_{\mathcal{E}}\left(K, L_{0}, q\right), \mathcal{Q}_{\mathcal{F}}\left(K, L_{0}, q\right)$ of types $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8}

A list of the compatibility conditions (ten in total) one needs for these cases is listed in Equation 3 in Section 7.5.3, where ϕ_{r} is the function $\nu \circ \eta_{r}$ and η_{r} as defined in Section 7.3.

The number of equations is much larger than in the other cases because the residues of the afffine buildings associated to the generalized Moufang quadrangles of these types are not fully described yet. When such a description becomes available (as announced in [26, Rem. 21.43 and p. 228]), one can expect to reduce the number of equations needed substantially.

7.4.5 Hexagons $\mathcal{H}(J, F, \#)$

Applying the same argument as for the second compatibility condition for pseudo-quadratic forms to the root groups U_{1} and U_{3} gives

$$
\forall u, v \in J: \nu(N(u)) \geq k, \nu(N(v)) \geq-k \Rightarrow \nu(T(u, v)) \geq 0
$$

7.4.6 Octagons $\mathcal{O}(K, \sigma)$

The sole compatibility condition for octogonal systems involves the Titsendomorphism σ. Analogously to the first compatibility condition for the pseudo-quadratic case one shows that if one has two elements x, y of K such that $\nu(x)=\nu(y)$, that then $\nu\left(x^{\sigma}\right)=\nu\left(y^{\sigma}\right)$. An equivalent way to state the condition is $\forall x \in K: \nu(x)=0 \Rightarrow \nu\left(x^{\sigma}\right)=0$ (to see this consider $\nu\left(x y^{-1}\right)$ and $\nu\left(x^{\sigma} y^{-\sigma}\right)$).

7.4.7 The higher rank case

As described with the cases listed in Section 2.3.2, there is at most one rank two residue containing a given chamber which gives rise to compatibility conditions. The other residues, different from digons, are triangles either over the field of definition, or over a composition algebra over this field. While this algebra is not necessary a field, a valuation on it is given by Remark 7.11, so we can still apply Section 7.3.

7.5 Constructing the epimorphism

In this section we assume that one is given a spherical building Δ defined over a field K, a valuation ν of the underlying field, a weak root group labelling, and that the compatibility conditions of the last section are satisfied for residues which are not generalized digons or triangles.

We will construct the epimorphism in multiple steps, generalizing the possible rank of the valuation at each step. The first two steps for generalized quadrangles of exceptional type will be handled seperately.

7.5.1 Valuations of rank one

A rank one valuation is a valuation to the real numbers. Because of this the compatibility conditions will imply stronger restrictions. For octogonal systems the compatibility condition is equivalent to $\nu\left(x^{\sigma}\right)=\sqrt{2} \nu(x)$ (see for instance [13, p. 1114]). We show what happens to the compatibility conditions consisting of inequalities using quadratic forms as example. The inequality there implies the following inequality (which can be shown by using appropriate scalar products):

$$
\forall u, v \in L_{0}^{*}: \nu(f(u, v))+C \geq(\nu(q(u))+\nu(q(v))) / 2
$$

where C is a constant. By [26, 19.4] this inequality with $C=0$ is equivalent to a condition for the completion of the quadratic form with respect to ν. However upon taking a closer look at the proof of this proposition it turns out that you can still show the condition for the completion using the weaker inequality above. Hence the above inequality is equivalent to

$$
\forall u, v \in L_{0}^{*}: \nu(f(u, v)) \geq(\nu(q(u))+\nu(q(v))) / 2
$$

A similar reasoning for the other inequalities occuring in Moufang polygons, which are not quadrangles of exceptional type, is possible using [26, Prop 24.9, 25.5 and 21.36].

With the extra conditions we derived here one satisfies exactly the conditions (which can be found in [13] and [26]) for the existence of an \mathbb{R}-building with the given spherical building at infinity, corresponding to the valuation ν. Using the theory of \mathbb{R}-buildings one can obtain a canonical epimorphism of the spherical building at infinity (being Δ) to a residue such that its weak root group labelling is exactly the one we started with.

The fact that our compatibility conditions only concern the rank 2 residues is reflected in the result [26, Th. 16.14] on the existence of \mathbb{R}-buildings.

Remark 7.12 The inequalities we derived in this section are not generally true if one leaves the rank one case. A consequence is that one cannot use the theory of Λ-buildings, which is the natural generalization of affne buildings for arbitrary valuations, to the construct the epimorphism in one step. More information on Λ-buildings can be found in [4] and [12].

7.5.2 Valuations of finite rank

An abelian ordered group Λ of rank t can be embedded as a subgroup in the lexicographically ordered group $\oplus_{j=1}^{t} \mathbb{R}$ by Hahn's embedding theorem (see [11]). Using this presentation one can define an epimorphism $e: \Lambda \rightarrow$ $\mathbb{R}:\left(a_{1}, \ldots, a_{t}\right) \mapsto a_{1}$ of ordered abelian groups. Denote the kernel of this epimorphism by Λ_{0}. The function $\nu^{\prime}:=e \circ \nu$ is then a valuation of K of rank one.

The claim is now that the compatibility conditions are satisfied for the valuation ν^{\prime} as well. We again illustrate this with the octogonal sets and quadratic forms as examples.

For octogonal sets we have to prove that for $x \in K$ one has that $\nu(x) \in$ $\Lambda_{0} \Rightarrow \nu\left(x^{\sigma}\right) \in \Lambda_{0}$ given $\nu(x)=0 \Rightarrow \nu\left(x^{\sigma}\right)=0$. Suppose that this is not the case. Without loss of generality one may additionally assume that $\nu(x)<\nu\left(x^{\sigma}\right)$ (otherwise one can consider $\left.x^{-1}\right)$. Note that $\nu\left(1+x^{\sigma} x^{-1}\right)=0$, so $\nu\left(\left(1+x^{\sigma} x^{-1}\right)^{\sigma}\right)=\nu\left(1+x^{2} x^{-\sigma}\right)=0$. But $\nu\left(x^{2} x^{-\sigma}\right)<0$ (note that this is true because $\left.\nu(x) \in \Lambda_{0}, \nu\left(x^{\sigma}\right) \notin \Lambda_{0}\right)$, hence $\nu\left(1+x^{2} x^{-\sigma}\right)<0$, which is a contradiction. We conclude that $\nu(x) \in \Lambda_{0} \Rightarrow \nu\left(x^{\sigma}\right) \in \Lambda_{0}$.

For quadratic forms, note that the inequality

$$
\forall u, v \in L_{0}: \nu^{\prime}(q(u)), \nu^{\prime}(q(v)) \geq e(k) \Rightarrow \nu^{\prime}(f(u, v)) \geq e(k)
$$

implies, by using scalar products with elements of the field with valuation in $\operatorname{ker}(e)$, that

$$
\forall u, v \in L_{0}: \nu(q(u)), \nu(q(v)) \geq k \Rightarrow \nu(f(u, v)) \geq k
$$

We can now apply the results of the previous section to the rank one valuation ν^{\prime}, and obtain an epimorphism of the spherical building to some other spherical building which is defined over the residue field of $K_{\nu^{\prime}}$. The valuation ν of K allows us to define a rank $t-1$ valuation $\bar{\nu}$ of $K_{\nu^{\prime}}$. On this new spherical building we can repeat the procedure until we have constructed the desired epimorphism, provided we can show the compatibility conditions
for this new situation. We will be able to do this except for the Moufang quadrangles of exceptional type, for which there is no description (yet) of the possible residues. This is why we postpone this case to the next section.

For compatibility conditions involving an involution or Tits-endomorphism σ it is clear that the conditions stay true for a residue field. We will describe the behavior of conditions involving inequalities with the example of quadratic forms. Note that the previous section applied to ν^{\prime} implies the stronger inequality

$$
\forall u, v \in L_{0}^{*}: \nu^{\prime}(f(u, v)) \geq\left(\nu^{\prime}(q(u))+\nu^{\prime}(q(v))\right) / 2 .
$$

The residue will be again a quadrangle of quadratic form type, where the quadratic space \bar{L} is the quotient $\left\{v \in L_{0} \mid \nu(q(v)) \geq e(k)\right\} /\left\{v \in L_{0} \mid \nu(q(v))>\right.$ $e(k)\}$ on which the residue field $K_{\nu^{\prime}}$ acts naturally and for which the function $\bar{q}: \bar{L} \rightarrow K_{\nu^{\prime}}: \bar{v} \mapsto \overline{q(v) / t}$ (where - indicated the natural map into \bar{L} or $K_{\nu^{\prime}}$, and $t \in K$ is such that $\left.\nu^{\prime}(t)=e(k)\right)$ is an anisotropic quadratic function. See [26, Def. 19.33] for more details to this construction. The original compatibility condition applied to \bar{L} yields (keeping in mind the previous inequality to show independence of choice of representants)

$$
\forall u, v \in \bar{L}: \bar{\nu}(\bar{q}(\bar{u})), \nu(\bar{q}(\bar{v}))>k-\nu(t) \Rightarrow \nu(\bar{f}(\bar{u}, \bar{v})) \geq k-\nu(t),
$$

where \bar{f} is the bilinear form associated to \bar{q}. Hence we obtained a compatibility condition for the residue and we can continue with the construction of the epimorphism. For other types an analogous treatment is possible (see [26, Def. 24.50 and 25.28] for detailed descriptions of the residues).

7.5.3 Valuations of finite rank and quadrangles of exceptional type

In this section we handle Moufang quadrangles of exceptional type F_{4} or E_{i} ($i=6,7,8$). Combining the valuation ν of finite rank on the underlying field to the ordered abelian group Λ with the norm functions η_{r} listed in 7.3, we obtain maps $\phi_{r}: U_{r} \rightarrow \Lambda(r \in\{1,2,3,4\})$. We are now interested in the interaction between these functions and the action of the μ-maps of elements of U_{1} and U_{4}. One observes using the relations in [24, 32.10-11] and [26,

Prop. 21.10 and 22.4] that (with $u_{r} \in U_{r}$)

$$
\begin{align*}
& \phi_{4}\left(u_{2}^{\mu_{1}\left(u_{1}\right)}\right)=\phi_{2}\left(u_{2}\right)-\phi_{1}\left(u_{1}\right), \\
& \phi_{2}\left(u_{4}^{\mu_{1}\left(u_{1}\right)}\right)=\phi_{4}\left(u_{4}\right)+\phi_{1}\left(u_{1}\right), \tag{1}\\
& \phi_{3}\left(u_{1}^{\mu_{4}\left(u_{4}\right)}\right)=\phi_{1}\left(u_{1}\right)+2 \phi_{4}\left(u_{4}\right), \\
& \phi_{1}\left(u_{3}^{\mu_{4}\left(u_{4}\right)}\right)=\phi_{3}\left(u_{3}\right)-2 \phi_{4}\left(u_{4}\right) .
\end{align*}
$$

Other identities are not straightforward to obtain, One can also derive that if $\left[u_{1}, u_{4}\right]=u_{2} u_{3}$, that

$$
\begin{aligned}
& \phi_{2}\left(u_{2}\right)=\phi_{1}\left(u_{1}\right)+\phi_{4}\left(u_{4}\right), \\
& \phi_{3}\left(u_{3}\right)=\phi_{1}\left(u_{1}\right)+2 \phi_{4}\left(u_{4}\right) .
\end{aligned}
$$

One can use this in a reasoning similar to [26, Prop 15.25] (which makes use of the fact that double μ-actions maps the root groups to themselves) obtaining (where $u_{r}, v_{r}, w_{r} \in U_{r}$)

$$
\begin{align*}
\phi_{1}\left(u_{1}^{\mu_{1}\left(v_{1}\right) \mu_{1}\left(w_{1}\right)}\right) & =\phi_{1}\left(u_{1}\right)-2 \phi_{1}\left(v_{1}\right)+2 \phi_{1}\left(w_{1}\right), \\
\phi_{4}\left(u_{4}^{\mu_{4}\left(v_{4}\right) \mu_{4}\left(w_{4}\right)}\right) & =\phi_{4}\left(u_{4}\right)-2 \phi_{4}\left(v_{4}\right)+2 \phi_{4}\left(w_{4}\right), \tag{2}\\
\phi_{3}\left(u_{3}^{\mu_{1}\left(v_{1}\right)}\right) & =\phi_{3}\left(u_{3}\right), \\
\phi_{2}\left(u_{2}^{\mu_{4}\left(v_{4}\right)}\right) & =\phi_{2}\left(u_{2}\right) .
\end{align*}
$$

The compatibility conditions are now be written as

$$
\begin{align*}
&\left\{u_{1} \in U_{1} \mid \phi\left(u_{1}\right) \geq k\right\} \text { is a subgroup, } \\
&\left\{u_{1} \in U_{1} \mid \phi\left(u_{1}\right)>k\right\} \text { is a subgroup, } \\
&\left\{u_{4} \in U_{4} \mid \phi\left(u_{4}\right) \geq l\right\} \text { is a subgroup, } \\
&\left\{u_{4} \in U_{4} \mid \phi\left(u_{4}\right)>l\right\} \text { is a subgroup, } \\
& \phi_{1}\left(u_{1}\right)=k, \phi_{3}\left(u_{3}\right)>k+2 l,\left[u_{1}, u_{3}\right]=u_{2} \Rightarrow \phi_{2}\left(u_{2}\right)>k+l, \\
& \phi_{1}\left(u_{1}\right)>k, \phi_{3}\left(u_{3}\right)=k+2 l,\left[u_{1}, u_{3}\right]=u_{2} \Rightarrow \phi_{2}\left(u_{2}\right)>k+l, \tag{3}\\
& \phi_{1}\left(u_{1}\right)=k, \phi_{3}\left(u_{3}\right)=k+2 l,\left[u_{1}, u_{3}\right]=u_{2} \Rightarrow \phi_{2}\left(u_{2}\right) \geq k+l, \\
& \phi_{2}\left(u_{2}\right)=k+l, \phi_{4}\left(u_{4}\right)>l,\left[u_{2}, u_{4}\right]=u_{3} \Rightarrow \phi_{3}\left(u_{3}\right)>k+2 l, \\
& \phi_{2}\left(u_{2}\right)>k+l, \phi_{4}\left(u_{4}\right)=l,\left[u_{2}, u_{4}\right]=u_{3} \Rightarrow \phi_{3}\left(u_{3}\right)>k+2 l, \\
& \phi_{2}\left(u_{2}\right)=k+l, \phi_{4}\left(u_{4}\right)=l,\left[u_{2}, u_{4}\right]=u_{3} \Rightarrow \phi_{3}\left(u_{3}\right) \geq k+2 l .
\end{align*}
$$

From now on we keep in mind only the derived identities and inequalities and 'forget' that we were dealing with an exceptional type case. The approach for constructing the epimorphism resembles the one from the previous two sections, but works in a more implicit way. As Λ is of finite rank, one can find an ordered abelian group epimorphism $e: \Lambda \rightarrow \mathbb{R}$, which we compose with the maps ϕ_{r} to obtain maps $\phi_{r}^{\prime}: U_{r} \rightarrow \mathbb{R}(r \in\{1,2,3,4\})$. We claim that these maps satisfy the inequalities

$$
\begin{aligned}
& {\left[u_{1}, u_{3}\right]=u_{2} \Rightarrow \phi_{2}^{\prime}\left(u_{2}\right) \geq\left(\phi_{1}^{\prime}\left(u_{1}\right)+\phi_{3}^{\prime}\left(u_{3}\right)\right) / 2} \\
& {\left[u_{2}, u_{4}\right]=u_{3} \Rightarrow \phi_{3}^{\prime}\left(u_{3}\right) \geq\left(\phi_{2}^{\prime}\left(u_{2}\right)+\phi_{4}^{\prime}\left(u_{4}\right)\right) / 2}
\end{aligned}
$$

and one has that

$$
\begin{aligned}
& \left\{u_{1} \in U_{1} \mid \phi_{1}^{\prime}\left(u_{1}\right) \geq t\right\}, \\
& \left\{u_{4} \in U_{4} \mid \phi_{4}^{\prime}\left(u_{4}\right) \geq t\right\},
\end{aligned}
$$

with $t \in \mathbb{R}$ are subgroups. One can prove this by using Equations 1 and 2 which allow us to add multiples of two to the constants k and l in the equalities of 3, All of this implies that the maps ϕ_{r}^{\prime} form a viable partial valuation in the sense of [26, Def. 15.4], and hence give rise to an \mathbb{R}-building (by adapting [26, Th. 15.21] to the non-discrete case) with the desired first epimorphism to a certain residue. The root groups \bar{U}_{r} with $r \in\{1,2,3,4\}$ are given by the quotient $\left\{u_{r} \in U_{r} \mid \phi_{r}^{\prime}\left(u_{r}\right) \geq 0\right\} /\left\{u_{r} \in U_{r} \mid \phi_{r}^{\prime}\left(u_{r}\right)>0\right\}$. On these root groups one can define in a natural way functions $\bar{\phi}_{r}: \bar{U}_{r} \rightarrow$ ker e, which inherit the same identities and inequalities as derived for the functions ϕ_{r}. Hence we are back at our starting point and can apply recursion to obtain the desired epimorphism.

7.5.4 Valuations of arbitrary rank

In this final case we do not pose any conditions on the rank of the valuation anymore. If K^{\prime} is a finitely generated subfield of the field with definition K, then one can define a subbuilding $\Delta\left(K^{\prime}\right)$ of Δ (in certain cases one need to extend the subfield K^{\prime} to make it closed under an involution or Tits endomorphism σ or to make sure that certains forms are defined, however one can still keep the subfield finitely generated).

If C and C^{\prime} are two chambers of Δ, then there exists a finitely generated subfield K^{\prime} of K such that $\Delta\left(K^{\prime}\right)$ contains C and C^{\prime}. If one restricts the valuation ν to this subfield then it is of finite rank (because a finitely generated
field is of finite transcendency and Abhyankar's inequality ([1, Lem. 1])). So if one restricts the (weak) root group labeling of the epimorphism to K^{\prime} one can apply the previous section and obtain an epimorphism $\phi_{K^{\prime}}$ of $\Delta\left(K^{\prime}\right)$. We now define the new Weyl distance $\bar{\delta}$ between C and C^{\prime} to be the distance between the images of these chambers under $\phi_{K^{\prime}}$. This is independent of the choice of K^{\prime} by Corollary 6.12.

We now define the building Δ^{\prime} to have as chambers the equivalence sets of chambers having trivial Weyl distance $\bar{\delta}$ from each other, and the distance between two chambers of Δ^{\prime} to be the distance $\bar{\delta}$ of two representants. One can also construct an epimorphism $\phi: \Delta \rightarrow \Delta^{\prime}$ which maps each chamber of Δ into its equivalence set. If this definition is not well-defined, if Δ^{\prime} is not a building or if the map ϕ not an epimorphism, then one can find a finite set Ω of chambers of Δ where a problem with this occurs. By restricting the field to a certain finitely generated subfield $K^{\prime \prime}$ one can make sure that $\Delta\left(K^{\prime \prime}\right)$ contains Ω. But at this point there cannot occur a problem because of our discussion of valuations of finite rank and the uniquely definedness of $\bar{\delta}$. Hence ϕ will be the desired epimorphism.

7.6 Conclusion

In Section 7.3 we determined, given an epimorphism ϕ, what the possible the (weak) root group labelings of the epimorphism are, and we derived some compatibility conditions which need to be fulfilled. We then continued in Section 7.5 starting from a weak root group labeling and these conditions to show that for the cases under consideration one could construct an epimorphism. Corollary 6.12 now implies that we obtain the original epimorphism ϕ again (up to an isomorphism).

This concludes the proof of the second Main Result. The first Main Corollary follows from Sections 7.5.2 and 7.5.3, the second from Sections 7.5.1 and 7.5.3 combined with Proposition 6.10.

References

[1] S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348.
[2] P. Abramenko and K. Brown, Buildings: Theory and applications, Springer, 2008.
[3] J. André, Über homomorphismen projektiver Ebenen, Abh. Math. Sem. Univ. Hamburg 34 (1969/1970), 98-114.
[4] C. D. Bennett. Affine Λ-buildings, Dissertation, Chicago Illinois, pages 1-106, 1990.
[5] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5252.
[6] T. De Medts, F. Haot, R. Knop and H. Van Maldeghem, On the uniqueness of the unipotent subgroups of some Moufang sets, In Finite geometries, groups, and computation, pp. 43-66, Walter de Gruyter GmbH \& Co. KG, Berlin, 2006.
[7] T. De Medts and Y. Segev, A course on Moufang sets, Innov. Incidence Geom. 9 (2009), 79-122.
[8] J. Faulkner and J. Ferrar, Homomorphisms of Moufang planes and alternative places, Geom. Dedicata 14 (1983), no. 3, 215-223.
[9] R. Gramlich and H. Van Maldeghem, Epimorphisms of generalized polygons. I. Geometrical characterizations, Des. Codes. Cryptogr. 21 (2000), no. 1-3, 99-111.
[10] R. Gramlich and H. Van Maldeghem, Epimorphisms of generalized polygons. II. Some existence and non-existence results. Finite geometries, 177-200, Dev. Math., 3, 2001.
[11] H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitz. K. Akad. Wiss. 116 (1907), 601-655.
[12] P. Hitzelberger. Generalized affine buildings: Automorphisms, affine Suzuki-Ree-buildings and Convexity, arXiv:0902.1107v1, 2009.
[13] P. Hitzelberger, L. Kramer and R. Weiss, Non-discrete Euclidean buildings for the Ree and Suzuki groups, Amer. J. Math., 132 (2010), no. 4, 1113-1152.
[14] W. Klingenberg, Projektive Geometrien mit homomorphismus, Math. Ann. 132 (1956), 180-200.
[15] W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1932), 160-196.
[16] H. Van Maldeghem, Generalized polygons, Birkhäuser Verlag, Basel, Boston, Berlin, Monographs in Mathematics 93, 1998.
[17] A. Parreau, Immeubles affines: construction par les normes et étude des isométries, in Crystallographic groups and their generalizations (Kortrijk, 1999), Contemp. Math. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263-302.
[18] A. Pasini, The nonexistence of proper epimorphisms of finite thick generalized polygons, Geom. Dedicata 15 (1984), no. 4, 389-397.
[19] P. N. Schwer (née Hitzelberger) and K. Struyve, Epimorphisms of polar spaces defined over skew fields, In preparation.
[20] L. A. Skornyakov, Homomorphisms of projective planes and T homomorphisms of ternaries (Russian), Mat. Sb. 43 (1957), 285-294.
[21] K. Struyve and H. Van Maldeghem, Two-dimensional affine \mathbb{R}-buildings defined by generalized polygons with non-discrete valuation, Pure Appl. Math Q. 7 (2011), no. 3, 923-968.
[22] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386, Springer, Berlin-Heidelberg-New York, 1974.
[23] J. Tits, Immeubles de type affine, In Buildings and the Geometry of Diagrams, Springer Lecture Notes 1181 (Rosati ed.), Springer Verlag, 1986, pp. 159-190.
[24] J. Tits and R. Weiss, Moufang polygons, Springer-Verlag, 2002.
[25] R. Weiss, The structure of spherical buildings, Princeton University Press, 2003.
[26] R. Weiss, The structure of affine buildings, Annals of Mathematics studies 68, Princeton University Press, 2009.

[^0]: *The author is supported by the Fund for Scientific Research - Flanders (FWO Vlaanderen)

