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Flatness in non-Archimedean analytic geometry

Antoine Ducros∗
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Abstract. This text is devoted to the systematic study of flatness in the context
of Berkovich analytic spaces. After having shown through a counter-example that
naive flatness in that context is not stable under base change, we introduce the notion
of universal flatness and we study a first important class of universally flat morphisms,
that of quasi-smooth ones.

We then show the existence of local dévissages (in the spirit of Raynaud and
Gruson) for coherent sheaves, which we use, together with a study of the local rings of
’generic fibers’ of morphisms, to prove that a flat, boundaryless morphism is universally
flat.

After that we prove that the image of a compact analytic space by a universally
flat morphism can be covered by a compact, relatively Cohen-Macaulay and zero-
dimensional multisection, and the image of the latter is shown to be a compact analytic
domain of the target. It follows that the image of a compact analytic space by a
universally flat morphism is a compact analytic domain of the target. This was first
proved in the rigid-analytic context by Raynaud, but our proof is completely different:
it is based upon Temkin’s theory of the reduction of analytic germs and quantifiers
elimination in the theory of non-trivially valued algebraically closed fields, and it uses
neither formal models nor flattening techniques.

We end the paper by showing, using Kiehl’s method, Zariski-openness of the uni-

versal flatness and of the quasi-smoothness loci of a given morphism.

AMS classification: 14G22, 14A99.
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Introduction

In scheme theory, flatness was used in a significant way for the first time by
Serre in his celebrated paper GAGA ([23]), where the following plays a crucial
role: if X is a complex algebraic variety and if Xan denotes the corresponding
analytic space, then for every x ∈ X(C) the ring OXan,x is flat over OX,x. After
that, flatness became in a few years, under the influence of Grothendieck and
his school, a central concept in algebraic geometry, for at least two reasons.

• A geometrical one: it has turned out that the notion of a flat morphism is
exactly the right one to translate in rigorous language the (intuitive, but quite
vague) idea of a family.

• A technical one: (faithfully) flat morphisms have very good descent prop-
erties.

What we do in this paper is starting a systematic investigation of flatness in
non-Archimedean analytic geometry, and more precisely in the Berkovich setting
([1], [2]). We have chosen to give ’purely Berkovich’ proofs, without using formal
or algebraic models, and the related subtle, sophisticated results (flattening,
semi-stable reduction, reduced fiber theorem...). Therefore we sometimes give
new proofs of facts which were originally established using some of those highly
non-trivial theorems about models (see below some examples of such facts in
the summary of our results). The only ’reduction arguments’ we will use are
based upon Temkin’s theory of the reduction of analytic germs, which involves
general valuation theory, and especially Riemann-Zariski spaces.

Flatness in rigid geometry

In fact, flatness has already been considered in non-Archimedean analytic ge-
ometry, but in the rigid-analytic context ([7] and [8]), where its definition is as
simple as one may hope: a morphism Y → X between rigid spaces is rig-flat at
a point y ∈ Y if it is flat as a morphism of locally ringed spaces, that is to say,
if OY,y is a flat OX,x-module. Flatness in that sense behaves well – it is stable
under base change and ground field extension. But contrary to what happens
in scheme theory, this is by no way obvious, because base change and ground
field extension are defined using complete tensor products. Roughly speaking,
the proofs proceed as follows:

• the study of rigid flatness is reduced to that of formal flatness, thanks
to formal avatars of Raynaud-Gruson flattening techniques, which are used to
build a flat formal model of any given rig-flat morphism;

• the study of formal flatness is reduced to that of algebraic flatness, in a
more standard way (dividing by various ideals of definition and using flatness
criteria in the spirit of [18], §5).

Let us mention that this general strategy (formal flattening and reduction
modulo an ideal of definition to replace an analytic problem with an algebraic
one) was also used by Raynaud to prove the following fact: if ϕ : Y → X is
a flat morphism between affinoid rigid spaces, then ϕ(Y ) is a finite union of
affinoid domains of X (cf. [8], cor. 5.11).
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Flatness in Berkovich geometry: the first problems

We fix from now on and for the whole introduction a complete, non-Archimedean
field k, and we will only consider Berkovich analytic spaces. An analytic space
without any mention of the ground field will be an analytic space defined over
any complete extension of k, and stability under base change will always im-
plicitly refer to base change by any analytic space with this convention – hence
stability under ground field extension will be a particular case of stability under
base change.

Let ϕ be a morphism of good k-analytic spaces (the class of good analytic
spaces, which contains affinoid spaces, analytifications of algebraic varieties, and
generic fibers of affine and proper formal schemes, is, to the knowledge of the
author, the only one in which the local rings are relevant). Let us say that ϕ
is flat at a point of its source if it is flat at that point as a morphism of locally
ringed spaces, exactly like in the rigid setting.

We immediately face a big problem. Indeed, in this context, the use of
complete tensor products does not just make proofs of stability under base
change more complicated, as it does in the rigid case: stability under base
change is actually wrong.

Let us give a counter-example. Roughly speaking, it is due to a boundary
phenomenon: it consists in the embedding into the affine plane of a curve which
is drawn on some bi-disc and can not be extended; the problem occurs at the
unique boundary point of the curve. We are now going describe it more precisely;
the reader will find detailed proofs of what follows in section 2(2.19-2.23). Let
r > 0, let f =

∑
aiT

i ∈ k[[T ]] be a power series whose radius of convergence
is r, and let Y be the closed one-dimensional k-disc of radius r. The Shilov
boundary of Y consists in one point y (the one that corresponds to the semi-
norm

∑
biT

i 7→ max |bi|ri). Denote by ϕ the morphism (Id, f) : Y → A2,an
k and

by X the closed analytic domain of A2,an
k defined by the inequality |T1| 6 r;

note that ϕ(Y ) ⊂ X ; more precisely, ϕ(Y ) is the Zariski-closed subset of X
defined by the equation T2 = f(T1).

One can show that OA2,an
k ,ϕ(y) is a field: this is due to the fact that ϕ(Y )

can not be extended to a curve defined around ϕ(y), because the radius of
convergence of f is exactly r. As a consequence, ϕ is flat at the point y. Now:

• Y = ϕ−1(X) → X is a closed immersion of a one-dimensional space in a
purely two-dimensional space, hence is not flat at y;

• if L is any complete extension of k such that YL has a L-rational point
y′ lying above y, then ϕ(y′) belongs to the topological interior of XL in A2,an

L

(because ϕ(y′) is a rigid point); therefore ϕL : YL → A2,an
L is, around y′, a closed

immersion of a one-dimensional space in a purely two-dimensional space, hence
is not flat at y′.

Some comments. The above counter-example is, in some sense, archetypal,
because boundary phenomena are actually the only obstruction for flatness to
be stable under base change: if Y → X is a morphism between good k-analytic
spaces and if y ∈ Y is such that Y → X is inner at y (or, more generally,
extendable – see 5.11), then if Y → X is flat at y, it remains so after any (good)
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base change (th. 5.12.3). This had already been proved by Berkovich (in a
completely different way) in some non-published notes about flatness.

It is then clear why such problems can not occur in the rigid setting: this is
because boundary points are never rigid.

The notion of universal flatness. Because of the aforementioned problems,
the right notion to consider, for a morphism between two good k-analytic spaces,
seems to be that of universal flatness at a point (2.7) – one simply requires
stability under base change.

Description of our results

We are now going to describe with some details the content of every section
(except section 0, devoted to remindings about analytic geometry and Temkin’s
theory); but for the sake of simplicity, we will sometimes present here only a
simplified version of our results – essentially by weakening the assumptions to
focus on a significant particular case (e.g. the space is compact, or the valuation
is non-trivial, etc.). Before beginning the description, let us fix some notations.

We fix a subgroup Γ of R∗
+ such that |k∗|.Γ 6= {1}; there is a natural notion

of a Γ-strict k-analytic space (0.23 et sq.), which will often appear in our claims,
in the assumptions as well as in the conclusions; we have introduced this notion
because it doesn’t cause any complication in the proofs, and helps keeping track
of the parameters involved in the definitions of our objects.

If Y → X is a morphism between k-analytic spaces and if x ∈ X , the fiber
of Y → X at x will be denoted by Yx.

If L/K is an extension of graded fields (that is, of R∗
+-graded fields ; see 0.1

for more explanations) we denote by PL/K the space of graded valuations on L
which are trivial on K. For the basic definitions, properties and notations of
those objects, see 0.2 and 0.5; let us simply mention here that if ∆ is a subgroup
of R∗

+, a quasi-compact open subset of PL/K is said to be ∆-strict if it can be
defined using only homogeneous elements whose degree belongs to ∆.

Section 1. In this section one establishes the following result (th. 1.8): let K
be a graded field, let F be a graded extension of K, let L be a graded extension
of F , let ∆ be a subgroup of R∗

+ and let V be a ∆-strict quasi-compact open
subset of PL/K ; the image of V on PF/K is a ∆-strict quasi-compact open subset
of the latter.

The proof consists in reducing to the case where the fields involved are
trivially graded (and where ∆ is consequently trivial), and where V is affine,
say V = PL/K{f1, . . . , fn}. This particular situation is covered by th. 1.4;
the latter not only tells that the image of V is a quasi-compact open subset
of PF/K , it ensures the existence of finitely many closed points y1, . . . , ym on
Spec F [f1, . . . , fn] so that the image of V is the union of the images of the
Pκ(yj)/K{f1(yj), . . . , fn(yj)} ’s on PF/K ; the latter fact will play a crucial role
in the proof of th. 6.2.

The proof of thm. 1.4 itself is based upon two results: quantifiers elimination
for non-trivially valued algebraically closed fields, on one hand (cf. [21], 4.17,
or [10], th. 2.14); and an explicit description of the image of V in the case where
L is algebraic over F on the other one (lemmas 1.1 and 1.2, prop. 1.3).
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After having proved those purely valuation-theoretic results, we come to
analytic geometry. We use th. 1.8 together with Temkin’s theory to prove that
if (Y, y) → (X, x) is a morphism of k-analytic germs, then there exists a smallest
analytic domain (Z, x) of (X, x) through which (Y, y) → (X, x) goes; if moreover
(Y, y) is Γ-strict and (X, x) is separated, the germ (X, x) is Γ-strict (1.9.2).

This section ends with a geometrical interpretation of the Krull dimension
of OX,x for (X, x) a good k-analytic germ (cor. 1.12).

Section 2. In this section, we first generalize somme well-known GAGA-type
results about flatness (prop. 2.5 and th. 2.6; see also comments at 2.3 et sq.).
Then we come to the definition of universal flatness in the good case (2.7),
give some basic examples and give a proof of some (quite classical) facts about
locally finite, flat morphisms (prop. 2.16). After that, we study in full detail
the aforementioned counter-example showing that flatness is not automatically
universal.

Then we come to the definition of universal flatness in the general, that is,
non necessarily good, case; this definition uses good analytic domains and the
definition in the good case, but not the local rings of non-good spaces, about
which almost nothing is known.

At the end of the section we prove that as far as exact sequences are con-
cerned, universally flat coherent sheaves behave as expected, that is, like flat
coherent sheaves in algebraic geometry (lemma 2.29, prop. 2.30, and prop.
2.31); though proofs are quite straightforward, they require a little bit more
arguments than the classical ones.

Section 3. The goal of that section is to introduce a fundamental class of
universally flat morphisms, namely, that of quasi-smooth morphisms (def. 3.5);
they are the Berkovich counterpart of the so-called rig-smooth morphisms of
rigid geometry; we have chosen to call them quasi-smooth to be coherent with
the terminology quasi-étale which was introduced by Berkovich in [3]. The
theorems we prove here are by no way surprising. They are certainly well known
for most of them, at least in the rigid setting; but for the sake of completeness,
and also to handle the non-strict case as well as what happens at a non-rigid
point of a strictly k-analytic space, we have chosen to write all the proofs.

The most important result we establish is the following: if Y → X is a
morphism between k-analytic spaces, if y ∈ Y and if x is its image on X , then
Y is quasi-smooth over X at y if and only if Y is universally X-flat at y and
Yx is geometrically regular at y (prop. 3.14). We then show that if Y → X
is quasi-smooth at y, the coherent sheaf ΩY/X is free at y of rank equal to the
relative dimension of Y over X at y (prop. 3.16; this fact is actually equivalent
to quasi-smoothness at y when Y = M (k) by cor. 3.15 and 3.2.2).

After that we come to the links between quasi-smoothness and smoothness.
We prove that if Y and X are good, then Y → X is quasi-smooth at y if and
only if y has an affinoid neighborhood in Y which is X-isomorphic to an affinoid
domain of a smooth X-space (prop. 3.18); it easily follows, always under our
goodness assumption, that Y is smooth at y if and only if it is quasi-smooth and
inner at y. Surprisingly, we don’t know whether this is true without goodness
assumption (see 3.21); if it were not, it would mean that Berkovich’s definition
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of smoothness is not G-local on the target, contrary to boundaryless quasis-
smoothness.

At the end of the section we prove that if Y and X are good and if Y is
quasi-smooth over X at y then Spec OY,y → Spec OX,x is flat with geometri-
cally regular fibers (prop. 3.23); it follows that the usual commutative algebra
properties are preserved by quasi-smooth morphisms (cor. 3.24).

Section 4. Let us begin with a remark. Let Y → X is a morphism between
noetherian schemes, let y ∈ Y and let x denote its image on X . If OX,x is a
field, x is the generic point of an irreducible component of X , which implies
that OYx,y is equal to OY,y.

The goal of that section is to prove a Berkovich avatar of this result (when
the local rings are relevant, that is, when Y and X are good). So, let Y → X
be a morphism of good k-analytic spaces, let y ∈ Y and let x be its image on X ;
assume that OX,x is a field. One can not expect Spec OYx,y → Spec OY,y to be
an isomorphism in general, because the definition of Yx involves two completion
operations, one for defining the complete residue field H (x), and another one
for defining the fiber itself (through complete tensor products with H (x)).

But this maps has nevertheless nice properties, as soon as y belongs to
Int Y/X : it is then flat with CI (that is, complete intersection) fibers, and
even with regular fibers if char. k = 0 (th. 4.15).

A first counter-example (4.16.1 – it again involves the non-extendable curve
already considered in section 2 to provide a counter-example to universality of
flatness) shows that the innerness assumption can not be removed. A second
one (4.16.2), due to Temkin, shows that one can not expect in general the fibers
to be regular in positive characteristic, even when Y → X is finite and flat.

First remark. For proving our theorem 4.15 on ’generic fibers’ we need a
preliminary result on smooth morphisms which also has, to our opinion, its own
interest (th. 4.9). Though it could be proved using the decomposition (after a
suitable base change) of a smooth morphism into a sequence of smooth relative
curves of a certain kind ([2], §3.7), we have chosen another method, which we
think is simpler. Indeed, the existence of the aforementioned decomposition
follows from the (highly non-trivial) semi-stable reduction for curves, but we
proceed using only elementary arguments: the explicit description of some open
subsets of the relative affine space over a given space, and the fact that an
étale morphisms of k-analytic germs (T, t) → (Z, z) inducing an isomorphism
H (t) ≃ H (z) is itself an isomorphism.

Let us say a few words about this result (th. 4.9) on smooth morphisms.
In complex analytic geometry, a morphism is smooth if and only if it is locally
on the source and the target a product by an open polydisc. This is definitely
false in Berkovich’s setting (in any positive genus projective curve over an al-
gebraically closed non-Archimedean field, those are points which don’t admit
any neighborhood isomorphic to an open disc), and th. 4.9 provides, in some
sense, the best ’approximation’ of such a result one can expect in our context.
In the case where |k∗| 6= {1}, it says the following (the trivially valued case
is a little bit more complicated): if Y → X is a smooth morphism between
good k-analytic spaces and if x belongs to the image of Y , there exists an étale
morphism X ′ → X whose image contains x, and an open subset of Y ×X X ′
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which is isomorphic the product of X ′ and an open polydisc. This implies the
openness of Y → X and the fact that Y → X has locally sections on its image
for the étale topology (cor. 4.10, cor. 4.12). Note that the openness of smooth
morphisms had already been proved by Berkovich using the aformentionned
decomposition of smooth morphisms, see [2], cor. 3.7.4.

Second remark. Our main motivation to write theorem 4.15 was to use it in
our proof, based upon dévissages, of the fact that a morphism which is flat and
boundaryless at a given point is universally flat at that point (th. 5.12.3). This
in fact only uses the flatness of the map OYx,y → OY,y; but we have chosen to
also prove that its fibers are CI (and regular in char. 0) because it only requires a
few extra-lines in the proof, and it seems to us that it is intrinsically interesting.

Section 5. This section is inspired by the first part of Raynaud and Gruson’s
work on flatness ([22]); our proofs essentially follow those of loc. cit., but with
some extra-work due to specific analytic problems. In particular, th. 1.1.1. of
loc. cit. had to be replaced with cor. 4.7 of [14].

We begin with some technical results involving universal flatness and uni-
versal injectivity (def. 5.1); prop. 5.6 and prop. 5.7 are the respective analogs
of lemma 2.2 and th. 2.1 of loc. cit. But there is something new: prop. 5.7
also provides an assertion which is specific to the boundaryless case, and is
established using our theorem 4.15 on the local rings of ’generic fibers’ (more
precisely, its flatness claim).

Let Y → X be a morphism between good k-analytic spaces and assume that
Y is Γ-strict. Let F be a coherent sheaf on Y and let y ∈ Supp F . After having
introduced the notion of a Γ-strict X-dévissage of F at y (def. 5.9), we show
that there always exists such a dévissage with length related to the dimension
and the codepth of F at y (th. 5.10); this is the analytic counterpart of prop.
1.2.3 of loc. cit. Using our preliminary results already mentioned (prop. 5.7),
we show that once given a dévissage, universal flatness of F is equivalent to the
universal injectivity of some arrows which are part of the dévissage. Thanks to
the part of prop. 5.7 which is specific to the inner case, we also obtain that
if Y → X is inner at y, or more generally if F is extendable at y (5.11), then
X-flatness of F over X is automatically universal (this is part of th. 5.12.3).

After that, we apply our results to the particular case where F is universally
X-flat at y and of codepth zero at y, that is, CM at y. What we get (th. 5.15) is
the following: if F is CM at y then there exists a Γ-strict affinoid neighborhood
V of y ∈ Y , a Γ-strict affinoid domain T of a smooth X-space, and a finite
morphism V → T with respect to which F is (universally) flat; note that the
converse implication is easy (lemma 5.14).

Let us make two remarks.

First remark. In that paper, the main applications of the results we prove in
this section are the universality of flat, boundaryless morphisms and the local
description of relatively CM coherent sheaves, both of which are mentioned
above. But we hope that they will have many other ones, especially concerning
the image of a morphism between compact analytic spaces, and the problem of
the definition, and of the existence, of non-Archimedean flatifiers (both questions
are very likely related to each other).
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Second remark. The formal version of Raynaud-Gruson methods also pro-
vides dévissages ([8], §3); what it precisely gives can be translated the following
way in Berkovich’s language: assume that |k∗| 6= {0} and let Y → X be a
morphism between strictly k-analytic spaces; let F be a coherent sheaf on Y
with support Y . Then F admits G-locally on Y a strict X-dévissage.

So we have brought to improvements (and a purely Berkovich proof, without
formal models): our results also hold for non-strict spaces, and in the good case,
they provide local (and not only G-local) dévissages.

Section 6. Using formal flattening and openness of the flat, finitely presented
morphism of schemes, Raynaud proved that if |k∗| 6= {1} and if ϕ : Y → X is
a flat morphism between two affinoid rigid spaces, then ϕ(Y ) is a finite union
of affinoid domains of X (cf.[8], cor. 5.11). What we do in this section is
essentially giving a purely Berkovich-theoretic proof of this fact, avoiding the
use formal models and flattening; we in fact extend a little bit Raynaud’s result,
by removing the strictness assumption, and by handling not only the case where
Y → X is universally flat, but more generally the case where Y is the support
of a universally X-flat coherent sheaf F (th. 6.4). But to make the presentation
simpler, we will now describe our results and methods only in the case where
F = OY .

Our first result (thm. 6.1) tells the following: if Y is a compact, Γ-strict k-
analytic space and if ϕ is a zero-dimensional, CMmorphism (i.e. ϕ is universally
flat with CM fibers) from Y to a separated analytic space X , then ϕ(Y ) is a
Γ-strict compact analytic domain of X . The proofs consists in two steps:

• one first reduces, essentially thanks to our local description of CM maps
(th. 5.15) to the case where both Y and X are affinoid and Γ-strict and where
Y is a Galois-invariant affinoid domain of a finite Galois cover of X ;

• the assertion is then proven by using the existence, for every point y of
Y , of a smallest analytic domain of (X,ϕ(y)) through which (Y, y) → (X,ϕ(y))
goes (1.9.2), in order to reduce to the case where Y → X is étale, hence open.

After that we prove (th. 6.3) that if the valuation of k is non-trivial, if
Y is a compact strictly k-analytic space, if X is a separated k-analytic space
and if ϕ : Y → X is a universally flat morphism, then there exists a compact
strictly k-analytic space X ′, a CM zero-dimensional map ψ : X ′ → X and an
X-morphism σ : X ′ → Y , such that ψ(X ′) = ϕ(Y ). In other words, the image
of ϕ is covered by a zero-dimensional, CM multisection. Note that strictness of
Y can not be avoided here: if X = M (k) and Y 6= ∅, our theorem exactly says
that Y has a rigid point – this is nothing but the Nullstellensatz, which is not
true in general in the non-strict case1.

The main step in proving th. 6.3 consists in establishing kind of a local
version of it, and more precisely in building, for every y ∈ Y , finitely many
zero-dimensional CM multisections which cover the image of the germ (Y, y); we
have in fact given that step the status of an independant theorem (th. 6.2). Let
us mention some essential ingredients of the proof:

• Temkin’s reduction and our theorem 1.4 about the image of a map between
Riemann-Zariski-spaces; the finitely many closed points involved in the latter

1We don’t pretend to have given a new proof of the Nullstellensatz, because the latter is
used in our proof – see 6.2.7.
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play a crucial role by indicating, in some sense, in which ’directions’ around y
the multisections have to be drawn;

• the fact that in the non-trivially valued case, a smooth morphism between
good k-analytic spaces admits an étale multisection over every point of its image
(cor. 4.12).

The equality ϕ(Y ) = ψ(X ′) implies, in view of the aforementioned result
about the image of a zero-dimensional CM morphism (th. 6.1), that ϕ(Y ) is a
compact strictly analytic domain of X . Now by using in a straightforward way
the Shilov section associated with a suitable k-free polyray, we generalize this
latter as follows (th. 6.4): if Y is a Γ-strict, compact k-analytic space and ϕ a
universally flat morphism from Y to a separated k-analytic space X , then ϕ(Y )
is a compact, Γ-strict analytic domain of X .

One straightforwardly deduces from this that a boundaryless, universally
flat morphism is open (th. 6.6); this had already been proved by Berkovich, in
another way, in his unpublished notes.

We eventually remark something which, to our knowledge, had not been
noticed till now: in both results about the image of universally flat morphisms
(th. 6.4 and th. 6.6), the universal flatness assumption for the map ϕ : Y → X
involved can be replaced by the following: X is normal, Y and X are purely
dimensional, and ϕ is purely of relative dimension dim Y − dim X . The proof
proceeds by reducing to the universally flat case thanks to cor. 4.7 of [14].

Section 7. In this last section of the paper, we apply Kiehl’s methods (which
he introduced in [20] for the analog question in complex analytic geometry) to
prove that the universal flatness locus of a morphism ϕ : Y → X is a Zariski-
open subset of Y (th. 7.1); we then deduce that the set of points of Y at which
Y is quasi-smooth of given relative dimension is a Zariski-open subset of Y (th.
7.4); the proof uses the openness (but not a priori Zariski-openness) of this
locus, which is established in section 3 (3.10.8).
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0 Some remindings and notations about ana-

lytic geometry

Graded fields and graded valuations

(0.1) In [25], Temkin introduced powerful tools for the local study of analytic
spaces and analytic morphisms. Those tools are based upon graded commutative
algebra. It turns out that most classical notions of classical commutative algebra
have graded counterparts, and that the usual theorems often remain mutatis
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mutandis true in the graded context; one only has essentially to add the words
’graded’ or ’homogeneous’ at suitable places. We will therefore most of the time
make a free use of the graded translations of well-known facts. The justifications
are left to the reader, who can also fruitfully report to the first paragraph of
[25].

By a graded ring, we will always mean an R∗
+-graded ring; the notation

relative to the graduation will then be multiplicative. Any classical ring can be
considered as a trivially graded ring, that is, a graded ring in which any element
is homogeneous of degree 1. Therefore, all what we are going to do now also
apply while working with classical rings; in this situation, we will often omit the
word ’graded’.

If K is a graded ring and if r is an element of R∗
+, we will denote by Kr the

set of homogeneous elements of degree r of K. If ∆ is a subgroup of R∗
+, we

will denote by K∆ the graded subring
⊕
δ∈∆

Kδ of K.

(0.2) Let K be a graded field (that is, a graded ring in which any non-zero
homogeneous element is invertible) and let Γ be an ordered group with multi-
plicative notation. A Γ-graded valuation on K is a map |.| defined on the set of
homogeneous elements of K with values in Γ∪ {0} which satisfies the following
conditions:

i) |1| = 1, |0| = 0, and |ab| = |a|.|b| for every couple (a, b) of homogeneous
elements;

ii) for every couple (a, b) of homogeneous elements of the same degree we
have |a+ b| 6 max(|a|, |b|).

If we don’t need to focus on the group Γ, or if the latter is clear from the
context, we will simply talk about a graded valuation on K; if K is a field
(viewed as a trivially graded field), a graded valuation on K is nothing but a
classical Krull valuation on K; there is a natural notion of equivalence of graded
valuations on K.

(0.3) Let K be a graded field. If |.| is a graded valuation on K, the subset

⊕

r

{λ ∈ Kr, |λ| 6 1}

of K is a graded subring of K which is called the graded ring of |.| . It is a local
graded ring, whose unique maximal graded ideal is

⊕
r{λ ∈ Kr, |λ| < 1}, and

whose residue graded field is called the residue graded field of |.| .Two graded
valuations on K are equivalent if and only if they have the same graded ring.

A graded subring A of K is a graded valuation ring, that is, the graded ring
of a graded valuation, if and only if for every non-zero homogeneous element
λ of K, one has λ ∈ A or λ−1 ∈ A; or, what amounts to the same, if and
only if A is a graded local subring of K which is maximal for the domination
relation; hence by Zorn’s lemma, every graded local subring of K is dominated
by a graded valuation ring.

Let |.| be a graded valuation on K, let A be its graded ring and let k be
its graded residue field. If |.|′ is a graded valuation on k, the pre-image of the
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graded ring of |.|′ inside A is a graded valuation ring of K. The corresponding
graded valuation is called the composition of |.| and |.|′ and has the same residue
graded field as |.|′.

(0.4) Let K be a graded field and let Γ be an ordered group. Let (s1, . . . , sn)
be positive real numbers. We denote by K(s−1

1 S1, . . . , s
−1
n Sn) the graded field

of fractions of the graded domain

K[s−1
1 S1, . . . , s

−1
n Sn] :=

⊕

r

(⊕

I

Krs−I

SI

)
.

If |.| is any graded Γ-valuation on K, we will denote by |.|Gauß the graded Γ
valuation onK(s−1

1 S1, . . . , s
−1
n Sn) that sends any homogeneous element

∑
aIS

I

to max |aI |.

(0.5) Let K be a graded field. If L is any graded extension of K, we will
denote by PL/K the ’graded Riemann-Zariski space of L over K ’, that is, the
set of equivalence classes of valuations on L whose restriction to K is trivial
(or, in other words, whose graded ring contains K). For any finite set E of
homogeneous elements of L, one denotes by PL/K{E} the subset of PL/K that
consists in graded valuations |.| such that |f | 6 1 for every f ∈ E. We endow
PL/K with the topology generated by the PL/K{f1, . . . , fn}’s, where f1, . . . , fn
are homogeneous elements of L. An open subset of PL/K will be said to be
affine it is equal to PL/K{f1, . . . , fn} for suitable fi’s; note that PL/K is affine
(indeed, one has PL/K = PL/K{∅}). Any affine open subset of PL/K (especially,
PL/K itself) is quasi-compact ([11],5.3.6).

If F is any graded extension of L, and if E is graded subfield of F such that
E ∩ L = K, the restriction induces a continuous map PF/E → PL/K ; if E = K,
this map is surjective. If ∆ is a subgroup of R∗

+, a quasi-compact open subset U
of PL/K will be said to be ∆-strict if U is the pre-image of some quasi-compact
open subset of PL∆/K∆ .

By definition, U is ∆-strict if and only if it is a finite union of affine open
subsets whose definition only involve homogeneous elements with degrees be-
longing to ∆. If U is affine, say U = PL/K{f1, . . . , fn}, then U is ∆-strict if and

only if the degree of every fi belongs to
√
D.∆, where D is the group of degrees

of homogeneous elements of K (this follows from [25], prop. 2.5 i)).

If ∆ = {1}, we will simply say strict instead of {1}-strict.
(0.6) Remark.Our definition of ∆-strictness is very closed to that of Temkin in
[25](which is also used in [12]), the only difference being that we don’t require ∆
to contain D; actually, ∆-strictness in our sense is equivalent to D.∆-strictness
in Temkin’s one.

Analytic geometry: general facts

(0.7) A non-Archimedean absolute value on a field k is an R∗
+-valuation on k.

An analytic field is a field endowed with a non-Archimedean absolute value for
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which it is complete; note that any field endowed with the trivial absolute value
is an analytic field. Let k be an analytic field.

(0.7.1) An analytic extension of k is an analytic field L together with an
isometric embedding k →֒ L.

(0.7.2) In this text, we will denote by k̃ the graded reduction of k. It is a graded

ring which was was defined by Temkin in [25]; for every r > 0, its subgroup k̃r

of homogeneous elements of degree r is the quotient

{λ ∈ k, |λ| 6 r}/{λ ∈ k, |λ| < r}.

Note that the field k̃1 is the residue field of the valuation |.| in the classical sense.
If λ is any element of k and if r is a positive real number such that |λ| 6 r, we

will denote by λ̃r the image of λ in k̃r. If λ 6= 0 and if r = |λ| we will write λ̃

instead of λ̃r; if λ = 0 we set λ̃ = 0.

(0.7.3) Remark. If |k| = {1}, then k̃ = k̃1; if not, it doesn’t seem that k̃ can
be interestingly interpreted as a residue graded field in the sense of 0.3.

(0.8) If k is an analytic field, the notion of a k-analytic space will be that of
Berkovich ([2]). If X is such a space, and if L is an analytic extension of k,
we will denote by XL the L-analytic space deduced from X by extending the
ground field to L. An analytic space (without mention of any ground field) is a
pair (X, k) where k is an analytic field and X a k-analytic space; a morphism
between two analytic spaces (Y, L) and (X, k) consists in an isometric embedding
k →֒ L and a morphism Y → XL of L-analytic spaces. While speaking about
analytic spaces and morphisms between them, we will of course most of the time
omit to mention the fields and the isometric embeddings involved.

Similarly we define an affinoid algebra (resp. space) as a pair (A , k) (resp.
(X, k)) where k is an analytic field and A a k-affinoid algebra (resp. and X a
k-analytic space).

We fix an analytic field k.

(0.9) A good analytic space is an analytic space whose every point has an
affinoid neighborhood, and hence a basis of affinoid neighborhoods.

If X is an analytic space (resp. a scheme) and if x ∈ X , then H (x) (resp.
κ(x)) will denote the complete residue field (resp. the residue field) of x.

If f : Y → X is a morphism of k-analytic spaces and if x ∈ X , the fiber of
f at x will be denoted either by Yx or by f−1(x); it is an H (x)-analytic space.

(0.10) General convention. While working with a given affinoid space de-
noted by a capital letter (eg. Y , X , S, T , U , V , W ...) we will usually denote
the spectrum of its algebra of functions by the corresponding calligraphic letter
(eg. Y , X , S , T , U , V , W ...). If, say, T → X (or Y → X , or...) is a
morphism between k-affinoid spaces, and if x ∈ X , the spectrum of the algebra
of functions on Tx (or Yx, or...) will be denoted by Tx (or Yx, or...). If Y , or X ,
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or... is a k-affinoid space and if L is an analytic extension of k, the spectrum of
the algebra of functions on YL, or XL, or... will be denoted by YL, or XL, or....

(0.11) Let r = (r1, . . . , rn) be a k-free polyray, that is, a finite family of positive
real numbers which is free when one views it as a family of elements of the Q-
vector space Q⊗Z (R∗

+/|k∗|). Let T be a family of n indeterminates. The set of
power series

∑
I∈Zn aIT

I with coefficients in k such that |aI |rI → 0 as |I| → ∞
is a field; once equipped with the norm

∑
aIT

I 7→ max |aI |rI , it becomes an
analytic extension of k we denote by kr. Now, let X be a k-affinoid space, let
A be its algebra of functions. We write Xr instead of Xkr . For any x ∈ X ,
the map

∑
aIT

I 7→ max |aI(x)|rI is a bounded multiplicative semi-norm on
kr⊗̂A ; the corresponding point of Xr will be denoted by s(x). The map s is a
continuous section of Xr → X we will call the Shilov section.

(0.12) Any analytic space X is endowed with a set-theoretic Grothendieck
topology, which is called the G-topology, and which is finer than its usual topol-
ogy. The corresponding site is denoted by XG; it inherits a sheaf of rings OXG .
If X is good, the restriction OX of OXG to the category of open subsets of X
makes X a locally ringed space. Both sheaves of rings OXG and OX are coherent
(for proofs2 see [15], lemma 0.1).

(0.12.1) If X is good, the forgetful functor induces an equivalence between the
categories of coherent OXG -modules and that of coherent OX -modules which
preserves the cohomology groups ([2], prop. 1.3.4 and 1.3.6)

(0.12.2) Convention. In the sequel, it will be sufficient for us to work with
sheaves on XG, and we won’t need to pay a special attention, in the good case,
to the restriction of such a sheaf to the category of open subsets of X . For that
reason, and for sake of simplicity, a coherent OXG -module will simply be called
a coherent sheaf on X , and we will write OX instead of OXG .

Nevertheless, be aware that if X is good and if x ∈ X, the notation OX,x

will still denote the stalk at x of the classical, i.e. non G-topological, sheaf OX .
In other words,

OX,x := lim
→

U open neighborhood of x

OX(U).

(0.12.3) A subset of an analytic space X that can be defined as the zero locus
of a coherent sheaf of ideals is called a Zariski-closed subset of X ; as suggested
by the terminology, the Zariski-closed subsets are exactly the closed subsets of a
topology, the so-called Zariski-topology; the property of beeing a Zariski-closed
subset is of G-local nature (cf. [15], §0.2.3 and prop. 4.2). If I is a coherent
sheaf of ideals on X and if Y is the corresponding Zariski-closed subset, then Y
can be given a natural structure of an analytic space, so that there is a morphism
ι : Y →֒ X whose underlying continous map is the inclusion and which is such

2It was pointed out to the author by Jérôme Poineau that there is a mistake in both proofs.
Indeed, in every of them one starts with a surjection On

→ O and proves that its kernel is
locally finitely generated, though in order to get the coherence one should establish such a
finiteness result for any, i.e. non necessarily surjective, map On

→ O; but it turns out that
the proofs don’t make any use of those inaccurate surjectivity assumptions.

13



that ι∗OY ≃ OX/I; once it is equipped with this structure, we will call Y the
closed analytic subspace of X defined by I.

(0.12.4) If F is a coherent sheaf on an analytic space X , its support Supp F is
the closed analytic subspace of X defined by the annihilator of F .

(0.12.5) If A is an affinoid algebra the global section functor induces an equiv-
alence between the category of coherent sheaves on M (A ) and that of finitely
generated A -modules, and the latter is itself equivalent to that of coherent
sheaves on Spec A (this theorem is essentially due to Kiehl, cf. [2], §1.2); we
thus get an equivalence between the category of coherent sheaves on M (A ) and
that of coherent sheaves on Spec A . If F is a coherent sheaf on M (A ) we will
also denote by F the corresponding coherent sheaf on Spec A .

(0.12.6) Let X be a scheme (resp. a good analytic space). If F is a coherent
sheaf on X and if x ∈ X we will denote by F ⊗ OX,x the stalk of F at x (resp.
the stalk of the restriction of F to the category of open subsets of X at x). If A
is any OX,x-algebra, we will write F ⊗A instead of (F ⊗OX,x)⊗OX,x A. In the
case of a good analytic space we have F ⊗ OX,x = F(V ) ⊗OX(V ) OX,x for any
affinoid neighborhood V of x in X .

Remark that if X is affinoid and if x ∈ X , then according to our conventions
F⊗OX ,x will denote the stalk at x of the coherent sheaf on X that corresponds
to F .

(0.12.7) Let X be an analytic space, let F be a coherent sheaf on X and let
x ∈ X . If V is a good analytic domain of X containing x, then F|V ⊗OV,x and
F|V ⊗ H (x) are well-defined (see above).

For the sake of simplicity, we will simply write F⊗OV,x instead of F|V ⊗OV,x.

As far as F|V ⊗H (x) is concerned, it follows from its construction that it is
equal to F(V )⊗OX(V ) H (x), and hence doesn’t depend on V ; we will therefore
simply denote it by F ⊗ H (x). If A is any algebra over OV,x (resp. H (x)) we
will write F ⊗ A instead of (F ⊗ OV,x)⊗OV,x A (resp. (F ⊗ H (x)) ⊗H (x) A).

(0.12.8) Let π : Y → X be a morphism of schemes (resp. analytic spaces) and
let E be a coherent sheaf on X . When the ⊗ symbol is used with one of the
meanings mentioned at 0.12.6 and 0.12.7 above, we will often simply write E⊗
rather than π∗E⊗.

(0.12.9) Let X be a good analytic space, let F be a coherent sheaf on X and
let I be its annihilator. If x ∈ X then x ∈ Supp F if and only if F ⊗ OX,x is
non-zero. Indeed, the annihilator of F ⊗ OX,x is equal to I ⊗ OX,x; therefore
F ⊗OX,x = 0 if and only if I ⊗OX,x is contained in the maximal ideal of OX,x,
which exactly means that x is lying on the closed analytic subspace defined by
I, that is, on Supp F .

(0.12.10) Let X be an affinoid space. To any X -scheme of finite type Y is
associated functorialy a good k-analytic space Y an; it comes equipped with a
map to X and with a morphism of locally ringed spaces to Y . To any coherent
sheaf E on Y is associated functorially a coherent sheaf Ean on Y an. If Y = X
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then Y an = X and E 7→ Ean is a quasi-inverse of the equivalence of categories
we mentioned above (hence in this case we will sometimes write E instead of
Ean). If y is a point of Y an and if y denotes its image on Y , we have for
any coherent sheaf E on Y a natural isomorphism between Ean ⊗ OY an,y and
E ⊗ OY an,y.

(0.13) Let us now list various properties we will often use in the sequel.

(0.13.1) If X is a good analytic space and if x ∈ X , the residue field of the
local ring OX,x is a dense subfield of H (x): this follows immediatly from the
definition of the latter.

(0.13.2) If X is a good analytic space and if x ∈ X , then the local ring OX,x

is noetherian, henselian ([2], th. 2.1.4 and th. 2.1.5), and excellent ([15], th.
2.13).

(0.13.3) If X is a good k-analytic space and if L is an analytic extension of k,
then XL → X is a faithfully flat map of locally ringed spaces (for flatness, see
[2], cor. 2.1.3; for surjectivity, see [14], 0.5).

(0.13.4) If X is a good analytic space and if V is a good analytic domain of X
then for any x ∈ V the map Spec OV,x → Spec OX,x is flat with geometrically
reduced fibers ([15], th. 3.3).

(0.13.5) If X is an affinoid space and if Y is an X -scheme of finite type, then
Y an → Y is surjective, and if y is a point on Y an whose image on Y is denoted
by y, then Spec OY an,y → Spec OY ,y is flat with geometrically reduced fibers
([15], th. 3.3).

(0.14) There is a good notion of dimension for an analytic spaces, which is due
to Berkovich ([1], §2); some basic results about it were proven by the author
([14], §1). If X is a k-analytic space we will denote by dimk X the k-analytic
dimension of X ; if x is a point of X , we will denote by dimk,x X the k-analytic
dimension of X at x. In both cases if there is no ambiguity about the ground
field, one will simply write dim X and dimx X . As an example, if Y → X is a
morphism of k-analytic spaces, if x ∈ X and if y ∈ Yx, then dimy Yx will mean
dimH (x),y Yx; this integer is also called the relative dimension of Y → X at x;
if F is a coherent sheaf on Y and if y ∈ Supp F , we will call dimy (Supp F)x
the relative dimension of F at y with respect to X .

While speaking about an analytic space X , its dimension will always have
to be understood as being taken over the field which is not mentioned but is
part of the datum of X .

(0.15) If K is an analytic field and if L is a complete extension of K, we will
set

d(L/K) = tr. deg(L̃1/K̃1) + dimQ Q⊗Z (|L∗|/|K∗|) ∈ N ∪ {+∞}.

One can also define directly d(L/K) as the transcendance degree of the graded

field extension K̃ →֒ L̃. It is related to the dimension: if X is a k-analytic space,
then dim X = sup

x∈X
d (H (x)/k) (cf. [14], 2.14).
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(0.15.1) Let d ∈ N and let Y → X be a surjective morphism between k-analytic
spaces whose relative dimension is equal to d at every point of Y . It follows
immediatly from 0.15 that dim Y = dim X + d.

(0.15.2) Let ϕ : Y → X be a finite morphism between k-analytic spaces;
the image ϕ(Y ) is a Zariski-closed subset of X . Let y ∈ Y and let x be its
image on X . If y is the only pre-image of x on Y , then dimx ϕ(Y ) = dimy Y ;
indeed, one immediatly reduces to the case where Y , X and ϕ(Y ) are k-affinoid.
It is now sufficient to show that if Z is an irreducible component of Y , then
dim ϕ(Z) = dim Z; but this follows from 0.15.1.

(0.16) Remark. If X is an analytic space and if x ∈ X , then dimx X is
defined as the minimal dimension of an analytic domain of X containing x; in
fact, it is coincides with the minimal dimension of an open analytic domain
of X containing x. Indeed, let us denote the latter by d. We obviously have
dimx X 6 d. Let us prove the converse inequality. Let V1, . . . , Vn be affinoid
domains of X containing x such that

⋃
Vi is a neighborhood of x and let F

be the union of all irreducible components of the Vi’s which do not contain
x. There exist an open neighborhood U of x in (

⋃
Vi) − F . For every i, this

neighborhood intersects only the irreducible components of Vi that contain x;
all those components are of dimension bounded by dimx X ; we therefore have
dim U = max dim (U ∩ Vi) 6 dimx X , whence the claim.

(0.17) If X is a k-analytic space and if Y is a subset of X , we will denote by

Y
X

(resp. Y
XZar

) the topological closure of Y inside X (resp. the closure of Y
inside X for the Zariski-topology of the latter).

(0.18) If X is a k-affinoid space and if x ∈ X , the integer

inf
V aff. nghb. of x

dimk {x}VZar

depends only on (X, x); it will be called the k-analytic central dimension of the
germ (X, x) and will be denoted by centdimk (X, x), or simply by centdim (X, x)
if there is no ambiguity about the ground field.

Validity of a property at a point

(0.19) Let P be a property of noetherian local rings (resp. of finitely generated
modules over a noetherian local ring, resp. of a diagram of linear maps between
finite modules over such a ring). As an example, we may consider for P the
property for a noetherian local ring to be regular, that for a finitely generated
module over a noetherian local ring to be CM or to be flat (that is, free), that
for a morphism between modules over such a ring to be injective, or that for a
sequence of linear maps between modules over such a ring to be exact.

(0.19.1) The validity of P at a point: the good case. Let X be a good
analytic space or a scheme, (resp. let X be a good analytic space or a scheme
and let E be a coherent sheaf on X , resp. let X be a good analytic space or a
scheme and let D be a diagram of linear maps between coherent sheaves on X).
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Let x ∈ X . We will say that X (resp. E , resp. D) satisfies P at x if OX,x (resp.
E ⊗ OX,x, resp. D⊗ OX,x) satisfies P.

In order to extend the definition of the validity of P at a point to the case
of a non-necessarily good analytic space, we introduce the following technical
definition.

(0.19.2) Definition. The property P is said to be strongly local if for every
good analytic space Y (resp. for every good analytic space Y and every coherent
sheaf G on Y , resp. for every good analytic space Y and every diagram D of
linear maps between coherent sheaves on Y ), for every good analytic domain Z
of Y and for every y ∈ Z, the following are equivalent:

i) Y (resp. G, resp. D) satisfies P at y;

ii) Z (resp. G|Z , resp. D|Z) satisfies P at y.

(0.19.3) The validity of P at a point: the general case. Assume that P
is strongly local. Let X be an analytic space (resp. let X be an analytic space
and let E be a coherent sheaf on X , resp. let X be an analytic space and let D
be a diagram of linear maps between coherent sheaves on X). Let x ∈ X . The
following are easily seen to be equivalent:

α) for every good analytic domain U of X containing x, U (resp. E|U , resp.
D|U ) satisfies P at x;

β) there exists a good analytic domain U of X containing x such that U
(resp. E|U , resp. D) satisfies P at x.

If both those equivalent assertions are true, we will say that X (resp. E ,
resp. D) satisfies P at x. This definition is compatible with the preceeding one
in the good case. If X (resp. E , resp. D) satisfies P at every point of X , we will
simply say that it satisfies P.

(0.19.4) Remark. If P is strongly local, if X is an analytic space (resp. if X
is an analytic space and if E is a coherent sheaf on X , resp. if X is an analytic
space and if D is a diagram of linear maps between coherent sheaves on X), if
W is an analytic domain of X and if x ∈W , it is obvious that X (resp. E , resp.
D) satisfies P at x if and only if W (resp. E|W , resp. D|W ) satisfies P at x.

(0.19.5) Examples. Let us list some properties which are strongly local.

a) As far as noetherian local rings are concerned, the properties to be regular,
Rm for some m ∈ N, Gorenstein, or a complete intersection (cf. 0.13.4).

b) As far as finitely generated modules over noetherian local rings are con-
cerned, the properties to be Cohen-Macaulay or Sm for some m, or that
to be flat (cf. 0.13.4).
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c) As far as diagram of linear maps are concerned, the exactness of a sequence
(thanks to 0.13.4); in particular, injectivity, surjectivity and bijectivity of
a single arrow are strongly local.

(0.19.6) Remark about surjectivity. If X is a k-analytic space, if x ∈ X
and if G → F is a linear map between coherent sheaves on X , then Nakayama’s
lemma ensures that G → F is surjective at the point x if and only if the arrow
G ⊗ H (x) → F ⊗ H (x) is onto.

(0.20) GAGA-principles. Let P be any of the properties listed at 0.19.5 a)
(resp. 0.19.5 b), resp. 0.19.5 c)) and let X be an affinoid space. Let Y be an
X -scheme of finite type (resp. let Y be an X -scheme of finite type and let E
be a coherent sheaf on Y , resp. let Y be an X -scheme of finite type and let D
be a diagram of linear maps between coherent sheaves on Y ). Let y be a point
of Y an and let y be its image on Y . Then it follows from 0.13.5 that Y (resp.
E , resp. D) satisfies P at y if and only if Y an (resp. Ean, resp. Dan) satisfies P
at y.

(0.21) If X is an analytic space and if E → F is a map of coherent sheaves on
X , then the bijectivity locus of E → F will be the set of points of X at which this
map is bijective; we will denote it by Bij(E → F). It is a Zariski-open subset;
to see that, one immediatly reduces to the affinoid case, and then one uses 0.20
and the well-known scheme-theoretic version of our claim.

(0.22) Let Y → X be a morphism between good analytic spaces or a morphism
of schemes. Let F be a coherent sheaf on Y , let y ∈ Y and let x be its image on
X . The sheaf F will be said to be X-flat at y if F ⊗OY,y is a flat OX,x-module.
If OY is X-flat at y, we will simply say that Y is X-flat at y, or that Y → X is
flat at y.

Γ-strictness

(0.23) We fix a subgroup Γ of R∗
+ such that |k∗|.Γ 6= {1} (that is, such that

|k∗| = 1 ⇒ Γ 6= {1}). We are going to define the notions of a Γ-strict analytic
space and of a Γ-strict germ, and we will relate them to that of a Γ-strict
quasi-compact open subset of a graded Zariski-Riemann space (0.5). As for the
latter, there is small difference between our convention and Temkin’s one ([25],
[12]): we don’t require Γ to contain |k∗|, and what we call Γ-strictness would
be |k∗|-strictness according to Temkin’s conventions.

Most proofs of that section are essentially straightforward adaptations of
those of Temkin in [25], hence won’t be written in full detail; the interested
reader may find complete ones in [12].

(0.24) Let A be a k-affinoid algebra and let Γ be a subgroup of R∗
+ such that

|k∗|.Γ 6= {1} (that is, such that |k∗| = 1 ⇒ Γ 6= {1}). We will say that a A is
Γ-strict if it is a quotient of k{r−1

1 T1, . . . , r
−1
n Tn} for suitables rj ’s belonging to

Γ.
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(0.24.1) If A is a quotient of k{r−1
1 T1, . . . , r

−1
n Tn} for suitables rj ’s belonging

to
√
|k∗|.Γ, then A is Γ-strict. To see that, one first easily reduces to the case

where the rj ’s all belong to
√
Γ. There exists a k-free polyray s = (s1, . . . , sm)

such that every si belongs to Γ and such that every rj belongs to
√
|k∗s |. Then

ks⊗̂kA is strictly ks-affinoid; the proof of cor. 2.1.8 of [1] together with an easy
induction on m shows then that A is Γ-strict.

(0.24.2) A k-affinoid space will be said to be Γ-strict if its algebra of analytic
functions is Γ-strict.

If X is such a space, the spectral semi-norm of any analytic function f on
X belongs to

√
|k∗|.Γ ∪ {0}. Indeed, as we saw above, there exists a k-free

polyray s = (s1, . . . , sm) such that every si belongs to Γ and such that Xs is
strictly ks-affinoid. The spectral semi-norm of f can be computed on Xs; hence
it follows from [9], 6.2.1/4 that it belongs to

√
|k∗s | ⊂

√
|k∗|.Γ ∪ {0}.

Conversely, let X be a k-affinoid space such that the spectral semi-norm
of every analytic function on X belongs to

√
|k∗|.Γ ∪ {0}; then X is Γ-strict.

Indeed, let A be the algebra of analytic functions on X , and let us fix an
admissible epimorphism k{T1/r1, . . . , Tn/rn} → A . For every i, let si be the
spectral radius of the image of Ti in A . By assumption, si ∈

√
|k∗|.Γ ∪ {0}.

Now set ti = si if si 6= 0 and take for ti any element of
√
|k∗|.Γ∩ [0; ri] if si = 0.

The admissible epimorphism k{T1/r1, . . . , Tn/rn} → A factors then through
an admissible epimorphism k{T1/t1, . . . , Tn/tn} → A , whence the Γ-strictness
of A .

(0.24.3) The class of Γ-strict spaces is a dense class in the sense of [2], §1 (the
assumption that Γ.|k∗| 6= {1} has precisely been maid to ensure this property).
It thus gives rise to a corresponding category of analytic spaces, that of the
Γ-strict k-analytic spaces; we will see below (lemma 0.29 iii)) that it is a full
subcategory of the category of all k-analytic spaces. We also have a natural
notion of a Γ-strict k-analytic germ.

If U and V are two Γ-strict affinoid domains of a separated k-analytic space
X , then U ∩V is a Γ-strict affinoid domain of X ; as a consequence, a separated
k-analytic space is Γ-strict if and only if it admits a G-covering by Γ-strict
affinoid domains.

(0.24.4) Any k-affinoid space (resp. k-analytic space, resp. k-analytic germ)
is R∗

+-strict. If |k∗| 6= {1}, a k-affinoid space (resp. k-analytic space, resp.
k-analytic germ) is {1}-strict if and only if it is a strictly k-affinoid space (resp.
a strictly k-analytic space, resp. a strictly k-analytic germ).

The reduction of germs

(0.25) If X is any topological space, an admissible X-space will be a connected,
non-empty, quasi-compact topological space Y equipped with a continuous map
Y → X which induces, for any y ∈ Y, an homeomorphism between an open
neighborhood of y and an open subset of X.
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(0.26) Let k be an analytic field and let (X, x) be a k-analytic germ. Temkin
has defined in [25] the graded reduction of a germ (X, x); it is an admissible

P
H̃ (x)/k̃

-space (̃X, x); this construction is functorial in (X, x).

The germ (X, x) is separated if and only if (̃X, x) is an open subset of
P

H̃ (x)/k̃
.

We fix a subgroup Γ of R∗
+ such that |k∗|.Γ 6= {1}.

(0.27) The notion of a Γ-strict quasi-compact open subset of P
H̃ (x)/k̃

extends

as follows. Let U be an admissible P
H̃ (x)/k̃

-space. We will say that U is Γ-strict

if there exists an admissible P
H̃ (x)

Γ
/k̃Γ

-space V such that

U ≃ V ×P
H̃ (x)

Γ
/k̃Γ

P
H̃ (x)/k̃

.

If it is the case, it follows from prop. 2.6 of [25] that V is uniquely determined.

(0.28) Lemma. Let (X, x) be a k-analytic germ. The following are equivalent:

i) x has a Γ-strict k-affinoid neighborhood in X;

ii) there exist homogeneous elements f1, . . . , fn of H̃ (x) whose degrees all

belong to Γ and such that (̃X, x) = P
H̃ (x)/k̃

{f1, . . . , fn}.

Proof. Implication i) ⇒ ii) follows from the fact that the spectral semi-norm
of an analytic function on a Γ-strict k-affinoid space is an element of

√
|k∗|.Γ

(0.24.2). Assume that ii) is true; then the germ (X, x) is good by th. 5.1 of [25];
in other words, x has an affinoid neighborhood V in x. One can assume that
all fi’s are non-zero; for every i, denote by ri the degree of fi. One can shrink
V such that there exist analytic functions h1, . . . , hn on V satisfying for every

i the equalities |hi(x)| = ri and h̃i(x)ri = fi. The n-uple (h1, . . . , hn) defines a

morphism h : V → An,ank ; set t = h(x). The quasi-compact open subset (̃X, x)

of P
H̃ (x)/k̃

is the pre-image of P
H̃ (t)/k̃

{T̃1(t)r1 , . . . , T̃n(t)rn}, where the Ti’s are
the coordinate functions on the affine space. Let T be the affinoid domain of
An,ank defined by the inequalities |Ti| 6 ri for i = 1, . . . , n.

Thanks to prop. 4.1 iii) of [25], the map (X, x) → (An,ank , t) goes through
(T, t). Hence one can shrink V so that there exist an affinoid neighborhood W
of t in An,ank satisfying h(V ) ⊂ W ∩ T . Since An,ank has no boundary, one can

even choose W to be Γ-strict. As (̃V, x) is the pre-image of ˜(W ∩ T, t) inside
P

H̃ (x)/k̃
, the morphism V → W ∩ T is inner at v ([25], th. 5.2). As W ∩ T is

Γ-strict, lemma 2.5.11 of [1] immediatly implies that x has a Γ-strict affinoid
neighborhood in V , hence in X . �

The lemma that follows is directly inspirated by prop. 2.6, lemma 4.9 and
cor. 4.10 of [25]; once one knows lemma 0.28 above, their proofs can be straight-
forwardly adapted to give assertions i, ii and iii). Assertion iv) follows directly
from the constructions.
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(0.29) Lemma (after Temkin, see prop. 2.6, lemma 4.9 and cor. 4.10
of [25]). Let (X, x) and (Y, y) be k-analytic germs.

i) The germ (X, x) is Γ-strict if and only (̃X, x) is Γ-strict; if it is the case,

the unique admissible P
H̃ (x)

Γ
/k̃Γ

-space (̃X, x) comes from will be denoted by

(̃X, x)
Γ

.

ii) If both (Y, y) and (X, x) are Γ-strict, any morphism (Y, y) → (X, x)

induces a map (̃Y, y)
Γ

→ (̃X, x)
Γ

.

iii) The category of Γ-strict k-analytic germs (resp. Γ-strict k-analytic
spaces) is a full subcategory of the category of all k-analytic germs (resp. k-
analytic spaces);

iv) If Γ = {1} and if (X, x) is {1}-strict, that is, strictly k-analytic, then

(̃X, x){1} is nothing but the non-graded reduction of (X, x) defined by Temkin

in [24]; we will write (̃X, x)
1

instead of (̃X, x)
{1}

. �

(0.30) Let (X, x) and (Y, y) be two Γ-strict k-analytic germs.

(0.30.1) The germ (X, x) is separated if and only if (̃X, x)
Γ

→ P
H̃ (x)

Γ
/k̃Γ

is

an open immersion; it follows from lemma 0.29 and from prop. 4.8 iii) of [25].

(0.30.2) The germ (X, x) is good if and only if it fulfils the equivalent conditions
of lemma 0.28; this follows from prop. 2.5 i) of [25].

(0.30.3) The assignment (V, x) 7→ (̃V, x)
Γ

induces a bijection between the set
of Γ-strict analytic domains of (X, x) and that of quasi-compact, non-empty

open subsets of (̃X, x)
Γ

; it follows from lemma 0.29 and from th. 4.5 of [25].

(0.30.4) If (V, x) is a Γ-strict analytic domain of (X, x), then a given morphism

(Y, y) → (X, x) goes through (V, x) if and only if (̃Y, y)
Γ

→ (̃X, x)
Γ

goes through

(̃V, x)
Γ

; it follows from lemma 0.29 and from prop. 4.1 iii) of [25].

(0.30.5) A given morphism (Y, y) → (X, x) is boundaryless if and only if

(̃Y, y)
Γ

≃ (̃X, x)
Γ

×P
H̃ (x)

Γ
/k̃Γ

P
H̃ (y)

Γ
/k̃Γ

; it follows from lemma 0.29 and from

th. 5.2 of [25].

1 About analytic germs

We fix from now on and till the end of the paper an analytic field
k and a subgroup Γ of R∗

+ such that |k∗|.Γ 6= {1}. By an analytic
(or affinoid) space without any mention of a ground field, we will
always mean an analytic (or affinoid) space (X,L) with L an analytic
extension of k; but as usual, L will be most of the time not mentioned
at all.
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Maps between Riemann-Zariski spaces: the trivially graded

case

(1.1) Lemma. Let K be a field, let |.| be a valuation on it. Let L be an algebraic
extension of K ; let |.|′ be a valuation on L extending |.| . Let S1, . . . , Sn
be indeterminates, and let |.|′′ be an extension of |.|′ to L(S1, . . . , Sn) whose
restriction to K(S1, . . . , Sn) is equal to |.|Gauß. Then |.|′′ = |.|′

Gauß
.

Proof. We denote by k (resp. ℓ) the residue field of |.| (resp. |.|′). By
construction, |Si|Gauß = 1 for any i, and the images of the Si’s in the residue
field of |.|Gauß are algebraically independant over k. As L is algebraic over F ,
ℓ is algebraic over k. Therefore, the images of the Si’s in the residue field of
|.|′′ are algebraically independant over ℓ. It implies that if P =

∑
aIS

I is any
element of the ring L[S1, . . . , Sn] such that |aI |′ 6 1 for any I, then |P |′′ < 1 if
and only if |aI |′ < 1 for any I. Now if P =

∑
aIS

I is any non-zero element of
L[S1, . . . , Sn], dividing P by a coefficient of maximal valuation and applying the
preceeding results immediatly yields |P |′′ = max |aI |′; therefore |.|′′ = |.|′

Gauß
. �

(1.2) Lemma. Let F be a field and let P = T n + an−1T
n−1 + . . . + a0 be a

monic polynomial belonging to F [T ]; set an = 1. Assume that P is split in F .
Let |.| be a valuation on F . The following are equivalent:

i) |λ| > 1 for every root λ of P in F ;

ii) |a0| > |aj | for any j > 0.

Proof. If i) is true then ii) follows immediatly from the usual relations
between the coefficients and the roots of P . Suppose that ii) is true and let λ
be a root of P . As P (λ) = 0 there exists j > 0 such that |a0| 6 |ajλj |. Since
|a0| > |aj |, this implies that |λ| > 1. �

(1.3) Proposition. Let k be a field, let K be an extension of k, and let L be
an algebraic extension of K. Let U be a quasi-compact open subset of PL/k. Its
image V on PK/k is a quasi-compact open subset of the latter.

Proof. We can assume that U is equal to PK/k{f1, . . . , fl} for suitable el-
ements fi’s of L. Set f = f1S1 + . . . flSl ∈ L(S) := L(S1, . . . , Sl). Let
P = T n + an−1T

n−1 + . . . + a0 be the minimal polynomial of f over K(S).
Let K be a finite extension of K(S) in which P splits. Let |.| be a valuation on
K whose restriction to k is trivial. We fix an extension |.|0 of |.|Gauß to K.

(1.3.1) The valuation |.| belongs to V if and only if |.|Gauß extends to a valuation
|.|′′ on L(S) such that |f |′′ 6 1. Indeed, let us first assume that |.| ∈ V. This
means that it extends to a valuation |.|′ on L such that |fi|′ 6 1 for every i, and
|′|Gauß is then an extension of |Gauß| to L(S) satisfying the required properties.

Conversely, assume that |.|Gauß extends to a valuation |.|′′ on L(S) such that
|f |′′ 6 1 and let |.|′ denotes the restriction of |.|′′ to L. Thanks to lemma 1.1, one
has |.|′′ = |′|Gauß; therefore, the inequality |f |′′ 6 1 simply means that |fi|′ 6 1
for every i, and we are done.

(1.3.2) The valuation |Gauß| admits an extension |′|′ to L(S) such that |f |′′ 6 1
if and only if there exists a root λ of P in K such that |λ|0 6 1; according to
lemma 1.2, the latter condition is equivalent to the existence of a positive j such
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that |a0|Gauß 6 |aj |Gauß. Hence V is eventually equal, in view of 1.3.1 above, to
the preimage under |.| 7→ |.|Gauß of

⋃
aj 6=0

PK(S)/k{a0/aj}; this preimage is easily

seen, by the very definition of |.|Gauß for a given |.|, to be a quasi-compact open
subset of PK/k. �

(1.4) Theorem. Let K be a field, let F be an extension of K and let L be an
extension of F . Let f1, . . . , fn be finitely many elements of L and let A be the
F -subalgebra of L generated by the fi’s. For any y ∈ Spec A, denote by py the
map Pκ(y)/K → PF/K .

i) The image V of PL/K{f1, . . . , fn}) on PF/K is a quasi-compact open subset
of the latter.

ii) There exist finitely many closed points y1, . . . , ym of Spec A such that

V =
⋃

j

pyj (Pκ(yj)/K{f1(yj), . . . , fn(yj)} ).

Proof. If y is any closed point of Spec A, its residue field κ(y) is finite over
F . Proposition 1.3 then ensures that py( Pκ(y)/K{f1(y), . . . , fn(y)} ) is a quasi-
compact open subset of PF/K . As V is a quasi-compact topological space, it is
therefore enough, to establish both i) and ii), to prove that

V =
⋃

y∈C

py(Pκ(y)/K{f1(y), . . . , fn(y)} )

where C is the set of all closed points of Spec A.

(1.4.1) Let us first prove that

⋃

y∈C

py( Pκ(y)/K{f1(y), . . . , fn(y)} ) ⊂ V.

We will even show that
⋃

y∈Spec A

py( Pκ(y)/K{f1(y), . . . , fn(y)} ) ⊂ V.

Let y be any point of Spec A and let |.| be a valuation on F which is trivial on
K and which belongs to py( Pκ(y)/K{f1(y), . . . , fn(y)} ), that is, which extends
to a valuation |.|′ on κ(y) which satisfies the inequality |fj(y)|′ 6 1 for any j.
Let |.|′′ be a valuation on L whose ring dominates OSpec A,y. The residue field
K of |.|′′ is an extension of κ(y); we choose an extension |.|′′′ of |.|′ to K. The
composition of |.|′′ and |.|′′′ is a valuation on L whose restriction to F is equal
to |.| and whose ring contains the fj ’s. Hence |.| ∈ pL/F (PL/K{f1, . . . , fn}).

(1.4.2) Let us now prove that

V ⊂
⋃

y∈C

py( Pκ(y)/K{f1(y), . . . , fn(y)} ).

Let |.| be a valuation on F which is trivial on K and which belongs to V, that
is, which extends to a valuation |.|′ on L which satisfies the inequalities |fi|′ 6 1
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for all i’s. If |.| is trivial, we choose a closed point y on Spec A (this is possible
since A 6= {0}); then |.| is the restriction to F of the trivial valuation on κ(y),
whose ring contains evidently the fj(y)’s, and we are done.

Suppose that |.| is non trivial, let L be an algebraic closure of L and let F
be the algebraic closure of F inside L. We choose an extension |.|′′ of |.|′ to L.
Let (P1, . . . , Pm) be polynomials which generate the ideal of relations between
the fi’s over the field F .

The system of equations and inequalities (in variables x1, . . . , xn)

{Pj(x1, . . . , xn) = 0}j=1,...,m and {|xi|′′ 6 1}i=1,...,n

has a solution in L, provided by the fi’s. The quantifiers elimination for non-
trivially valued, algebraically closed fields ensures then that it has a solution in
F; that is exactly what was needed. �

Maps between Riemann-Zariski spaces: the general case

(1.5) Lemma. Let

E // F

K

OO

// L

OO

be a commutative diagram of graded fields such that E ⊗K L → F is injective.
Let A (resp. B, resp. C) be a graded valuation ring of K (resp. L, resp. E);
assume that B ∩K = C ∩K = A. There exists a graded valuation ring D of F
such that D ∩ E = C and D ∩ L = B.

Proof. We denote by a, b and c the respective residue graded fields of A,B
and C. We choose a maximal graded ideal of the non-zero graded ring b ⊗a c;
let d be the corresponding quotient.

Since C has no A-torsion, it is A-flat (with respect to the graded tensor
product). Therefore C ⊗A B →֒ C ⊗A L = (C ⊗A K) ⊗K L. As C ⊗A K is
simply a graded localization of C by a homogeneous multiplicative subset which
doesn’t contain zero, C ⊗A K →֒ E. It follows that C ⊗A L →֒ E ⊗K L →֒ F .
The natural map B ⊗A C → B.C ⊂ F is thus an isomorphism. Hence there
exists a (unique) map B.C → d extending both B → b → d and C → c → d.
The kernel of this map is a homogeneous prime ideal (because its target is a
graded field); by Zorn’s lemma the corresponding graded localization of B.C is
dominated by a graded valuation ring D of F . By construction, D satisfies the
required property. �

(1.6) Corollary. Let K,L,E, F be as above and let l be a graded subfield of
L; set k = K ∩ ℓ. Define π, ρ, ϕ and ψ by the commutative diagram

PF/l
π //

ϕ

��

PE/k

ψ

��
PL/l

ρ // PK/k

.
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If U is any subset of PE/k, then ϕ(π
−1(U)) = ρ−1(ψ(U)).

Proof. The inclusion ϕ(π−1(U)) ⊂ ρ−1(ψ(U)) is obvious (and follows only
from the commutativity of the diagram). Now, let |.| ∈ ρ−1(ψ(U)). This means
that |.| is a graded valuation on L, trivial over l, and that there exists a graded
valuation |.|′ ∈ U such that |.|′|K = |.||K . Thanks to lemma 1.5 above, there

exists a graded valuation |.|′′ on F whose restriction to E is equal to |.|′, and
whose restriction to L is equal to |.|. The latter fact implies that the restriction
of |.|′′ to l is trivial; therefore |.|′′ ∈ π−1(U) and |.| ∈ ϕ(π−1(U)). �

(1.7) Corollary 1.6 above can be used every time one has a commutative dia-
gram of graded fields

E // F

K

OO

// L

OO

such that E⊗K L→ F is injective. Let us give two examples of such a diagram,
which will play a role in the sequel.

(1.7.1) Let K be a graded field and let L be a graded extension of K. The
natural map L1 ⊗K1 K → L is injective. Indeed, let ∆ be the group of degrees
of non-zero homogeneous elements of K; one has K =

⊕
δ∈∆

Kδ. For every

δ ∈ ∆, the K1-vector space Kδ is one-dimensional, and the L1-vector space Lδ

is also one-dimensional and contains Kδ; it follows that L1 ⊗K1 Kδ → Lδ is an
isomorphism. Therefore

L1 ⊗K1 K ≃
⊕

δ∈∆

Lδ ⊂ L,

whence the claim.

(1.7.2) Let K be a graded field, let s1, . . . , sn be positive real numbers, and
let L be a graded extension of K. Let us write K(s−1S) (resp. L(s−1S)) for
K(s−1

1 S1, . . . , s
−1
m Sm) (resp. ...). The natural arrow L⊗K K(s−1S) → L(s−1S)

is then injective. Indeed, it follows directly from the definition that

L⊗K K[s−1S] ≃ L[s−1S].

Therefore L⊗KK(s−1S) appears as a localization of the graded domain L[s−1S]
by a homogeneous multiplicative system which doesn’t contain zero; hence it
embeds in the fraction field L(s−1S) of L[s−1S].

(1.8) Theorem. Let K be a graded field, let F be a graded extension of K
and let L be a graded extension of F . Let ∆ be a subgroup of R∗

+ and let V be
a ∆-strict quasi-compact open subset of PL/K. Its image on PF/K is a ∆-strict
quasi-compact open subset of the latter.

Proof. We will first treat a particular case.
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(1.8.1) Assume that ∆ = {1}. Consider the commutative diagram

PL/K
π //

ϕ

��

PL1/K1

ψ

��
PF/K

ρ // PF 1/K1

.

By assumption, there exists a quasi-compact open subset U of PL1/K1 such that
V = π−1(U). By cor. 1.6 and 1.7.1, one has ϕ(V) = ρ−1(ψ(U)). By th. 1.4,
ψ(U) is a quasi-compact open subset of PF 1/K1 , whence the result.

(1.8.2) Let us treat now the general case. Let s1, . . . , sm be elements of ∆ such
that the degrees of the fi’s all belong to the subgroup of R∗

+ generated by the

sj ’s. Write K(s−1S) (resp. L(s−1S)) for K(s−1
1 S1, . . . , s

−1
m Sm) (resp. ...). Let

us consider the commutative diagram

PL(s−1S)/k
µ //

θ

��

PL/k

ϕ

��
PK(s−1S)/k

ν // PK/k

.

The quasi-compact open subset µ−1(V) of PL(s−1S)/k is strict by choice of the
sj ’s. It follows therefore from 1.8.1 that θ(µ−1(V)) is a strict quasi-compact
open subset of PK(s−1S)/k. By cor. 1.6 and 1.7.2, θ(µ−1(V)) = ν−1(ϕ(V)). As a
consequence, a graded valuation |.| on K which is trivial on k belongs to ϕ(V) if
and only if |.|Gauß belongs to θ(µ

−1(V)). The latter being a strict quasi-compact
open subset, if follows from the very definition of |.| 7→ |.|Gauß and from the
choice of the sj ’s that ϕ(V) is a ∆-strict quasi-compact open subset of PK/k. �

The smallest subdomain containing the image of a germ

(1.9) Let (Y, y) → (X, x) be a morphism of k-analytic germs and assume that
(Y, y) is Γ-strict.

(1.9.1) Let V be an open subset of (̃Y, y) such that V → P
H̃ (y)/k̃

identifies V

with a Γ-strict quasi-compact open subset of P
H̃ (y)/k̃

, and let U be the image

of V on (̃X, x). It follows from th. 1.8 that U → P
H̃ (x)/k̃

identifies U with a

Γ-strict quasi-compact open subset of P
H̃ (x)/k̃

.

(1.9.2) Let Z be the image of (̃Y, y) on (̃X, x). It follows from 1.9.1 above
that Z admits a finite covering

⋃
Zi where Zi is for every i homeomorphic to a

Γ-strict quasi-compact open subset of P
H̃ (x)/k̃

; as a consequence, Z is a quasi-

compact open subset of (̃X, x), and is Γ-strict if (̃X, x) ⊂ P
H̃ (x)/k̃

, that is, if

(X, x) is separated.

The quasi-compact, non-empty open subset Z corresponds to an analytic
domain (Z, x) of (X, x). By what we have just seen, the analytic domain (Z, x)
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has a finite covering by separated, Γ-strict analytic domains, and is itself Γ-strict
as soon as (X, x) is separated. In view of 0.30.4, (Z, x) is the smallest analytic
domain of (X, x) through which (Y, y) → (X, x) goes.

It follows from the construction that if (Y1, y), . . . , (Yn, y) are analytic do-
mains of (Y, y) such that (Y, y) =

⋃
(Yi, y) an if (Zi, x) denotes for every i the

smallest analytic domain of (X, x) through which (Yi, y) → (X, x) goes, then
(Z, x) =

⋃
(Zi, x).

(1.9.3) If (̃Y, y) → (̃X, x) is surjective, then (Z, x) = (X, x); note that by 0.30.5
it happens in particular if (Y, y) → (X, x) is boundaryless.

(1.9.4) Let ∆ be a subgroup of R∗
+ such that |k∗|.∆ 6= {1} and such that

(Y, y), (X, x) and (Z, x) are ∆-strict. It follows from cor. 1.6 that the image of

(̃Y, y)
∆

on (̃X, x)
∆

is equal to (̃Z, x)
∆

.

(1.10) Let us now mention some straightforward ’global’ consequences of 1.9.2;
let ϕ : Y → X be a morphism of k-analytic spaces.

(1.10.1) Let y ∈ Y such that (Y, y) is Γ-strict; there exist a Γ-strict compact
analytic neighborhood V of y in Y and a compact analytic domain U of X which
is a finite union of compact, Γ-strict analytic domains, such that ϕ(V ) ⊂ U .
Note that if X is separated then U is itself Γ-strict.

(1.10.2) Assume that Y is compact and Γ-strict, and that X is separated.
Using 1.10.1, one deduces the existence of a Γ-strict compact analytic domain
W of X such that ϕ(Y ) ⊂W .

Germs and dimension

(1.11) Lemma. Let X be an affinoid space and let x ∈ X. Let x be its image
on X and let m be the maximal ideal of OX ,x. The following are equivalent :

i) centdim(X, x) = dim {x}XZar
;

ii) mOX,x is the maximal ideal of OX,x;

iii) dimKrull OX,x = dimKrull OX ,x.

Proof. By flatness of the local map OX ,x → OX,x, assertion iii) is equivalent
to the fact that the codimension of the closed point ω of Spec OX,x inside the
special fiber of Spec OX,x → OX ,x is equal to zero; but this is the case if and
only if this fiber is set-theoretically equal to {ω}, that is, if and only if OX,x/m is
artinian; as the fibers of Spec OX,x → OX ,x are (geometrically) reduced (0.13.4)
the latter is equivalent to the fact that OX,x/m is a field, which means exactly
that mOX,x is the maximal ideal of OX,x ; hence ii) ⇐⇒ iii).

On can prove that i) ⇐⇒ ii) after replacing X by any Zariski-closed
subspace of X containing x; hence by taking for such a space the one that
corresponds to the reduced closed subscheme {x} of X , one can assume that
X is irreducible and reduced, and that m = 0 ; in this situation, X is also
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irreducible and reduced (cf. 0.13.5). Let d be the dimension of X ; it coincides

now with dim {x}XZar
.

Assume that i) is true, that is, that d = centdim(X, x). Let f be a non-zero
element of OX,x, and let V be an affinoid neighborhood of x on which f is
defined. Let Y and Z be two irreducible components of V containing x. Both
are of dimension d; if Y 6= Z, there intersection is a Zariski-closed subset of V
containing x and of dimension strictly lower than d, which contradicts i). Then
there is only one irreducible component Y of V containing x. The zero-locus
of f on Y is a Zariski-closed subset of Y which is not equal to the whole Y ,
because if it where then f would vanish on a neighborhood of x, hence would
vanish in the reduced local ring OX,x; but by assumption, this is not the case.
Therefore the dimension of the zero-locus of f is strictly lower than d, and then
this locus can not contain x because of i). As a consequence, f is invertible in
OX,x. Thus the latter is a field, and we have proved ii).

Assume that ii) is true, that is, that OX,x is a field. Let V be an affinoid
neighborhood of x in X and let Z be a Zariski-closed subset of V containing x.
Let f1, . . . , fn be analytic functions on V which generate the vanishing ideal of
Z. For any i, we have fi(x) = 0; the image of fi in OX,x is then not invertible,
hence is zero. Therefore Z contains a neighborhood U of x in V . As X is
irreducible of dimension d, it is purely d-dimensional and the dimension of U
is equal to d. This implies that the dimension of Z (which is bounded by d) is
also equal to d; therefore, i) is proved. �

(1.12) Corollary. Let X be a good analytic space and let x ∈ X. One has the
equality centdim(X, x) + dimKrull OX,x = dimx X.

Proof. Set d = centdim(X, x). One can assume that X is k-affinoid and

that {x}XZar
= d. Let x be the image of x on X . Let X1, . . . , Xn be the

irreducible components of X that go through x. The Zariski-closure of x in X
is an irreducible Zariski-closed subset Z of X of dimension d, which is included
in every Xi. For any i, set di = dim Xi and δi = codimKrull(Z,Xi); one has
di = δi + d ([14], prop. 1.11).

Now dimx X = max di ; the preceeding lemma ensures that dimKrull OX,x

coincides with dimKrull OX ,x, that is, with codimKrull(Z,X) which is nothing but
max δi. The corollary follows immediatly. �

(1.13) Lemma. If Y → X is a morphism between good k-analytic spaces, if
y ∈ Y is a point at which this map is finite, and if x denotes the image of y on
X, then centdim(X, x) = centdim(Y, y).

Proof. One can shrink Y and X so that both are affinoid, and so that

dim {x}XZar
= centdim(X, x) and dim {y}YZar

= centdim(Y, y). Now the image

of {y}YZar
on X coincides with {x}XZar

; but it follows then from 0.15.1that

dim {x}XZar
= dim {y}YZar

, whence our claim. �
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2 Flatness and universal flatness

Algebraic flatness versus analytic flatness

(2.1) Lemma. Let

D Coo

B

OO

Aoo

OO

be a commutative diagramm of commutative

rings such that C (resp. D) is flat (resp. faithfully flat) over A (resp. B). If
M is a B-module such that D ⊗B M is C-flat, then M is A-flat.

Proof. Let N →֒ N ′ be an injective linear map between two A-modules. As
C is A-flat, C ⊗A N →֒ C ⊗A N ′. As M ⊗B D is C-flat,

(M ⊗B D)⊗C (C ⊗A N)︸ ︷︷ ︸
(M⊗BD)⊗AN

→֒ (M ⊗B D)⊗C (C ⊗A N ′)︸ ︷︷ ︸
(M⊗BD)⊗AN ′

.

In other words, (N ⊗AM)⊗B D →֒ (N ′ ⊗AM)⊗B D. Faithfull flatness of the
B-algebra D now implies that N ⊗AM →֒ N ′ ⊗AM . �

Fitting together 0.13.5 and lemma 2.1 above immediately gives sthe following
result.

(2.2) Lemma. Let A → B be a morphism between k-affinoid algebras; let Y

(resp. X ) be a B-scheme (resp. an A -scheme) of finite type, and let Y → X

be an A -morphism. Let y ∈ Y an and let y be its image on Y . Let F be a
coherent sheaf on Y . If Fan is X an-flat at y, then F is X -flat at y. �

(2.3) We would like now prove the converse implication in some particular
cases; let us first mention two cases in which it is more or less well-known.

(2.3.1) Let Y → X be a finite morphism between affinoid spaces, let y ∈ Y
and let y be its image on Y . If F is a coherent sheaf on Y , then F is X-flat at
y if and only if it is X -flat at y: this is essentially prop. 3.2.1 of [2] – the latter
is written only for F = OY , but its proof works actually for any coherent sheaf.

(2.3.2) Let Y → X be a morphism between affinoid spaces, let y ∈ Y and let
x be its image on X ; denote by y and x their respective images on Y and
X . If x and y are rigid and if F is a coherent sheaf on Y then F is X-flat
at y if and only if it is X -flat at y. If |k∗| 6= {1} and if Y and X are strictly
k-affinoid, this is a classical assertion of rigid-analytic geometry, but its proof is
very simple and immediately extends to our situation: indeed, one knows from

[18], cor. 5.8 that F ⊗ OY,y is flat over OX,x if and only if F ⊗ ÔY,y is flat over

ÔX,x, and that F ⊗ OY ,y is flat over OX ,x if and only if F ⊗ ÔY ,y is flat over

ÔX ,x; but as x and y are rigid, ÔX,x = ÔX ,x and ÔY,y = ÔY ,y ([2], lemma
2.6.3), whence our claim.

(2.4) Now we are going to prove two results. The first one is a generalization
of 2.3.1 to any morphism between schemes of finite type over a given affinoid
algebra; the second one will concern any morphism between affinoid spaces, and
extend both 2.3.1 and 2.3.2.
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(2.5) Proposition. Let Y → X be a morphism between schemes of finite
type over a given affinoid algebra. Let F be a coherent sheaf on Y , let y be a
point of Y an and let y be its image on Y . If F is X -flat at y, then Fan is
X an-flat at y.

Proof. We can assume that X is affine. Let x be the image of y on X an

and let U be an affinoid neighborhood of x in X an. There is a natural map
from OX (X ) to OU (U ) which induces a morphism U → X , and the space
Y an ×X an U can be identified with (Y ×X U )an. Let us call z the image
of y on Y ×X U . Since flatness is preserved by any scheme-theoretic base
change, F ⊗ OY ×X U ,z is OU ,x-flat, where x is the image of x on U . The
ring OY an×X anU,y is OY ×X U ,z-flat by 0.13.5; therefore, F ⊗ OY an×X anU,y′ is
OU ,x-flat. One concludes with a straightforward limit argument. �

(2.6) Theorem. Let A → B be a morphism between k-affinoid algebras and
let Y → X be the induced arrow between the corresponding affinoid spaces. Let
M be a finitely generated B-module, let y ∈ Y and let x be its image on X.
Let y (resp. x) be the image of y on Y (resp. of x on X ). Assume that there
exists a Zariski-closed subspace Z of Y containing y such that Z → X is finite.
Suppose that M ⊗B OY ,y is OX ,x-flat; then M ⊗B OY,y is OX,x-flat.

Proof. Let V be an affinoid neighborhood of x in X and let W be the
pre-image of V on Y . We denote by AV (resp. BW ) the algebra of analytic
functions on V (resp. W ); we set MW = M ⊗B BW . Let p the prime ideal of
A that corresponds to x, and let I be the ideal of B that corresponds to Z.
Let η (resp. ξ) be the image of y (resp. x) on W (resp. V ).

We are going to prove that M ⊗B OW ,η is a flat OV ,ξ-module. By [18], th.
5.6 the latter is true if and only if the two following conditions are satisfied:

i) M ⊗B OW ,η/p is OV ,ξ/p-flat;

ii) for any d > 0, the natural map

M ⊗B (pdOW ,η/p
d+1

OW ,η) → pd(M ⊗B OW ,η)/p
d+1(M ⊗B OW ,η)

is an isomorphism.

(2.6.1) Let us prove i). The quotient B/I is a finite A -algebra; we therefore
have BW /I = (B/I )⊗A AV . We set N =M/pM .

Let n be a non-negative integer. As OX ,x/p is a field, the OX ,x/p-module
(I nN/I n+1N)⊗A OX ,x/p is flat. It follows that (I nN/I n+1N)⊗A OV ,ξ/p
is a flat OV ,ξ/p-module. It can be rewritten as

(I nN/I n+1N)⊗B/I (B/I )⊗A AV ⊗AV OV ,ξ/p

= (I nN/I n+1N)⊗B/I (BW /I )⊗AV OV ,ξ/p.

The ring OW ,η/(p+ I ) is a localization of (BW /I )⊗AV OV ,ξ/p. For that
reason, (I nN/I n+1N)⊗B/I OW ,η/(p+ I ) is OV ,ξ/p-flat.
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We obviously have

(I nN/I n+1N)⊗B/I OW ,η/(p+ I ) = (I nN/I n+1N)⊗B OW ,η.

As OW ,η is a flat B-algebra, the latter coincides with

I
n(N ⊗B OW ,η)/I

n+1(N ⊗B OW ,η).

The OV ,ξ/p-module I n(N ⊗B OW ,η)/I
n+1(N ⊗B OW ,η) is thus flat for any

non-negative n. It obviously implies that for any such n, the OV ,ξ/p-module

(N ⊗B OW ,η)/I
n+1(N ⊗B OW ,η)

is flat. By [16], chapt. 0, §10.2.6, M ⊗B OW ,η/p = N ⊗B OW ,η is then OV ,ξ/p-
flat; hence i) is true.

(2.6.2) Let us prove ii). Let d be a positive integer. By assumption,M⊗BOY ,y

is OX ,x-flat. By [18], th. 5.6, the natural map

M ⊗B (pdOY ,y/p
d+1

OY ,y) → pd(M ⊗B OY ,y)/p
d+1(M ⊗B OY ,y)

is then an isomorphism. As OW ,η is a flat OY ,y-algebra, ii) follows immediately.

(2.6.3) Remark. The existence of Z (resp. the OX ,x-flatness ofM ⊗B OY ,y)
was used only while proving i) (resp. ii) ).

(2.6.4) Conclusion. Let T be any affinoid neighborhood of y in W , and let
τ be the image of y on T . As OT ,τ is a flat OW ,η-algebra, the OV ,ξ-module
M ⊗B OT ,τ is flat.

We thus have shown the following: if V is any neighborhood of x in X , if
T is any affinoid neighborhood of y in the pre-image of V inside Y , and if τ
(resp. ξ) denotes the image of y (resp. x) on T (resp. V ), then M ⊗B OT ,τ

is OV ,ξ-flat. A straightforward limit argument then ensures that M ⊗B OY,y is
OX,x-flat. �

Universal flatness

(2.7) Let Y → X be a morphism between good k-analytic spaces, and let F be
a coherent sheaf on Y . Let y ∈ Y . We will say that F is universally X-flat at y
if for any any good analytic space X ′, sfor any morphism X ′ → X , and for any
point y′ lying above y on Y ′ := Y ×X X ′, the pull-back of F on Y ′ is X ′-flat
at y′. If F = OY , we will simply say that Y is universally X-flat at y, or that
Y → X is universally flat at y. If Y → X is universally flat at any point of Y ,
we will simply say that Y → X is universally flat.

(2.8) Remark. If F is universally X-flat at y, then it is in particular X-flat
at y.
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Examples

(2.9) Let Y → X be a morphism between good k-analytic spaces and let y ∈ Y .
Let X ′ be a good analytic space, let X ′ → X be a morphism, and let y′ be a
point of Y ′ := Y ×X X ′ lying over y. If F is a coherent sheaf on Y which is
universally X-flat at y, then its inverse image on Y ′ is universally X ′-flat at y′.

(2.10) Let Z → Y and Y → X be morphisms between good k-analytic spaces,
let z ∈ Z and let y be its image on Y . If Z → Y is universally flat at z, and if
Y → X is universally flat at y, then Z → X is universally flat at z.

(2.11) If X is a good analytic space and if Y is a good analytic domain of X ,
then Y →֒ X is universally flat (0.13.4).

(2.12) Let ϕ : Y → X be a morphism of good k-analytic spaces and let
y ∈ Y . Let V be a good analytic domain of Y containing y and let U be a good
analytic domain of X containing ϕ(V ). Let F be a coherent sheaf on Y . It
follows straightforwardly from 2.11 above that the following are equivalent:

α) F is universally X-flat at y;

β) F|V is universally U -flat at y.

(2.13) Let A be an affinoid algebra, and let Y and X be two A -schemes of
finite type. Let Y → X be an A -morphism, let y be a point of Y an and let
y be the image of y on Y . Let F be a coherent sheaf on Y which is X -flat at
y. Then Fan is universally X an-flat at y. Indeed, one can assume that X is
affine. Let V be an affinoid space, let V → X an be a morphism, and let y′ be a
point of Y an×X an V lying above y; there is a natural map OX (X ) → OV (V )
which induces a morphism V → X , and Y an ×X an V can be identified with
(Y ×X V )an. Let us call y′ the image of y′ on Y ×X V . As flatness behaves
well under scheme-theoretic base change, the pull-back of F on Y ×X V is
V -flat at y′; by prop. 2.5, the pull-back of Fan on Y an×X an V is V -flat at y′,
whence the claim.

(2.14) Let Y be a good k-analytic space. The structure map Y → M (k) is
universally flat. To see that, one can assume that Y is k-affinoid. Let X be
an affinoid space. Let y ∈ Y ×k X , and let x be its image on X . Let U be an
affinoid neighborhood of x in X , and let V be an affinoid neighborhood of y
in Y ×X U . Let B (resp. A , resp. C ) be the respective algebras of analytic
functions on Y , U and V . The A ⊗̂kB-algebra C is flat ([1], prop. 2.2.4); the
A -algebra A ⊗̂kB is flat ([2], lemma 2.1.2, the fact that K is a field is not used
in its proof); hence C is A -flat. By a straightforward limit argument, OY×kX,y

is a flat OX,x-algebra.

The flat, locally finite morphisms

We will use what we have just done to show some results which were already
proven in [2], §3.2 when F = OY ; we include the proofs (which may differ of
those of [2]) for the convenience of the reader.
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(2.15) Lemma. Let Y → X be a finite morphism between good k-analytic
spaces, let x ∈ X and let y1, . . . , yr be the pre-images of x. Let F be a coherent
sheaf on Y . The OX,x-module π∗F ⊗ OX,x is isomorphic to

∏F ⊗ OY,yi . In
particular, π∗F is flat at x if and only if F is X-flat at every yi.

Proof. It follows straightforwardly from the fact (due to properness of
Y → X) that for any neighborhood V of {y1, . . . , yr}, there exist an affinoid
neighborhood U of x in X whose pre-image is included in V and is a disjoint
union

∐
Vi, where Vi is for every i an affinoid neighborhood of yi in Y . �

(2.16) Proposition. Let Y → X be a morphism between good k-analytic
spaces and let y be a point of Y at which this morphism is finite; let x be the
image of y on X. Let F be a coherent sheaf on Y . The following are equivalent:

i) F is X-flat at y;

ii) there exist an affinoid neighborhood T of y in Y and an affinoid neigh-
borhood S of x in X such that T → X goes through a finite map π : T → S and
such that π∗F|T is flat at x;

iii) there exist an affinoid neighborhood T of y in Y and an affinoid neigh-
borhood S of x in X such that T → X goes through a finite map π : T → S and
such that π∗F|T is a free OS-module;

iv) there exist an affinoid neighborhood T of y in Y and an affinoid neigh-
borhood S of x in X such that T → X goes through a finite map π : T → S and
such that F(T ) is a flat OS(S)-module;

v) there exist an affinoid domain T of Y containing y and an affinoid domain
S of X such that T → X goes through a finite map π : T → S and such that
F(T ) is a flat OS(S)-module;

vi) F is universally X-flat at y.

Proof. Suppose that i) is true. As Y → X is finite at y, there exist an
affinoid neighborhood T of y in Y and an affinoid neighborhood S of x in X
such that T → X goes through a finite map π : T → S for which y is the only
pre-image of x; as F is X-flat at y, lemma 2.15 tells us that π∗F|T is T -flat at x,
whence ii). If ii) is true, then π∗F ⊗OS,x is free, hence iii) follows by shrinking
S (and then T ). Both implications iii) ⇒ iv) and iv) ⇒ v) are obvious. If v)
is true, then by 2.13, F|T is universally S-flat at y; therefore F is universally
X-flat at y (2.12), that is, vi) is true; and vi) ⇒ i) is obvious. �

(2.17) Corollary. Let Y → X be a morphism of good k-analytic spaces, let
y ∈ Y such that Y → X is finite at y and let x be the image of y. Let F be
a coherent sheaf on Y . If y ∈ Supp F and if F is X-flat at y, the image of
Supp F on X is a neighborhood of x.

Proof. Let us choose T and S as in iii) above; as y ∈ Supp F , the free
OS-module π∗F|T is of positive rank; therefore, the image of Supp F contains
S. �

(2.18) Corollary. Let Y → X be a morphism of good k-analytic spaces,
let y ∈ Y such that Y → X is finite at y and let x be the image of y. Let
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F be a coherent sheaf on Y . If y ∈ Supp F and if F is X-flat at y, then
dimx X = dimy Supp F .

Proof. One can assume that Y → X is finite and that y is the only pre-image
of x on Y . The image of Supp F on Y is a Zariski-closed subset T of X , and
one has dimx T = dimy Supp F (0.15.2); on the other way, T is a neighborhood
of x in X by the corollary above, hence dimx T = dimx X . �

Counter-examples

(2.19) Let r be a positive real number and let f =
∑
αiT

i be a power series

with coefficients in k such that |αi|rii→+∞
// 0 and such that (|αi|si)i is non-

bounded as soon as s > r. We denote by p : A2,an
k → A1,an

k the first projection.

Let X be the analytic domain of A2,an
k defined by the inequality |T1| 6 r, and

let Y be the one-dimensional closed disc of radius r; note that X = p−1(Y ), that
is, X can be identified with Y ×k A1,an

k . The map ϕ := (Id, f) from Y to X is a
closed immersion; it induces an isomorphism between Y and the Zariski-closed
subset ϕ(Y ) ofX , endowed with its reduced structure; the converse isomorphism
is nothing but p|ϕ(Y ). Let y be the unique point of the Shilov boundary of Y ,
that is, the point given by the semi-norm

∑
aiT 7→ max |ai|ri; set x = ϕ(y).

(2.20) Lemma. Let T be reduced one-dimensional good analytic space and let
t ∈ T which is not a rigid point. The local ring OT,t is a field.

Proof. By cor. 1.12 one has centdim(T, t) + dimKrull OT,t = dimt T . As t
is not rigid, centdim(T, t) > 0; as T is one-dimensional, dimt T 6 1. Therefore
dimKrull OT,t = 0; beeing reduced, OT,t is thus a field. �

(2.21) Lemma. The local ring OA2,an
k ,x is a field.

Proof. As the analytic space A2,an
k is reduced, this is sufficient to prove that

dimKrull OA2,an
k ,x = 0, which is equivalent, in view of cor. 1.12, to the fact that

centdim(A2,an
k , x) = 2. Since x is not a rigid point (because H (x) = H (y)),

centdim(A2,an
k , x) > 0.

Assume that centdim(A2,an
k , x) = 1. Then there exists an affinoid neighbor-

hood V of x and an irreducible one-dimensional Zariski-closed subset Z of V
which contains x.

Both Z ∩ X = Z ∩ (V ∩ X) and ϕ(Y ) ∩ V = ϕ(Y ) ∩ (V ∩ X) are purely
one-dimensional Zariski-closed subsets of V ∩X containing x. As x is not a rigid
point, it belongs to a unique irreducible component of (Z ∩ X) ∪ (ϕ(Y ) ∩ V );
therefore it belongs to a unique irreducible component of Z ∩ X , to a unique
irreducible component of ϕ(Y ) ∩ V , and those two components coincide. One
can hence shrink V so that Z ∩X = ϕ(Y )∩ V ; by endowing Z with its reduced
structure, this equality turns out to be an equality of Zariski-closed subspaces
of X ∩ V .

One has d(H (y)/k) = 1. If z is any point of Z such that p(z) = y, then
the inequality d(H (z)/k) 6 1 (due to the fact that Z is one-dimensional)
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forces d(H (z)/H (y)) to be equal to zero. Therefore p−1
|Z (y) is purely zero-

dimensional. In particular, p|Z is zero-dimensional at x; moreover, since x

belongs to the topological interior of V in A2,an
k , the map p|Z is inner at x;

prop. 3.1.4 of [2] then ensures that p|Z is finite at x; as OA1,an
k ,y is a field by

lemma 2.20, p|Z is flat at x. It follows from prop. 2.16 that one can shrink V so

that there exists an affinoid neighborhood U of y in A1,an
k such that p(Z) ⊂ U ,

and such that p|Z : Z → U is finite and makes OZ(Z) a free OU (U)-module of
finite positive rank, say r (note that we thus have p(Z) = U). By restricting to
Y , one sees that p|Z∩X : (Z ∩X) → (U ∩ Y ) is finite and makes OZ∩X(Z ∩X)
a free OU∩Y (U ∩Y )-module of rank r (remind that X = p−1(Y )); we thus have
p(Z ∩X) = U ∩ Y .

As p|ϕ(Y ) induces an isomorphism ϕ(Y ) ≃ Y whose converse ismorphism is
ϕ, the image p(ϕ(Y )∩V ) is an analytic domain of Y and p|ϕ(Y )∩V induces an iso-
morphism ϕ(Y )∩V ≃ p(ϕ(Y )∩V ) whose converse isomorphism is ϕ|p(ϕ(Y )∩V ).

But p(ϕ(Y ) ∩ V ) = p(Z ∩ X) = U ∩ Y . Therefore p|Z∩X induces an iso-
morphism (Z ∩ X) ≃ (U ∩ Y ) whose inverse is ϕ|U∩Y . As OZ∩X(Z ∩ X) is a
free OU∩Y (U ∩ Y )-module of rank r, we have r = 1; otherwise said, p induces
an isomorphism Z ≃ U . The converse isomorphism defines a section σ of the
first projection U ×k A1,an

k → U ; we have σ|U∩Y = ϕ|U∩Y . We can thus glue σ

and ϕ to obtain a section of the first projection (U ∪ Y ) ×k A1,an
k → (U ∪ Y )

which coincides with ϕ on Y , that is, an analytic function g on U ∪ Y which
coincides with f on Y . As U is a neighborhood of y in A1,an

k , the analytic

domain U ∪ Y of A1,an
k contains a closed disc or radius s > r. The restriction

of g to this disc can be written as a power series
∑
βiT

i with |βi|sii→+∞
// 0 .

As g|Y = f , one has βi = αi for every i. But by assumption (|αi|si)i is non-

bounded, contradicton. Hence centdim(A2,an
k , x) can not be equal to one; there-

fore centdim(A2,an
k , x) = 2. �

(2.22) Let W be a closed two-dimensional disc centered at the origin of A2,an
k

such that x belongs to the corresponding open polydisc. Note that OW,x coin-

cides with OA2,an
k ,x, hence is a field, and that ϕ : Y → A2,an

k goes through W .

From now on, ϕ will denote the induced map Y →W .

(2.23) As OW,x is a field, ϕ is flat at y. But it is not universally flat at y. We
will give two reasons for that.

• Let L be an analytic extension of k such that there exists an L-rational
point y′ on YL lying above y (e.g. L = H (y)). As y′ is a L-point, it
belongs to Int YL/L; therefore ϕL is finite at y′ (it is even locally a closed
immersion around y′). Then ϕL is not flat at y′ for dimensional reasons
(cor. 2.18).

• Y ×W (W ∩X) = Y , and Y →W ∩X is a closed immersion; for the same
kind of dimensional reasons as above, it is not flat at y.
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(2.24) Let η be the generic point of Y . As ϕ is flat at y, it follows from lemma
2.2 that the induced map Y → W is flat at η. Now, let ρ be a positive real
number such that ρ < r. Let ω ∈ Y be the point that is given by the semi-
norm

∑
aiT

i 7→ max |ai|ρi. The image of ω on Y is η, but since ω ∈ Int Y/k,
the morphism ϕ is finite at ω, hence is not flat at ω for dimensional reasons
(cor.2.18).

(2.25) Let us now assume that r /∈
√
|k∗|. In this case, {y} is an affinoid

domain of Y (defined by the equality |T | = r); the corresponding k-affinoid
algebra is nothing but kr. Since OW,x is a field, ϕ|{y} is flat. It follows from
lemma 2.2 that Spec kr → W is flat.

Let L be any analytic extension of k such that r ∈
√
|L∗| (e.g. L = kr).

The space M (L⊗̂kkr) is strictly L-affinoid and non-empty; it has thus an L-
rigid point, say t. By cor. 2.18, the morphism M (L⊗̂kkr) → WL is not flat
at t; it follows from th. 2.6 (for a direct and simpler proof, cf. 2.3.2) that
Spec (L⊗̂kkr) → WL is not flat at the closed point of Spec (L⊗̂kkr) that corre-
sponds to t.

The non-necessarily good case

(2.26) Now let Y → X be a morphism of non-necessarily good k-analytic spaces
and let y ∈ Y . Let F be a coherent sheaf on Y .

(2.26.1) From 2.12 , we deduce the equivalence of the following:

i) for all couples (V, U), where V is a good analytic domain of Y containing
y and where U is a good analytic domain of X containing ϕ(V ), the coherent
sheaf F|V is universally U -flat at y;

ii) there exist a good analytic domain V of Y containing y and a good
analytic domain U of X containing ϕ(V ) such that the coherent sheaf F|V is
universally U -flat at y.

(2.26.2) We will say that F is universally X-flat at y if it satisfies the equivalent
assertions i) an ii); we will say that Y is universally X-flat at y if OY is, and
that Y is universally X-flat if it is universally X-flat at all its points. Those
definitions are compatible with the preceeding ones when Y and X are good.

(2.26.3) An immersion of an analytic domain is universally flat.

(2.26.4) Let Y → X be a morphism of k-analytic spaces, let V be an analytic
doman of Y and let U be an analytic domain of X which contains the image of
V . Let F be a coherent sheaf on Y and let y ∈ V . It follows immediatly from
the definition that F is universally X-flat at y if and only if F|V is universally
U -flat at y.

(2.26.5) Universal flatness of a coherent sheaf at a point is preserved by base
change and ground field extension; universal flatness of a map at a point is
stable under composition.

(2.26.6) If X is any k-analytic space, the structure map X → M(k) is univer-
sally flat.
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Universally flat maps behave as expected

Let us begin with an immediate consequence of lemma 2.1.

(2.27) Lemma. Let

Z

��

// T

��
Y // X

be a commutative diagram of good analytic

spaces, let z ∈ Z and let t (resp. y) be its image on T (resp. Y ). Let F be a
coherent sheaf on Y and let G be its pull-back on Z. Suppose that T is X-flat
at t and that Z is Y -flat at z. If G is T -flat at z then F is X-flat at y. �

(2.28) Lemma. Let Y → X be a morphism of k-affinoid spaces and let L and
F be two be an analytic extensions of k. Let X ′ be an F -affinoid space and let
X ′ → X be a morphism; set Y ′ = Y ×X X ′ = YF ×XF X

′. Let y be a point on
Y . Let u (resp. y′) be a point of YL (resp. Y ′) lying above y. There exist a
complete extension K of k, equipped with two isometric k-embeddings F →֒ K
and L →֒ K, and a point ω of

Y ′
K := Y ′ ×F K ≃ Y ×X X ′

K ≃ YK ×XK X ′
K ≃ YL ×XL X

′
K ≃ YF ×XF X

′
K

lying above both y′ and u.

Proof. Let A ,B and A ′ be the respective algebras of analytic functions on
X,Y and X ′. The points u and y′ furnish a couple of characters

(B⊗̂kL→ H (u),B⊗̂A A
′ → H (y′)),

the restriction of every of which to B goes through B → H (y). The Banach
algebra H (u)⊗̂H (y)H (y′) is non-zero (a result by Gruson ensures that it con-
tains H (u)⊗H (y) H (y′), [19], th. 1, 4); there exists therefore an analytic field

K and a bounded homomorphism H (u)⊗̂H (y)H (y′) → K ([1], th. 1.2.1),
which makes K an analytic extension of both H (u) and H (y′).

One thus get a new couple of characters

(B⊗̂kL→ K,B⊗̂A A
′ → K)

whose restriction to B coincide; that couple induces tautologically a character
A ′⊗̂A B⊗̂kL→ K, which extends canonically to a character

(A ′⊗̂FK)⊗̂AKB⊗̂kK → K.

The latter defines a point ω on YK ×XK X ′
K lying by construction above both

y′ and u. �

(2.29) Proposition. Let

Z

��

// T

��
Y // X

be a commutative diagram of k-analytic

spaces, let z ∈ Z and let t (resp. y) be its image on T (resp. Y ). Let F
be a coherent sheaf on Y , and let G be its pull-back on Z. Suppose that T is
universally X-flat at t, that Z is universally Y -flat at z and that G is universally
T -flat at z; under those assumptions F is universally X-flat at y.
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Proof. One immediatly reduces to the case where all spaces are affinoid.
Let X ′ be a good analytic space and let X ′ → X be a morphism. We set
Y ′ = Y ×X X ′ and so on. Let y′ be a point on Y ′ lying above y, and let z′ be
a point on Z ′ lying above both z and y′; denote by t′ the image of z′ on T ′.
Since G is universally T -flat at z, the sheaf G′ is T ′-flat at z′. Since T (resp. Z)
is universally X-flat at t (resp. universally Y -flat at z), T ′ (resp. Z ′) is X ′-flat
at t′ (resp. Y ′-flat at z′). Lemma 2.27 above now implies that F ′ is X ′-flat at
y′. �

(2.30) Proposition. Let Y → X be a morphism of k-analytic spaces and let
L be an analytic extension of k. Let y ∈ Y and let F be a coherent sheaf on Y .
Let u be a point of YL lying above y. Suppose that the pullback FL of F on YL
is universally XL-flat at u; the coherent sheaf F is then universally X-flat at y.

Proof. One can assume that both Y and X are affinoid. Let X ′ be a good
F -analytic space for some analytic extension F of k. We set Y ′ = Y ×X X ′.
Let y′ be a point on Y ′ lying above y; we will show that the pullback F ′ of F
on Y ′ is X ′-flat at y; by shrinking X ′, one can assume that it is F -affinoid.

By lemma 2.28 there exists an analytic extension K of both F and L and
a point ω on Y ′

K := YK ×XK X ′
K lying above both u and y′. Let F ′

K be the
pre-image of F on Y ′

K ≃ YK ×XK X ′
K ≃ YL ×XL X

′
K . By universal flatness of

FL at u the coherent sheaf F ′
K is X ′

K-flat at ω. Applying cor. 2.27 above to the

diagram

Y ′
K

//

��

X ′
K

��
Y ′ // X ′

(which is possible thanks to 0.13.3) immediatly gives

the X ′-flatness of F ′ at y′. �

(2.31) Proposition. Let Y → X be a morphism between k-analytic spaces, let
y ∈ Y and let x be its image on X. Let L be an analytic extension of k, let X ′

be an L-analytic space and let X ′ → X be a morphism. Let y′ be a pre-image
of y on Y ′ := Y ×X X ′ and let x′ denote the image of y′ on X ′. Let L be a
coherent sheaf on X ′.

i) If F → E is a linear map of coherent sheaves on Y which is injective at
y, and if L is universally XL-flat at x

′, then F ⊠ L → E ⊠ L is injective at y′.

ii) If 0 → G → F → E → 0 is a sequence of coherent sheaves on Y which is
exact at y and if E is universally X-flat at y, then

0 → G ⊠ L → F ⊠ L → E ⊠ L → 0

is exact at y′.

Proof. For both assertions one can assume that X,Y,X ′ and Y ′ are affinoid.

(2.31.1) Proof of i). As L is universally XL-flat at x
′, its pre-image on Y ′ is

YL-flat at y
′; since YL is flat over Y , this implies that Y ′ is Y -flat at y′. In other

words, L ⊗ OY ′,y′ is a flat OY,y-module. By assumption F ⊗ OY,y → E ⊗ OY,y

is injective. Tensoring with the flat OY,y-module L ⊗ OY ′,y′ then yields to the
injectivity of the arrow (F ⊠ L)⊗ OY ′,y′ → (E ⊠ L)⊗ OY ′,y′ , as required.
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(2.31.2) Proof of ii). As X ′ is affinoid, it can be identified to a Zariski-closed
subspace of XL ×L D where D is some closed polydisc over the field L. Right-
exactness of the tensor product ensures that

G ⊗ OYL×LD,y′ → F ⊗ OYL×LD,y′ → E ⊗ OYL×LD,y′ → 0

is exact. Since XL ×L D → XL is universally flat (2.14), it now follows from
assertion i) already proven that G ⊗ OYL×LD,y′ → F ⊗ OYL×LD,y′ is injective;
hence

0 → G ⊗ OYL×LD,y′ → F ⊗ OYL×LD,y′ → E ⊗ OYL×LD,y′ → 0

is exact.

As X ′ is a Zariski-closed subspace of XL ×L D, the local ring OY ′,y′ is
naturally isomorphic to OYL×LD,y′ ⊗OXL×LD,x′ OX′,x′ . Therefore the sequence

0 → (G ⊠ L)⊗ OY ′,y′ → (F ⊠ L)⊗ OY ′,y′ → (E ⊠ L)⊗ OY ′,y′ → 0

is simply deduced from the exact sequence

0 → G ⊗ OYL×LD,y′ → F ⊗ OYL×LD,y′ → E ⊗ OYL×LD,y′ → 0

by applying the functor ⊗OXL×LD,x′L ⊗ OX′,x′ . As E is universally X-flat at y,

the OXL×LD,x′-module E ⊗ OYL×LD,y′ is flat; it follows then immediatly from
the Tor•’s exact sequence that

0 → (G ⊠ L)⊗ OY ′,y′ → (F ⊠ L)⊗ OY ′,y′ → (E ⊠ L)⊗ OY ′,y′ → 0

is exact. �

(2.32) Lemma. Let Y → X be a morphism between k-analytic spaces, let
y ∈ Y and let x be its image on X. Let F → G be a linear map between
coherent sheaves on Y . If G|Yx

→ F|Yx
is an isomorphism at y and if F is

universally X-flat at y, then G → F is an isomorphism at y.

Proof. We may assume that both Y and X are k-affinoid. Let L be any
analytic extension of k such that XL has an L-rational point x′ lying over x,
and let y′ be any pre-image of y on (YL)x′ . By replacing the ground field k with
L, the spaces Y and X with YL and XL, the points y and x with y′ and x′, and
the sheaves F and G with FL and GL, we can thanks to 0.13.3reduce to the case
where x is a k-point; let m be the maximal ideal of OX,x.

As G|Yx
→ F|Yx

is an isomorphism at y, the map G ⊗H (y) → F ⊗H (y) is
an isomorphism, and is in particular surjective; thus G → F is surjective at y.
It remains to show that it is injective at y; for that purpose, let us denote by K
the kernel of the arrow G ⊗ OY,y → F ⊗ OY,y.

The sequence

0 → K → G ⊗ OY,y → F ⊗ OY,y → 0

is exact. Since F is (universally) X-flat at y, the OX,x-module F ⊗OY,y is flat.
Therefore, the sequence

0 → K/m → G ⊗ OY,y/m → F ⊗ OY,y/m → 0
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is exact. But as x is a k-point, OY,y/m ≃ OYx,y. Hence the sequence

0 → K/m → G ⊗ OYx,y/→ F ⊗ OYx,y → 0

is exact. As G|Yx
→ F|Yx

is an isomorphism at y, this implies that K/m = 0;
but then Nakayama’s lemma (applied to the finitely generated OY,y-module K)
forces K to be zero, which ends the proof. �

3 Quasi-smooth morphisms

Remindings about the sheaf of relative differentials

A reference for the results of this section is [2], §3.3.
(3.1) Let Y → X be a morphism between k-analytic spaces. The diagonal map
δ : Y → Y ×XY is G-locally an immersion; its conormal sheaf is a coherent sheaf
on Y which is denoted3 by ΩY/X and is called the sheaf of relative (Kähler)
differentials of Y over X ; there is a natural X-derivation d : OY → ΩY/X ,
through which any X-derivation with source OY (and with target a coherent
sheaf on Y ) goes uniquely. The formation of ΩY/X commutes to base change
and ground field extension.

(3.1.1) If A is a k-affinoid algebra and if Y → X is a morphism between
A -schemes of finite type, the sheaf ΩY an/X an is isomorphic to (ΩY /X )an.

(3.1.2) Let

Z
g // Y

f // X

be a diagram in the category of k-analytic spaces. One has a natural exact
sequence

g∗ΩY→X → ΩZ/X → ΩZ/Y → 0.

(3.1.3) Let X be a k-analytic space. For every n the sheaf ΩAn
X/X

is free with
basis dT1, . . . , dTn.

(3.1.4) Let Y → X be a morphism of k-analytic spaces, let f1, . . . , fr be
analytic functions on Y and let Z be the Zariski-closed subset of X defined by
the sheaf of ideals (fi)i; let us denote by ι the closed immersion Z →֒ Y . The
sheaf ΩZ/X is then naturally isomorphic to ι∗ΩY/X/(ι

∗dfi)i.

(3.2) Let X be a k-analytic space and let x ∈ X . The reader may find proofs
of the following facts in [15] (lemma 6.2, prop. 6.3, prop. 6.6).

(3.2.1) One has the inequality dimH (x) ΩX/k ⊗ H (x) > dimx X .

(3.2.2) The following are equivalent:

1) dimH (x) ΩX/k ⊗ H (x) = dimx X ;
2) X is geometrically regular at x, that is, for every analytic extension L of

k and every point y of XL lying above x, the space XL is regular at y.

Moreover if H (x) = k then 1) and 2) hold if and only if X is regular at x.

3Berkovich denotes if by ΩYG/XG
; for the sake of simplicity, and according to our general

conventions, we have decided to simply denote it by ΩY/X .
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(3.2.3) Assume that 1) and 2) hold, and let d be the dimension of X at x.
There exists a purely d-dimensional open neighborhood U of x ∈ X such that
the coherent sheaf ΩU/k = (ΩX/k)|U is free of rank d; note that this implies that
1) and 2) hold at every point of U .

Quasi-smoothness: definition and first properties

(3.3) Lemma. Let X be a k-analytic space, let n be an integer and let V be
an affinoid domain of AnX . Let Y be a Zariski-closed subset of V , let I be the
corresponding ideal of the ring of analytic functions on V , and let g1, . . . , gr be
a generating family of I. For every z ∈ Y let s(z) denote the rank of the family
(dg1 ⊗ 1, . . . , dgr ⊗ 1) in the vector space ΩV/X ⊗ H (z).

i) For every z ∈ V the H (z)-dimension of ΩY/X⊗H (z) is equal to n−s(z);
in particular,

dimH (z) ΩY/X ⊗ H (z) > n− r.

ii) Assume that there exists y ∈ Y with s(y) = r (which is equivalent, by i),
to the fact that ΩY/X ⊗ H (y) is n− r dimensional). Then:

• every generating family of I has cardinality at least r ;

• there exists an affinoid neighborhood U of y in V such that U∩Y → X
is purely of relative dimension n−r, and such that s(z) = r for every
z ∈ U ∩Y ; in particular, every fiber of (U ∩Y ) → X is geometrically
regular.

Proof. Let us first prove i). By 3.1.3, the H (z)-vector space ΩV/X ⊗H (Z)
is n-dimensional; and it follows from 3.1.4 that ΩY/X ⊗ H (z) is naturally iso-
morphic to

ΩV/X ⊗ H (z)/(dg1 ⊗ 1, . . . , dgr ⊗ 1),

whence i).

Now let us come to assertion ii). If (h1, . . . , ht) is a a generating family of I,
applying i) to it yields the inequality n− r > n− t, that is, t > r, as required.

Let x ∈ X . Being an affinoid domain of An,an
H (x), the fiber Vx is normal and

purely n-dimensional. As the ideal of Yx in Vx is generated by r functions, it
follows from the Hauptidealsatz that the Krull codimension of any irreducible
component of Yx in Vx is at most r. Therefore, the dimension of such a com-
ponent is at least n − r, and it follows that dimz (Y → X) > n − r for every
z ∈ Y .

By upper-semi-continuity of the rank of the fibers of a given coherent sheaf,
there exists an affinoid neighborhood U of y in V such that ΩY/X ⊗H (z) is of
dimension bounded by n− r for every z ∈ U ∩ Y ; not that the latter dimension
is then actually equal to n − r in view of i). Let z ∈ U ∩ Y and let x be its
image on X . The H (x)-analytic space Yx if of dimension at least n − r at z;
and ΩYx/H (x) ⊗ H (z) = ΩY/X ⊗ H (z) is of dimension n− r. We thus deduce
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from 3.2.1 that Yx is of dimension n − r at z, which ends the proof (the claim
about geometric regularity comes from 3.2.2). �

(3.4) Definition. Let Y → X be a morphism of k-analytic spaces and let
y ∈ Y . Let W be an affinoid domain of Y containing y, let n ∈ N and let V be
an affinoid domain of AnX such that W → X goes through a closed immersion
W →֒ V ; let us denote by I the ideal defining the latter (in the ring of analytic
functions on V ), and set r = n− dimH (y) ΩY/X ⊗ H (y). We will say that the
diagram W →֒ V ⊂ AnX is a Jacobian presentation of Y → X at y if I can be
generated by r elements.

(3.4.1) If it is the case, it follows from lemma 3.3 that r is the minimal cardi-
nality of a generating family of I, that Y → X is of dimension n− r at y, and
that the fiber of Y → X containing y is geometrically regular at y.

(3.4.2) Lemma 3.3 also ensures that there exists an affinoid neighborhood V ′

of y inside V such that W ×V V ′ →֒ V ′ is a Jacobian presentation of Y → X at
every of its points, and is purely of relative dimension n− r over X .

(3.5) Definition. Let Y → X be a morphism of kanalytic spaces and let
y ∈ Y . We will say that Y → X is quasi-smooth at y if there exists a Jacobian
presentation of Y → X at y. If this is the case, the fiber of Y → X containing
y is geometrically regular at y.

A morphism Y → X is said to be quasi-smooth if it is quasi-smooth at every
point of Y .

(3.6) We will say that a morphism of k-analytic spaces Y → X is quasi-étale
at a point y of Y if it is quasi-smooth of relative dimension zero at y; and that
it is quasi-étale if it is quasi-étale at every point of Y .

(3.7) We will say that a k-analytic space X is quasi-smooth (resp. quasi-étale)
at a given point x ∈ X if X → M (k) is.

(3.8) Some remarks about the chosen terminology.

(3.8.1) Berkovich has defined ([2], §3) the notions of an étale and a smooth
map. We will see below (cor. 3.20 of prop. 3.18, rem. 3.21): that a map is étale
at a given point if and only if it is quasi-étale and inner at that point ; and that
a map between good k-analytic spaces is smooth at a given point if and only if
it is quasi-smooth and inner at that point (for some comments about the need
of a goodness assumption, see rem. 3.21).

(3.8.2) There is already a notion of quasi-étale morphism, which was defined
by Berkovich ([3], §3); we will see below that his definition is equivalent to ours
(3.22).

(3.8.3) In [15], §6 , an analytic space geometrically was said to be quasi-smooth
(quasi-lisse in french) at x if it is geometrically regular at x; this turns out to
be coherent with our current definition of quasi-smoothness (cor. 3.15 infra.)

(3.8.4) If |k∗| 6= {1}, if Y and X are strictly k-analytic spaces and if y is a
rigid point of Y , quasi-smoothness of Y → X at y is nothing but rig-smoothness
of Y → X at y; we nevertheless have chosen to use ’quasi-smooth’ instead of
’rig-smooth’ to be coherent with the terminology ’quasi-étale’.
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(3.9) Before giving some examples, and some basic properties of quasi-smooth
morphisms, let us make a technical remark we will use several times in the
sequel: it follows immediatly from Gerritzen-Grauert theorem (more precisely
for Temkin’s version of it for Berkovich spaces, [26], th. 3.1) that if X is an
analytic space and it Y is a Zariski-closed subspace of X then Y can be G-
covered by affinoid domains of the kind V ∩Y with V beeing an affinoid domain
of X

(3.10) Basic properties and examples. Let Y → X be a morphism between
k-analytic spaces.

(3.10.1) If Y = AnX , then Y is quasi-smooth over X of relative dimension n:
for every y ∈ AnX and every affinoid domainW of AnX containing y, the diagram
W ≃W ⊂ AnX is a Jacobian presentation of Y → X at y.

(3.10.2) Let y ∈ Y , let V be an analytic domain of Y containing y, and let
U be an analytic domain of X containing the image of V . Then Y → X is
quasi-smooth at y if and only if so is V → U .

Indeed, let us first assume that V → U is quasi-smooth at y. Then if
Z →֒ T ⊂ AnU is a Jacobian presentation of V → U at y, it follows immediatly
from the definition that Z →֒ T ⊂ AnX is a Jacobian presentation of Y → X at
y.

Conversely, let us assume that Y → X is quasi-smooth at y, and let us
choose a Jacobian presentation Z →֒ T ⊂ AnX of Y → X at y; the image of y
in AnX belongs to AnU . Let T ′ be an affinoid domain of AnU which contains the
image of y. The fiber product Z ′ := Z ×T T ′ is an affinoid domain of Y which
contains y, and Z ′ → T ′ is a closed immersion.

By 3.9 there exists an affinoid domain T ′′ of T ′ containing the image of y
such that Z ′′ := Z ′×T ′ T ′′ is included in V ∩Z ′. It follows from the construction
that Z ′′ →֒ T ′′ ⊂ AnU is a Jacobian presentation of V → U at y.

(3.10.3) The morphism IdX is quasi-mooth (3.10.1 with n = 0); it follows by
3.10.2 that if Y is an analytic domain of X then Y → X is quasi-smooth.

(3.10.4) Behavior with respect to base change. Let X ′ be an analytic space and
let X ′ → X be a morphism. If y ∈ Y , if y′ is a point of Y ′ := Y ×X X ′ lying
over y, and if Y → X is quasi-smooth at y then Y ′ → X ′ is quasi-smooth at
y′. Indeed, let W →֒ V ⊂ AnX be a Jacobian presentation of Y → X at y, and
let V ′ (resp. W ′) denote the fiber product V ×X X ′ (resp. W ×X X ′). Let
V ′′ be any affinoid domain of V ′ which contains the image of y′ by the closed
immersion V ′ →֒ W ′; the fiber product W ′′ :=W ′×V ′ V ′′ is an affinoid domain
of Y ′, and it is easily seen that W ′′ →֒ V ′′ ⊂ AnX′ is a Jacobian presentation of
Y ′ → X ′ at y′.

(3.10.5) Behavior with respect to composition. Let Z be an analytic space, let
Z → Y be a morphism, let z ∈ Z and let y be its image on Y . If Z → Y is
quasi-smooth at z and if Y → X is quasi-smooth at y then the composite map
Z → Y → X is quasi-smooth at z.

Indeed, let W →֒ V ⊂ AnX be a Jacobian presentation of Y → X at y. As
Z → Y is quasi-smooth at z, the map Z ×Y W → W is quasi-smooth at z too
by 3.10.2 or 3.10.4 above. Let T →֒ S ⊂ AmW be a Jacobian presentation of
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Z ×Y W → W at z. As S is an affinoid domain of AmW →֒ AmV , it follows from
3.9 that there exists an affinoid domain S′ of AmV such that S′∩AmW is contained
in S and contains the image of z; set T ′ = T ×S (S′ ∩ AmW ). The morphism
T ′ →֒ S′ is equal to the composition of T ′ →֒ S′∩AmW and S′∩AmW →֒ S′, hence
is a a closed immersion. Beeing an affinoid domain of AmV , which is itself an
analytic domain of An+mX , the space S′ is an affinoid domain of An+mX . Let d
(resp. δ) be the dimension of ΩY/X ⊗ H (y) (resp. ΩZ/Y ⊗ H (z)). It follows
from 3.1.2 that the dimension of ΩZ/X ⊗ H (z) is bounded by d+ δ.

Now, as W →֒ V ⊂ AnX is a Jacobian presentation of Y → X at y, the
Zariski-closed subspace W of V can be defined by n − d equations; hence the
Zariski-closed subset S′ ∩ AmW of S′ can also be defined by n− d equations.

And as T →֒ S ⊂ AmW is a Jacobian presentation of Z ×Y W →W at z, the
Zariski-closed subspace T of S can be defined by m − δ equations; hence the
Zariski-closed subset T ′ of S′ can be defined by m− δ equations.

It follows that the Zariski-closed subspace T ′ of S′ can be defined using
m+ n− d− δ equations. It follows then from lemma 3.3 i) that the dimension
of ΩZ/X ⊗ H (z) is at least equal to d+ δ. On the other hand, we have proven
above that dimH (z) ΩZ/X ⊗ H (z) 6 d + δ, whence eventually the equality

dimH (z) ΩZ/X ⊗ H (z) = d + δ; therefore T ′ →֒ S′ ⊂ An+mX is a Jacobian
presentation of Z → X at z, and Z → X is quasi-smooth at z.

(3.10.6) Let A be a k-affinoid algebra and let Y → X be a morphism between
A -schemes of finite type. Let y ∈ Y an and let y be its image on Y . If
Y → X is smooth at y then Y an → X an is quasi-smooth at y. Indeed, as
Y → X is smooth at y, there exists an integer n, an affine open neighborhood
V of y, and an affine open subset U of An

X
so that V → X goes through a

closed immersion V →֒ U whose ideal can be generated by r elements, where
r = n − dimκ(y) ΩY /X ⊗ κ(y). Now if U is any affinoid domain of U an

containing the image of y and if we set V = V an×U an U then V →֒ U ⊂ An
X an

is a Jacobian presentation of Y an → X an at y.

(3.10.7) By obvious relative dimension arguments, the claims 3.10.2-3.10.6
remain true with ’quasi-smooth’ replaced by ’quasi-étale’.

(3.10.8) Let Y → X be a morphism between k-analytic spaces and let y ∈ Y .
Assume that Y → X is quasi-smooth of relative dimension d at y. The point y
admits a compact neighborhood which can be written V1

⋃
. . .
⋃
Vn where the

Vi’s are affinoid domains of Y . Thanks to 3.10.2, the morphism Vi → X is
quasi-smooth of relative dimension d at y for every i. It follows then from 3.4.2
that there exists for every i an affinoid neighborhood V ′

i of y in Vi such that
V ′
i → X is quasi-smooth of relative dimension d over X . The union of the V ′

i ’s
is then a compact analytic domain which is a neighborhood of y, and

⋃
V ′
i → X

is quasi-smooth of relative dimension d at every point (we use again 3.10.2).

Therefore, the subset of Y which consists in points at which Y → W is
quasi-smooth of relative dimension d is open; we will see at the end of the paper
that it is even Zariski-open (th. 7.4).

(3.10.9) Let Y → X be a map between k-analytic spaces, let y ∈ Y and let x
be its image on X . Assume that Y → X is étale at y. Under this assumption,
there exists an affinoid domain U of X containing x and an affinoid domain V
of Y containing y such that V → X goes through a finite étale map V → U .
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But saying that V → U is finite étale simply means that V → U is finite étale,
which implies that V → U is quasi-étale (3.10.6 and 3.10.7); as a consequence,
Y → X is quasi-étale at y by 3.10.2.

(3.10.10) Let Y → X be a map between k-analytic spaces and let y ∈ Y .
Assume that Y → X is smooth at y. By definition, there exists an open
neighborhood V of y in Y such that V → X goes through an étale map V → AnX
for some n. It follows from 3.10.9 above that V → AnX is quasi-étale; since
AnX → X is quasi-smooth by 3.10.1, one deduces from 3.10.5 and 3.10.3 that
Y → X is quasi-smooth at y.

Quasi-smoothness, universal flatness and geometric regu-

larity

(3.11) Lemma. Let Y → X be a morphism of k-analytic spaces, let y ∈ Y
and let f be an analytic function on Y ; denote by Z the Zariski-closed subspace
of Y with equation f = 0. Assume that :

1) Y → X is quasi-smooth at y, and OY and ΩY/X are universally X-flat
at y;

2) df ⊗ 1 6= 0 ∈ ΩY/X ⊗ H (y).

Then Z → X is quasi-smooth at y, and OZ and ΩZ/X are universally flat
at y.

Proof. Let W →֒ V ⊂ AnX be a Jacobian presentation of Y → X at y. There
exists a finite family (g1, . . . , gr) of analytic functions on V such that the ideal
(g1, . . . , gr) defines the closed immersion W →֒ V , and such that the family
(dgi ⊗ 1)i of elements of the vector space ΩV/X ⊗ H (y) is free. As

ΩY/X ⊗ H (y) ≃ ΩV/X ⊗ H (y)/(dg1 ⊗ 1, . . . , dgr ⊗ 1),

the fact that df ⊗ 1 is non-zero in ΩY/X ⊗H (y) simply means that the family
(dg1⊗ 1, . . . , dgr⊗ 1, df ⊗ 1) is free. As the ideal (g1, . . . , gr, f) defines precisely
the closed immersion W ∩ Z →֒ V , the diagram (W ∩ Z) →֒ V ⊂ AnX is a
Jacobian presentation of Z → X at y, and Z → X is quasi-smooth at y.

Now let us come to universal flatness of OZ and ΩZ/X at y. We may assume
that X,Y (and hence Z) are affinoid. Since both assumptions 1) and 2) remain
true after any base change, it is sufficient to show that OZ and ΩZ/X are flat at
y; this can be proven after having extended the scalars, hence we may assume
that y is a k-point.

Let x be the image of y on X , and let m be the maximal ideal of OX,x.
Reducing modulo m the exact sequences

OY,y
× f // OY,y // OZ,y // 0

and

OY,y
× df // ΩY/X ⊗ OY,y // ΩZ/X ⊗ OZ,y // 0

yields to the exact sequences

OYx,y
× f // OYx,y

// OZx,y
// 0
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and

OYx,y
× df // ΩYx/H (x) ⊗ OYx,y

// ΩZx/H (x) ⊗ OZx,y
// 0 .

As Y → X is quasi-smooth at y, the fiber Yx is geometrically regular at y, and
ΩYx/H (x) is free at y. The regular local ring OYx,y is in particular a domain.
Since df ⊗ 1 is a non-zero in ΩY/X ⊗H (y) = ΩYx/k ⊗H (y), the function f in
non-zero in OYx,y; the latter being a domain, the sequence

0 // OYx,y
× f // OYx,y

// OZx,y
// 0

is exact.
As df ⊗ 1 is non-zero in ΩY/X ⊗ H (y) = ΩYx/H (x) ⊗ H (y), it is a fortiori

non-zero in ΩYx/H (x) ⊗ OYx,y. Together with the fact that the latter is a free
module over the domain OYx,y, this implies the exactness of the sequence

0 // OYx,y
× df // ΩYx/H (x) ⊗ OYx,y

// ΩZx/H (x) ⊗ OZx,y
// 0 .

As OY and ΩY/X are X-flat at y, the sequences

OY,y
× f // OY,y // OZ,y // 0

and

OY,y
× df // ΩY/X ⊗ OY,y // ΩZ/X ⊗ OZ,y // 0

are respectively truncations of flat resolutions of the OX,x-modules OZ,y and
ΩZ,y ⊗ OZ,y. Therefore, it follows from the exactness of

0 // OYx,y
× f // OYx,y

// OZx,y
// 0

and

0 // OYx,y
× df // ΩYx/H (x) ⊗ OYx,y

// ΩZx/H (x) ⊗ OZx,y
// 0

that TorOX,x(OZ,y ,OX,x/m) = 0 and TorOX,x(ΩZ/X ⊗ OZ,y,OX,x/m) = 0 ; but
this implies that OZ,y and ΩZ/X ⊗OZ,y are flat OX,x-modules ([18], prop. 4.1),
which ends the proof. �

(3.12) Corollary. Let Y → X be a morphism of k-analytic spaces, and let
y ∈ Y such that Y → X is quasi-smooth at x. The sheaves OY and ΩY/X are
universally X-flat at y.

Proof. Let us choose a Jacobian presentation W →֒ V ⊂ AnX of Y → X at
y, and set r = n− dimH (y) ΩY/X ⊗H (x). By definition of a nice presentation,
there exists a family (g1, . . . , gr) of analytic functions on V such that the ideal
(g1, . . . , gr) defines the closed immersion W →֒ V , and such that the family
(dg1 ⊗ 1, . . . , dgr ⊗ 1) of elements of ΩV/X ⊗ H (y) is free.

For every i ∈ {0, . . . , r}, denote by Vi the Zariski-closed subspace of V
defined by the ideal (g1, . . . , gi); note that V0 = V and that Vr =W .
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The map V → X is quasi-smooth at y; moreover, OV and ΩV/X are uni-
versally X-flat. Indeed, for every affinoid space Z, the analytic space AnZ is
universally flat over Z, because An

Z
is flat over Z (2.13); hence AnX is univer-

sally flat over X , and so is V . And as ΩV/X is a free OV -module (with basis
(dTi)i), it is universally flat over X too.

Now, lemma 3.11 ensures that if i 6 r − 1, if Vi → X is quasi-smooth at y
and if OVi and ΩVi/X are universally X-flat at y, then Vi+1 is quasi-smooth at
y and OVi+1 and ΩVi+1/X are universally X-flat at y; hence the corollary follows
by induction. �

(3.13) Let Y → X is a morphism of k-affinoid spaces, let y ∈ Y and let x
be its image on X . Let us assume that Yx is geometrically regular, and that
Y → X is universally flat at y.

There exists n ∈ N so that the morphism Y → X goes through a closed
immersion Y →֒ D ×k X , where D is a closed n-dimensional polydisc. Set
r = n − dimH (y) ΩY/X ⊗ H (y), and let I be the ideal of the ring of analytic
functions on D×k X that defines the closed immersion Y →֒ D×k X .

It follows from 3.1.4 that there exists g1, . . . , gr such that

ΩY/X ⊗ H (y) = ΩV/X ⊗ H (y)/(dg1 ⊗ 1, . . . , dgr ⊗ 1);

note that this forces the family (dg1 ⊗ 1, . . . , dgr ⊗ 1) to be free. Let Z be the
Zariski-closed subspace of D×kX defined by the ideal (g1, . . . , gr); by construc-
tion, Y is a Zariski-closed subspace of Z, and Z → X is quasi-smooth at y of
relative dimension n− r.

As Z → X is quasi-smooth at y of relative dimension n − r, the H (x)-
space Zx is geometrically regular at y of relative dimension n− r. In particular,
there exists a connected affinoid neighborhood U of y in Zx which is normal,
connected and n− r dimensional.

As Yx is geometrically regular at y and as ΩYx/H (x)⊗H (y) = ΩY/X⊗H (y)
is (n− r)-dimensional, one can shrink U so that (U ∩ Yx) is n− r dimensional.
Being a Zariski-closed subspace of the reduced, irreducible, n − r dimensional
space U , it coincides with U .

The natural surjection OZ,y → OY,y is bijective. Indeed, we have proven
above that U = U ∩ Y , which implies that OZx,y → OYx,y is a bijection; and
since OY is universally X-flat at y by assumption, it follows then from lemma
2.32 that OZ,y → OY,y is bijective.

This bijectivity implies the existence of an affinoid neighborhood V of y in
D ×k X such that V ∩ Y →֒ V ∩ Z is an isomorphism; note that V ∩ Y is an
affinoid neighborhood of y in Y , and that V ∩ Y →֒ V ⊂ AnX is a Jacobian
presentation of Y → X at y.

(3.14) Proposition. Let Y → X be a morphism of k-analytic spaces, let y ∈ Y
and let x be its image on X.

1) The following are equivalent:
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i) Y → X is quasi-smooth at y.

ii) Yx is geometrically regular at y, and Y → X is universally flat at x.

2) If moreover Y and X are good, then those properties hold if and only if
there exists a Jacobian presentation W →֒ V ⊂ AnV of Y → X at y with
W being an affinoid neighborhood of y in Y .

Proof. If 1) Y → X is quasi-smooth at x, we already know that Yx is
geometrically regular at y, and universal flatness of Y → X at y is part of
corollary 3.12.

Assume now that Y → X is universally flat at y, and that Yx is geometrically
regular at y. In order to prove that Y → X is quasi-smooth at y, we may assume
that both Y and X are k-affinoid.

But under that assumption, we have seen in 3.13 that there exists a Jaco-
bian presentation W →֒ V ⊂ AnV of Y → X at y with W being an affinoid
neighborhood of y in Y , which at the same time ends the proof of ii⇒i) and
proves 2). �

(3.15) Corollary. If X is a k-analytic space and if x ∈ X then X is quasi-
smooth at x if and only if it is geometrically regular at x.

Proof. This is an immediate consequence of prop. 3.14 above, together with
the fact that X → M (k) is automatically universally flat. �

(3.16) Proposition. Let Y → X be a morphism of k-analytic spaces, let y ∈ Y
and let d be the relative dimension of Y → X at y. If Y → X is quasi-smooth
at y, then ΩY/X is free of rank d at y.

Proof. We may assume that both Y and X are affinoid; let x be the image of
y. As Y → X is quasi-smooth at y, the dimension of ΩY/X⊗H (y) is equal to d.
Let us choose global forms ω1, . . . , ωd belonging to ΩY/X(Y ) such that (ωi⊗ 1)i
is a basis of ΩY/X ⊗ H (x). The ωi’s define a morphism Od

Y → ΩY/X . Since
Yx is geometrically regular at y, the sheaf ΩYx/H (x) is free of rank d at y by

geometric regularity of Yx at y; therefore, Od
Yx

→ ΩYx/H (x) is an isomorphism
at y. Thanks to the fact that ΩY/X is universally X-flat at y (cor. 3.12), lemma

2.32 allows to conclude that Od
Y → ΩY/X is an isomorphism at y. �

Links with étale and smooth morphisms

(3.17) Lemma. Let Y → X be a morphism between k-analytic spaces and let
y ∈ Y . Assume that Y → X is quasi-smooth at y of relative dimension d, let
ℓ 6 d let f1, . . . , fℓ be analytic functions on Y such that (dfi ⊗ 1)i is a basis
of ΩY/X ⊗ H (y) (note that such functions always exists if Y is affinoid). The

map Y → AℓX defined by the fi’s is quasi-smooth of relative dimension d− ℓ at
y.

Proof. One immediatly reduces to the case where Y and X are affinoid.
Under that assumption map the map Y → AℓX goes through D ×k X for some
ℓ-dimensional compact polydisc D, and it is sufficient to prove that Y → D×kX
is quasi-smooth of relative dimension d− ℓ at y.
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Both spaces Y and D×k X are k-affinoid, hence Y → D×k X goes through
a closed immersion Y →֒ ∆ ×k D ×k X where ∆ is a closed polydisc of, say,
dimension δ.

By the choice of the fi’s, the H (y)-vector space ΩY/D×kX ⊗ H (y) has di-
mension d− ℓ ; therefore, there exist δ − d+ ℓ analytic functions g1, . . . , gδ−d+ℓ
on ∆ ×k D ×k X which belong to the ideal defining the closed immersion
Y →֒ ∆×k D×k X and are such that (dgj ⊗ 1)j is a free family of elements of
Ω∆×kD×kX/D×kX ⊗ H (y); it remains free when viewed as a family of vectors
of Ω∆×kD×kX/X ⊗ H (y), because the former vector space is a quotient of the
latter. Moreover, Y → X is by assumption quasi-smooth at y; by prop. 3.14,
Y → X is universally flat at y, and Yx is geometrically regular at y.

Therefore, 3.13 ensures that there exists an affinoid neighborhood V of y in
∆×kD×kX such that the Zariski-closed subspace Y ∩V of V is defined by the
ideal (gj)j ; since (dgj⊗1)j is a free family of elements Ω∆×kD×kX/D×kX⊗H (y),
the map Y → D×k X is quasi-smooth of relative dimension d− l at y. �

(3.18) Proposition. Let Y → X be a morphism of good k-analytic spaces,
and let y ∈ Y . The following are equivalent :

i) there exists an affinoid neighborhood Y0 of y in Y and a smooth X-space
Z such that Y0 is X-isomorphic to an affinoid domain of Z;

ii) Y → X is quasi-smooth at y.

Proof. As smooth morphisms and embedding of analytic domains are quasi-
smooth, i)⇒ii). Let us now assume that ii) is true. In order to prove i), one
may assume that Y is affinoid. Let d be the dimension of ΩY/X ⊗H (y) and let
f1, . . . , fd be analytic functions on Y such that the family (dfi⊗1)i is a basis of
ΩY/X ⊗ H (y); let ϕ : Y → AdX be the morphism induced by the fi’s. Thanks
to lemma 3.17, the morphism ϕ is quasi-étale at y.

Let ξ be the image of y in AnX . As ϕ is zero-dimensional at y, analytic
Zariski’s Main Theorem ensures that Y can be shrunken so that ϕ admits a
factorization Y → T0 → T → AdX where T is finite étale over an open neigh-
borhood U of ξ, where T0 is an affinoid domain of T , and where Y → T0 is
finite.

The finite morphism Y → T0 is étale at y. Indeed, let us consider the
diagram

Y ×U T → T0 ×U T → T ×U T → T.

As Y → U is quasi-étale at y, the arrow Y ×U T → T is quasi-étale at every
pre-image of y.

The map T ×U T → T admits a canonical section σ; as T → U is finite étale,
σ(T ) is an open and closed subset of T ×U T , and σ(T ) → T is an isomorphism.
The pre-image S of σ(T ) inside Y ×U T is thus naturally isomorphic to Y in
such a way that the diagram

S

≃

��

// σ(T )

≃

��

≃ // T

��
Y // T // U
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commutes. Since S → T is quasi-étale at the unique pre-image of y on S, the
morphism Y → T is quasi-étale at y; hence Y → T0 is quasi-étale at y too.

This implies that Y → T0 is flat at y and that ΩY/T0
⊗ H (y) = 0; the map

Y → T0 being finite, those conditions exactly means that it is étale at y.

Conclusion. Let t be the image of y on T . The categories of finite étale covers
of the germ (T0, t) and (T, t) are naturally equivalent (both are equivalent to
the category of finite étale H (t)-algebra, [2] th. 3.4.1). Therefore there exists:

• an open neighborhood T1 of t in T ;
• a finite étale map Z → T1;
• an isomorphism between Z ×T1 T1 ∩ T0 and an open neighborhood Y1 of y

in Y .

The morphisms Z → T1, T1 → U,U → AnX and AnX to X are smooth;
hence T ′ → X is smooth. Now one can take Y0 as being equal to any affinoid
neighborhood of y inside Y1. �

(3.19) Remark. In the strictly k-analytic case, such a result has already been
proved by Berkovich ([4], rem. 9.7).

(3.20) Corollary. Let Y → X be a morphism between good k-analytic spaces
and let y ∈ Y . The following are equivalent:

i) Y → X is smooth at y ;
ii) Y → X is quasi-smooth and boundaryless at y. �

(3.21) Remark. The author doesn’t know if cor. 3.20 above is true without
the goodness assumption. By looking carefully at what happens, the reader
should be convinced that the main problem to face in the non-good case is the
following: if Y → X be a morphism of analytic spaces and if y ∈ Y , there
is no reason why they should exist analytic functions f1, . . . , fr defined in a
neighborhood of y such that df1 ⊗ 1, . . . , dfr ⊗ 1 generate ΩY/X ⊗ H (y).

However, note that in the case where the relative dimension is zero, then
cor. 3.20 is true without any goodness assumption: indeed, let us assume that
Y → X is quasi-étale and boundaryless at y. Being zero-dimensional and bound-
aryless at y, it is finite at y; hence we can shrink Y and X so that Y → X is
finite, and so that y is the only pre-image of x on Y . Now choose a compact
analytic neighborhood of x ∈ X which can be written V1 ∪ . . . ∪ Vm where the
Vi’s are affinoid domains of X containing the image x of y. For every i the
morphism Y ×X Vi → Vi is finite; being quasi-étale at y, it is in particular flat
and unramified at y, hence étale at y, which is the only pre-image of x. As
a consequence, there exists an affinoid neighborhood Wi of x in Vi such that
Y ×X Wi → Wi is étale. If one sets W =

⋃
Wi then W is a compact analytic

neighborhood of x and Y ×X W →W is étale, whence our claim.

(3.22) Compatibility with the previous definition of quasi-étaleness.
Let Y → X be a morphism of k-analytic spaces, and let y ∈ X . The following
are equivalent :

i) Y → X is quasi-étale at y in the sense of Berkovich ([3], §3);
ii) Y → X is quasi-étale at y in our sense.
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We are going to prove it; in what follows, ’quasi-étale’ will mean ’quasi-étale
in our sense’, and we will explicitely write ’quasi-étale in the sense of Berkovich’
when needed.

So, let us assume i). There exists in particular an affinoid domain V of
Y containing y such that V can be identified with an affinoid domain of an
analytic space X ′ which is étale over X . As V →֒ X ′ and X ′ → X are quasi-
étale, V → X is quasi-étale; in particular, V → X is quasi-étale at y, and
Y → X is therefore quasi-étale at y.

Let us now assume that Y → X is quasi-étale at y, and let x denote the
image of y on X . Let us choose a compact analytic neighborhood of Y which
is a finite union

⋃
Vi of affinoid domains of Y containing y; we may assume

that there exists for every i an affinoid domain Ui of X such that Vi → X goes
through Ui. Fix i. As Y → X is quasi-étale at y, the morphism Vi → Ui is
quasi-étale at y too (3.10.2). Hence it follows from lemma 3.18 that there exists
an affinoid neighborhood V ′

i of y in Vi and an étale Ui-space U
′
i such that V ′

i

is isomorphic to an affinoid domain of U ′
i . The categories of finite étale covers

of the germs (X, x) and (Ui, x) are naturally equivalent (both are equivalent to
the category of finite étale H (x)-algebra, [2] th. 3.4.1). Therefore there exists
an open neighborhood Xi of x in X and a finite étale morphism X ′

i → Xi so
that X ′

i ×X Ui can be identified with an open neighborhood of y in U ′
i ; let us

choose an affinoid neighborhood V ′′
i of y in V ′

i such that V ′′
i ⊂ X ′

i ×X Ui ⊂ X ′
i.

The union of the V ′′
i ’s is a neighborhood of y, and for every i one can identify

V ′′
i with an affinoid domain of the X-étale space X ′

i; therefore Y → X is quasi-
étale at y in the sense of Berkovich.

The transfer of algebraic properties

(3.23) Proposition. Let Y → X be a morphism of good k-analytic spaces,
let y ∈ Y and let x be its image on X. If Y → X is quasi-smooth at y, then
Spec OY,y → Spec OX,x is flat with geometrically regular fibers.

Proof. If d denote the relative dimension of Y over X at y, lemma 3.17
ensures that Y → X goes through a map Y → AdX which is quasi-étale at y;
let u be the image of y on AdX . As Y → AdX is quasi-étale at y, it follows from
prop. 3.18 above that there exist :

• an affinoid neighborhood U of u in AdXX ;
• a finite étale map V → U ;
• an affinoid neighborohood W of y in Y and an isomorphism between W

and an affinoid domain of V .

Let us consider W as an affinoid domain of V (through the aforementioned
automorphism). The morphism OY,y = OW,y → OV,y is flat with geometrically
regular fibers, and so is OV,y → OU,u, because it is finite étale.

We will prove that OU,u → OX,x is flat with geometrically regular fibers,
which will end the proof. The space AdX is universally flat over X (2.13 or 2.14),
whence the flatness of OU,u → OX,x.

Let p be a prime ideal of OX,x and let F be a finite radicial extension of
Frac OX,x/p; we want to show that OU,u ⊗OX,x F is a regular scheme.
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(3.23.1) Reduction to the case where p = 0 and F = Frac OX,x. Let A be the
algebra of analytic functions on X ; as p is finitely generated, we can shrink X
(and U) so that there exists an ideal I of A satisfying the equality IOX,x = p.
Hence by replacing X (resp. U) with its Zariski-closed subspace defined by I

(resp. the pull-back of I ) we can assume that p = 0.

We may choose a finite generating family (λ1, . . . , λr) of F over Frac OX,x

having the following property : for every i there exists an integer ni such that
λp

ni

i ∈ OX,x. Let B be the OX,x-subalgebra of F generated by the λi’s. It is
finitely presented (because OX,x is noetherian) and radicial – that is, there exists
m such that bp

m ∈ OX,x for every b ∈ B; note also that by its very definition, B
is a domain whose fraction field is nothing but F .

Therefore we may again shrink X and U so that there exists a finite, radicial
Banach A -algebra B with B⊗A OX,x ≃ B. Therefore if x′ denotes the only pre-
image of x on M (B) one has OM (B),x′ ≃ B. Hence by replacingX with M (B),
x with x′, U with U ×X M (B) and u with its only pre-image on U ×X M (B),
we eventually reduce, as announced, to the case where p = 0 and F = Frac OX,x.

(3.23.2) Proof in the case where p = 0 and F = Frac OX,x. By faithful flatness
of OX,x → OX ,x, the local ring OX ,x is a subring of OX,x; in particular, this is
a domain, and the generic point η of Spec OX,x lies above the generic point ξ
of Spec OX ,x.

Let ζ be a point of Spec OU,u lying above η; our goal is now to prove that the
generic fiber of Spec OU,u → Spec OX,x is regular at ζ; but the latter property
is equivalent to regularity of Spec OU,u itself at ζ. We denote by u the image
of u on Ad

X
and by z the image of ζ on Spec OAd

X ,x
. By construction, z is lying

above ξ.

As OX ,x is a domain and as ξ is the generic point of its spectrum, the local
ring OX ,ξ is a field κ, and OAd

X ,z
is nothing but the local ring of z inside its

fiber; since the latter fiber coincides with the regular scheme Adκ, the ring OAd
X ,z

is regular. As Spec OU,u → Spec OAd
X
,x is flat with (geometrically) regular

fibers, Spec OU,u is regular at ζ, which ends the proof. �

(3.24) Corollary. Let ϕ : Y → X be a morphism between k-analytic spaces,
let y ∈ X, let x be its image on X, and let F be a coherent sheaf on X. Let
P be one the properties listed in 0.19.5, α), and let Q be one of those listed in
0.19.5, β).

i) Assume that ϕ is universally flat at y. If Y satisfies P at y, then so does
X at x; if ϕ∗F satisfies Q at y, then so does F at x.

ii) Assume moreover that ϕ is quasi-smooth at y. If X satisfies P at x, then
so does Y at y; if F satisfies Q at x, then so does ϕ∗F at y.

Proof. For both assertions, we can assume that Y and X are affinoid; now
Spec OY,y → Spec OX,x is flat under the hypothesis of i), and is flat with (geo-
metrically) regular fibers under the hypothesis of ii), in view of prop. 3.23. The
corollary then follows immediately thanks to classical results of commutative
algebra, most of which can be found with references in [15], §0.5.1 ; but note
that for the validity of Q in assertion ii) one needs cor. 6.4.2 of [17], which is
not mentioned in [15], but should have been because it is implicitely used at
several places of this paper (thm. 3.1 and 3.4). �
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4 Generic fibers in analytic geometry

Some technical preliminary lemmas

(4.1) Lemma. Let K be an analytic field and let V be a subgroup of K.
Assume that there exists ρ ∈]0; 1[ such that for every λ ∈ K there exists µ ∈ V
with |λ− µ| 6 ρ|λ|. The group V is then dense in K.

Proof. For every λ ∈ K we choose an element ϕ(λ) in the group V such
that |λ−ϕ(λ)| 6 ρ|λ|. Now let λ ∈ K. Define inductively the sequence (λi)i by
setting λ0 = 0 and λi+1 = λi + ϕ(λ − λi). By induction, one sees that λi ∈ V
and that |λ− λi| 6 ρi|λ| for every i; hence λi → λ. �

(4.2) Lemma. Let K be an analytic field with |K∗| free of rank one, and let F
be a complete subfield of K with |F ∗| 6= {1}. Assume that the classical residue

extension F̃ 1 →֒ K̃1 is finite; the field K is then a finite extension of F .

Proof. The assumptions on the value groups ensures that |K∗|/|F ∗| is finite;
hence the graded extension F̃ →֒ K̃ is finite too. Let λ1, . . . , λn be elements
of K∗ such that (λ̃i)i is a basis of K̃ over F̃ . Let us call V be the F -vector
subspace of K generated by the λi’s. Let λ ∈ K; there exist a1, . . . , an ∈ F
such that λ̃ =

∑
ãiλ̃i, which exactly means, if λ 6= 0, that |λ −∑ aiλi| < |λ|.

As |K∗| is free of rank one, |K∗|∩]0; 1[ has a maximal element ρ. By the above,
for every λ ∈ K there exists µ ∈ V with |λ − µ| 6 ρ|λ|. By lemma 4.1, V is
dense in K. Since V is a finite dimensional F -vector space, it is complete; hence
V = K. �

(4.3) Corollary. Let F be a trivially valued field and let X be a non-empty,
boundaryless F -space. There exists x ∈ X such that H (x) is either a finite
extension of F or a finite extension of Fr for some r ∈]0; 1[.

Proof. Choose an arbitrary s ∈]0; 1[. As Xs is a non-empty, boundaryless
space over the non-trivially valued field Fs, the analytic Nullstellensatz provides
a point y ∈ Xs with H (y) finite over ks; let x be the image of y on X . Note

that H̃ (x)
1

is a subfield of H̃ (y)
1

, which is itself finite over F̃s
1
= F ; hence

H̃ (x)
1

is finite over F .

If |H (x)∗| = {1} then as H (x) = H̃ (x)
1

, it is finite over F and we are
done.

If |H (x)∗| 6= {1} let r ∈ |H (x)∗|∩]0; 1[, and let λ ∈ H (x)∗ be an element
with |λ| = r. The complete subfield E generated by λ over F in H (x) is
isomorphic to Fr. As H (x) is a subfield of H (y), the non-trivial group |H (x)∗|
is free of rank one; together with the fact that Ẽ1 = F̃r

1
= F this implies, in

view of lemma 4.2, that H (x) is a finite extension of E ≃ Fr. �

(4.4) Lemma. Let r = (r1, . . . , rn) be a k-free polyray and let S1, . . . , Sn be el-

ements of kr such that |Si| = ri for every i. The complete subfield ̂k(S1, . . . , Sn)
of kr generated by the Si’s over k is equal to kr; in other words, S1, . . . , Sn are
coordinate functions of kr.
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Proof. Let T1, . . . , Tn be coordinate functions of kr; note that there is
a well-defined isometry ϕ :

∑
aIT

I 7→ ∑
aIS

I between kr and its subfield
̂k(S1, . . . , Sn).
For every i one can write Si = αiTi+ui where αi ∈ k and ui ∈ kr, and where

|αi| = 1 and |ui| < ri. By replacing Si with α
−1
i Si, we may assume that αi = 1

for all i. Therefore, there exists ρ ∈]0; 1[ such that |Ti − Si| 6 ρ|Ti| for every i;
it follows immediately that |λ− ϕ(λ)| < ρ|λ| for every λ ∈ kr. Lemma 4.1 then

ensures that ̂k(S1, . . . , Sn) is dense in kr; as it is complete, ̂k(S1, . . . , Sn) = kr,
as required. �

(4.5) Lemma. Let F be a field and let L be a finite, separable extension of
F ((t)). There exists a finite extension K of F such that L ⊗F K admits a
quotient isomorphic to K((τ)).

Proof. Let us consider F ((t)) as the completion of the function field of P1
F

at the origin. Krasner’s lemma ensures that there exists a projective, normal,
irreducible F -curve Y equipped with a finite, generically étale map to P1

F , such
that L can be identified with the completion of F (Y ) at a closed point P lying
above the origin. There exists a finite extension F0 of F such that the normal-
ization of Y ×F F0 is smooth. Now one can take for K the residue field of any
point of this normalization lying above P . �

(4.6) Lemma. Let Y be a quasi-smooth k-analytic space and let y ∈ Y be
a point such that H (y) ≃ kr1,...,rm for some k-free polyray (r1, . . . , rm). Let
(g1, . . . , gm) be analytic functions on Y such that |gi(y)| = ri for every i. The
dgi ⊗ 1’s are then H (y)-linearly independant elements of Ω1

Y/k ⊗ H (y).

Proof. One can assume that Y is k-affinoid and of pure dimension, say,
n. Let V be the affinoid domain of Y defined as the simultaneous validity
locus of the equalities |gi| = ri. Its k-affinoid structure factorizes through a
kr1,...,rm-structure given by the gi’s, for which y is kr1,...,rm-rational. By 0.15,
dimkr1,...,rm

V = n −m. As Y is quasi-smooth, OY,y is regular; hence OV,y is
regular too (0.19.5). As y is kr1,...,rm-rational by lemma 4.4 above, V is smooth
over kr1,...,rm at y; therefore H (y) ⊗ Ω1

V/kr1,...,rm
is of dimension n −m. But

the H (y)-vector space Ω1
V/k ⊗ H (y) is of dimension n and is equal to

⊗Ω1
V/kr1,...,rm

+
∑

H (y).(dgi ⊗ 1),

whence the lemma. �

Relative polydiscs inside relative smooth spaces

(4.7) Lemma. Let X be a good k- analytic space, let x ∈ X, and let n ∈ N.
Let m 6 n and let r = (r1, . . . , rm) be a H (x)-free polyray, and set ri = 0 for
m < i 6 n. Let ξ be the point of AnX lying above x and defined by the semi-norm

∑
aIT

I 7→ max |aI |rI

on the ring H (x)[T], and let V be an open neighborhood of ξ in AnX . Under
those assumptions, V contains an open neighborhood of ξ of the form

U ×k D1 ×k . . .×k Dn
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where U is an open neighborhood of x in X and where Di is for every i 6 m
(resp. i > m) a one-dimensional open annulus (resp. disc) with coordinate
function Ti.

Proof. Through a straightforward induction argument one immediately re-
duces to the case where n = 1; in that situation r is either zero, either an
H (x)-free positive number. Let X0 be an affinoid neighborhood of x in X and
set A = OX(X0); let X

′
0 be the topological interior of X0 in X . By the explicit

description of the topology of the analytification of an A -scheme of finite type,
there exist a finite family P1, . . . , Pr of elements of A [T ], and a finite family
I1, . . . , Ir of open subsets of R+ such that the open subset of A1

X0
defined by

the conditions |Pj | ∈ Ij (for j = 1, . . . , r) contains ξ and is included in V ; set
Pj =

∑
ai,jT

i.

(4.7.1) The case where r = 0. In that case one has |Pj(ξ)| = |a0,j(x)| for
every j. There exists for every j an open neighborhood I ′j of |a0,j(x)| in Ij
and a positive number Rj such that |Pj(η)| ∈ Ij as soon as |a0,j(η)| ∈ I ′j and
|T (η)| < Rj . Let us denote by U the set of points y ∈ X ′

0 such that |a0,j(y)| ∈ I ′j
for every j, and let R be any positive number smaller than all Rj ’s.

The product of U and of the open disc centered at the origin with radius R
is then included in V and contains ξ, which ends the proof when r = 0.

(4.7.2) The case where r is an H (x)-free positive number. In that case there
exists for every j an index ij such that |aij ,j(x)|rij > |ai,j(x)|ri for all i 6= ij.
One can find for every j two positive numbers Sj and Rj with Sj < r < Rj and
an open subset I ′j of Ij containing |aij ,j(x)|rij such that |Pj(η)| ∈ Ij as soon as

|aij ,j(η)| ∈ r−ij I ′j and Sj < |T (η)| < Rj . Let us denote by U the set of points

y ∈ X ′
0 such that |aij ,j(y)| ∈ r−ij I ′j for every j, and let R and S be two positive

number such that S < r < R and such that Sj < S and R < Rj for every j.
The product of U and of the open annulus with bi-radius (S,R) is then

included in V and contains ξ, which ends the proof. �

(4.8) Lemma. Let X be a good k- analytic space, let x ∈ X and let n ∈ N;
let m 6 n and let r = (r1, . . . , rm) be a H (x)-free polyray. Let Y → X be a
smooth morphism of relative dimension n, and assume that Yx contains a point
y with H (y) ≃ H (x)r. Under those assumptions, there exists an open subset
V of Y which is X-isomorphic to U×kD×k∆, where U is an open neighborhood
of x in X, where D is a m-dimensional open poly-annulus, and where ∆ is a
(n−m)-dimensional open polydisc.

Proof. Let us choose analytic functions f1, . . . , fm defined in the neighbor-
hood of y such that |fi(y)| = ri for every i. According to lemma 4.6 (which one
applies to the H (x)-space Yx), the elements df1 ⊗ 1, . . . , dfm ⊗ 1 are linearly
independant in ΩY/X ⊗ H (y) ; one can hence choose fm+1, . . . , fn in OY,y so
that df1 ⊗ 1, . . . , dfm ⊗ 1, dfm+1 ⊗ 1, . . . , dfn ⊗ 1 is a basis of ΩY/X ⊗ H (y).

The X-morphism Y → AnX induced by the fi’s is quasi-étale at y by lemma
3.17; as Y → X is boundaryless (it is smooth), Y → AnX is boundaryless at
y, and thus étale (remark 3.21). Lemma 4.4 ensures that the complete subfield
of H (y) generated by the fi(y)’s for i = 1, . . . ,m is equal to H (y) itself.
Therefore, if y′ denotes the image of y on AnX , one has H (y′) = H (y); as
Y → AnX is étale at y, this implies that Y → X induces an isomorphism between
an open neighborhood of y in Y and an open neighborhood of y′ in AnX . We
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thus may reduce to the case where Y is an open subset of AnX , and where the
following holds: let p be the projection AnX → AmX defined by (T1, . . . , Tm); the
point p(y) ∈ Am,an

H (x) is given by the semi-norm
∑
aIT

I 7→ max aIr
I , and y is a

H (p(y))-rational point of the fiber p−1(y).

Let κ be the residue field of OAm
X ,p(y)

; by density of κ inside H (p(y)), the

fiber p−1
|Y (y) possesses a H (p(y))-point z such that Ti(z) ∈ κ for every integer

i ∈ {m + 1, . . . , n}. Let V be an open neighborhood of p(y) in AmX on which
the Ti(z)’s are defined; translation by (0, . . . , 0, Tm+1(z), . . . , Tm+1(z)) identifies
over V the space Y ×Am

X
V with an open subset of AnX ×Am

X
V whose fiber over

p(y) contains the origin of Am,an
H (p(y)). It follows then from lemma 4.7 that there

exists an open subset W of Y which is V -isomorphic to V ′ × ∆ where V ′ is
an open neighborhood of p(y) in V and where ∆ is a n −m-dimensional open
polydisc.

Now by applying one again lemma 4.7, but that time to the map Am → X
and at the point p(y), one sees that there exists an open neighborhood V ′′ of
p(y) in V ′ which is X-isomorphic to U ×k D for some open neighborhood U of
x in X and some m-dimensional open poly-annulus D. Now W ×V ′ V ′′ is an
open subset of Y which is X-isomorphic to U ×k D×k ∆, as required. �

(4.9) Proposition. Let n ∈ N and let Y → X be a smooth map of pure
dimension n between good k-analytic spaces. Let x ∈ X, and let W be a non-
empty open subset of Yx. There exist :

• a flat locally finite morphism X ′ → X which can be chosen to be étale if
|H (x)∗| 6= {1};

• a pre-image x′ of x on X ′, such that the closed fiber of the morphism
Spec OX′,x′ → Spec OX,x is reduced;

• an open subset V of Y ′ := Y×XX ′ whose intersection with Y ′
x′ is contained

in WH (x′), and which is isomorphic to X ′ ×k D where D is:

⋄ a n-dimensional open polydisc if W has a H (x)-rigid point, which
is always the case if |H (x)∗| 6= {1} or if n = 0;

⋄ the product of an open annulus by an (n− 1)-dimensional open poly-
disc if W has a no H (x)-rigid point, which can occur only if H (x)
is trivially valued and n > 0.

Proof. By replacing Y with an open subset of Y whose intersection with Yx
is equal to W , we may assume that W = Yx. By assumption, Yx 6= ∅.
(4.9.1) Let us assume that |H (x)∗| 6= {1}. Let us choose y ∈ Yx. As Y → X is
smooth, there exists a neighborhood Z of y in Y such that Z → X goes through
an étale map Z → AnX ; the image of Z on AnX is an open subset U of the latter,
and Ux is non-empty. Let K be the completion of an algebraic closure of H (x).
Since |H (x)∗| 6= {1}, the analytic Nullstellensatz ensures that Ux(K) 6= ∅; as
the separable closure of H (x) in K is dense (again because |H (x)∗| 6= {1}),
the exists z ∈ Ux with H (z) a finite, separable extension of H (x). Now let us
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choose a pre-image t of z on Z; as Z → U is étale, H (t) is a finite, separable
extension of H (z), and hence a finite, separable extension of H (x) too.

The categories of finite étale covers of the germ (X, x) and of finite étale
H (x)-algebras being naturally equivalent ([2], th. 3.4.1), there exists an étale
morphism X ′ → X and a pre-image x′ of x on X such that t has a pre-image
t′ on Y ′ := Y ×X X ′ with H (t′) = H (x′). This implies, thanks to lemma 4.8,
that one can shrink X ′ around x′ so that Y ′ possesses an open subset which
is X ′-isomorphic to the product of X ′ by a n-dimensional open polydisc. This
ends the proof in the case where |H (x)∗| 6= {1}.
(4.9.2) The case where |H (x)∗| = {1}. Let us first assume that Yx has an
H (x)-rigid point y. As H (x) is trivially valued, it coincides with the residue
field κ of OX,x. Therefore, there exists a finite, flat, local OX,x-algebra A with
A⊗OX,x κ ≃ H (y). One can find a locally finite, flat map X ′ → X and a pre-
image x′ of x on X ′ such that OX′,x′ ≃ A; note that H (x′) ≃ H (y) and that
the closed fiber of Spec OX′,x′ → Spec OX,x is reduced. By construction, y has
a pre-image y′ on Y ′ := Y ×XX ′ lying above x′ and satisfying H (y′) = H (x′).
This implies, thanks to lemma 4.8, that one can shrink X ′ around x′ so that Y ′

possesses an open subset which is X ′-isomorphic to the product of X ′ by a n-
dimensional open polydisc. This ends the proof in the case where |H (x)∗| = {1}
and where Yx has a rigid point.

Let us now assume that Yx has no H (x)-rigid point. In that case, there
exists t ∈ Yx and r ∈]0; 1[ such that H (t) is a finite extension of H (x)r (lemma
4.3). Thanks to lemma 4.5, there exists a finie H (x)-extension F such that
F ⊗H (x)r H (t) admits a quotient isomorphic to Fs for some s ∈]0; 1[. As
H (x) is trivially valued, it coincides with the residue field of OX,x. Therefore,
there exists a finite, flat, local OX,x-algebra A with A ⊗OX,x κ ≃ F . One
can find a locally finite, flat map X ′ → X and a pre-image x′ of x on X ′

such that OX′,x′ ≃ A; note that H (x′) ≃ F and that the closed fiber of
Spec OX′,x′ → Spec OX,x is reduced. By construction, y has a pre-image y′ on
Y ′ := Y ×X X ′ lying above x′ and such that H (y′) is isomorphic to H (x′)s
for some s ∈]0; 1[. This implies, thanks to lemma 4.8, that one can shrink X ′

around x′ so that Y ′ possesses an open subset which is X ′-isomorphic to the
product of X ′, of a n − 1-dimensional open polydisc, and of an open annulus,
which ends the proof. �

Let us give now some consequences of the latter proposition. Note that the
first one, corollary 4.10, has already been proven by Berkovich ([2], cor. 3.7.4),
by using a decomposition of smooth morphisms in ’elementary’ curve fibrations,
whose existence comes from the semi-stable reduction theorem.

(4.10) Corollary. Any quasi-smooth, boundaryless map is open.

Proof. Let Y → X be a quasi-smooth, boundaryless map. To prove that it
is open, one may argue G-locally on X , hence assume that X is good. Now Y
is also good because Y → X is boundaryless, and it follows from cor. 3.20 that
Y → X is smooth. Its openness then follows immediatly from proposition 4.9
above together with openness of flat, locally finite morphisms. �

(4.11) Remark. The fact that a smooth map is open (remind that in the good
case, smooth is equivalent to quasi-smooth and boundaryless by cor. 3.20) has
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already be proved by Berkovich ([2], cor. 3.7.3), using his ’elementary fibrations’
(loc. cit., def. 3.7.1), whose existence is established with the help of the semi-
stable reduction theorem.

(4.12) Corollary. Let Y → X be a smooth morphism between good k-analytic
spaces and let x ∈ X with |H (x)∗| 6= {1}. If Yx 6= ∅, there exists an étale
morphism X ′ → X whose image contains x and an X-map X ′ → Y . �

(4.13) Corollary. Let n and d be two integers and let ϕ : Y → X be a
quasi-smooth morphism between k-analytic spaces. Assume that X is purely
d-dimensional, and that ϕ is of pure relative dimension n. Then Y is purely
n+ d-dimensional.

Proof. One can argue G-locally on Y and X ; therefore, one can assume firs,
that X and Y are good, and then (prop. 3.18) that Y is an analytic domain
of a smooth X-space of pure relative dimension n. Eventually (by replacing Y
with the latter), we reduce to the case where ϕ itself is smooth. Now if V is
any non-empty open subset of Y , corollary 4.10 above ensures that ϕ(V ) is an
open subset of X . It is therefore of dimension d. By 0.15.1, dim V = n+ d; by
0.16, Y is purely of dimension n+ d. �

Generic fibers

(4.14) Proposition. Let Y → X be a map between good k-analytic spaces.
Let y ∈ Y , let x be its image on X. Assume that Y → X is smooth at y and
that OX,x is artinian. Let Z be a Zariski-closed subset of Y which contains a
neighborhood of y in Yx. Under those assumptions Z is a neighborhood of y in
Y .

Proof. The required property being purely topological, one may assume that
X is reduced; in that case, OX,x is a field, and is in particular normal. Thus
we may shrink X so that it is itself normal. Now the X-quasi-smooth space
Y is normal too, in view of prop. 3.23; by shrinking Y (and Z, accordingly)
we eventually reduce to the case where Y is connected, hence irreducible, and
where Z is the zero-locus of a finite family (f1, . . . , fn) of analytic functions on
Y . We will prove that Z contains a non-empty open subset of Y , which will
force it to coincide with Y , and end the proof.

Thanks to prop. 4.9, there exists a flat, locally finite map X ′ → X , a point
x′ on X ′ lying above x, and a k-analytic space D such that:

• OX′,x′ is a field ;

• D is an open polydisc, or the product of an open polydisc by a one-
dimensional open annulus;

• if one sets Y ′ = Y ×X X ′ and Z ′ = Z ×X X ′, there exists an open subset
V of Y which is X ′-isomorphic to D×k X ′ and such that Vx′ ⊂ Zx′ .
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As OX′,x′ is a field, we may shrink X ′ so that it is connected and normal.

Let us still denote by f1, . . . , fn the pull-backs of the fi’s on Y ′. Analytic
function on V ≃ D ×k X ′ consist in power series

∑
aIT

I where the aI ’ s are
analytic functions on X ′. For any j, let us write fj|V =

∑
aI,jT

I . By con-
struction, Vx′ ⊂ Z ′

x′ . Therefore aI,j(x
′) = 0 for every (I, j). As OX′,x′ is a field,

aI,j vanishes for every (I, j) in a neighborhood of x′ in the normal, connected
space X ′; therefore aI,j = 0 for every (I, j). This implies that V ⊂ Z ′; hence Z ′

contains a non-empty open subset of Y ′. As Y ′ → Y is flat, locally finite it is
open by cor. 2.17. Therefore Z contains a non-empty open subset of Y , which
ends the proof. �

(4.15) Theorem. Let Y → X be a boundaryless map between good k-analytic
spaces. Let y ∈ Y and let x be its image on X. Assume that OX,x is a field.
Then Spec OYx,y → Spec OY,y is flat ; its fibers are CI, and regular if char.
k = 0.

Proof. Let n be the relative dimension of Y → X at y. We will argue by
induction on n; let us begin with some preparation.

According to the th. 4.6 of [14], one can shrink Y around y such that Y → X
goes through a map Y → AnX which is zero-dimensional at y. By assumption,
Y → X has no boundary; it implies that Y → AnX has no boundary ; hence,
it is finite at y ([1], prop. 3.1.4). Denote by t the image of y on AnX . One can
shrink Y around y so that it is finite over an affinoid neighborhood V of t in
AnX , and so that y is the only preimage of t in Y . Let A (resp. B) be the
algebra of analytic functions on V (resp. Y ). Then OY,y = B ⊗A OV,t and
OYx,y = B ⊗A OVx,t; hence OYx,y = OVx,t ⊗OV,t OY,y. Then it is sufficient to
prove that Spec OVx,t → Spec OV,t is flat and that its fibers are CI, and regular
if char. k = 0.

(4.15.1) As OX,x is a field, it is regular; hence OV,t is regular by lemma 3.23.

(4.15.2) The local ring OVx,t is regular by 0.20.

(4.15.3) The ring OV,t is in particular reduced; it implies that if f is a non-
zero element of it, its zero-locus (which is a Zariski-closed subset of a suitable
neighborhood of t) contains no neighborhood of t in V . Thanks to the prop.
4.14, this zero-locus contains no neighborhood of t in Vx.

(4.15.4) Let us now go back to the proof by induction on n. If n = 0 then
t = x, and both OV,t = OX,x and OVx,t = H (x) are fields; hence we are done.
Assume that n > 0 and that the theorem has been proved for any integer stictly
lower than n.

(4.15.5) Let us first prove the flatness claim. Let m be the maximal ideal of
OV,t. By [18], Th. 5.6, it is sufficient to prove that OVx,t/m

d is a flat OV,t/m
d-

algebra for any d > 0. We distinguish two cases.

• The first case. If m = 0, then OV,t is a field and we are done.
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• The second case. Suppose m 6= {0} and let d be a positive integer. Due
to remark 3), the Zariski-closed subspace Z defined in a neighborhood of
t by the finitely generated ideal md contains no neighborhood of t in Vx ;
therefore Z → X is of dimension strictly lower than n at t. By induction,
OZx,t is a flat OZ,t-algebra. But OZx,t (resp. OZ,t) is nothing but OVx,t/m

d

(resp. OV,t/m
d).

(4.15.6) Now, let us proof that any fiber of Spec OVx,t → Spec OV,t is CI, and
regular if char. k = 0. Let p be a prime ideal of OV,t. We distinguish two cases.

• The first case. If p = 0, then the fiber of Spec OVx,t over p is the spectrum
of a localization of OVx,t ; but the latter is regular (4.15.2), hence we are
done.

• The second case. Suppose p 6= {0}. By 4.15.3, the Zariski-closed subspace
Z defined in a neighborhood of t by the finitely generated ideal p contains
no neighborhood of t in Vx ; therefore Z → X is of dimension strictly
lower than n at t. The fiber of Spec OVx,t over p is nothing but the generic
fiber of Spec OZx,t → Spec OZ,t. By the induction hypothesis, the latter
is CI, and regular if char. k = 0. �

(4.16) Remarks. Let us give some counter-examples which show that th. 4.15
is probably not far from being optimal.

(4.16.1) One can not expect in general flatness of Spec OYx,y → Spec OY,y if
y ∈ ∂Y/X. Indeed, let r > 0, let and let f =

∑
αiT

i be a power series with

coefficients in k such that |αi|rii→+∞
// 0 and such that (|αi|si)i is non-bounded

as soon as s > r. Let V be the analytic domain of A2,an
k defined by the condition

|T1| = r. There is a natural closed immersion ϕ : D → V given by (Id, f), where
D is the closed disc of radius r; let x denote the image under ϕ of the unique
point of the Shilov boundary of D.

Lemma 2.21 ensures that OA2,an
k ,x is a field. The fiber of V →֒ A2,an

k at x

is nothing but M (H (x)), and OVx,x is then simply the field H (x). As x lies
on a one-dimensional Zariski-closed subset (namely, ϕ(D)), of the purely two-
dimensional space V , the local ring OV,x can not be a field (cor. 1.12). As a
consequence, Spec H (x) → Spec OV,x is not flat.

(4.16.2) One can not expect in general regularity of the fibers of the morphism
Spec OYx,y → Spec OY,y if k is of positive characteristic. Indeed, let us give
the following counter-example which was communicated to the author by M.
Temkin. Assume that k is a non-algebraically closed field of char. p > 0 and
that |k∗| 6= {1}. Let ka be an algebraic closure of k, and let ks be the separable
closure of k inside ka. Let (kn)n∈N be an increasing sequence of subfields of
ks which are finite over k and whose union is equal to ks. For any n, the
complement of a finite union of proper k-vector subspaces of the k-Banach space
kn is a dense subset of it. Therefore there exists a sequence (λn) of elements of
ks and a decreasing sequence (rn) of positive numbers such that:
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i) for any n, one has k[λn] = kn;

ii) for any n and any conjugate element µ of λn in ka, one has µ = λn or
|µ− λn| > rn;

iii) for any m > n, one has |λm − λn| < rn;

iv) rn → 0 as n→ ∞.

For any n let us denote by Dn (resp. Dn) the affinoid domain of A1,an
kn

defined

by the inequality |T − λn| 6 rn (resp. the closed disc of k̂a of center λn and
radius rn). It follows from i) and ii) that the natural map A1,an

kn
→ A1,an

k induces

an isomorphism beween Dn and an affinoid domain ∆n of A1,an
k . It follows from

iii) and iv) that (Dn) is a decreasing sequence of closed discs whose intersection

consists in a single element λ ∈ k̂a. Let x ∈ A1,an
k be the point that corresponds

to λ. We have x ∈ ⋂∆n. Therefore, kn embedds into H (x) ⊂ k̂a for every n.

Hence H (x) is a closed subfield of k̂a containing ks; the latter being dense in

k̂a, H (x) = k̂a; in particular, x is not a rigid point.

Let ϕ be the (finite, flat) morphism A1,an
k → A1,an

k induced by the morphism
from k[T ] to itself that sends T to T p and let y be the unique preimage of x by ϕ.
As x in non-rigid, y is non-rigid; both local rings OA1,an

k
,x and OA1,an

k
,y are thus

fields (lemma 2.20). Now Oϕ−1(x),y = H (x)[τ ]/(τp−T (x)) . Since H (x) = k̂a,
the local ring Oϕ−1(x),y is non-reduced, and in particular, non-regular.

5 Dévissages à la Raynaud-Gruson

Most of this section is inspired by the first part of Raynaud-Gruson’s work on
flatness ([22])). Prop. 5.6, prop. 5.7 and th. 5.10 are the respective analogs of
lemma 2.2, th. 2.1 and prop. 1.2.3 of loc. cit.

Universal injectivity

(5.1) Definition. Let Y → X be a morphism between k-analytic spaces, and
let E → F be a linear map between coherent sheaves on Y . Let y ∈ Y . We will
say that E → F is X-universally injective at y if for every analytic space X ′, for
every morphismX ′ → X , and for every point y′ lying above y on Y ′ := Y ×XX ′,
the map E ′ → F ′ is injective at y′, where E ′ and F ′ are the respective inverse
images of E and F on Y ′.

(5.2) The following facts come straightforwardly from the definition and from
0.19.4.

(5.2.1) Universal injectivity is preserved by base change and ground field ex-
tension.

(5.2.2) Let Y → X be a morphism between k-analytic spaces, and let E → F
be a linear map between coherent sheaves on Y . Let V be an analytic domain
of Y , and let U be an analytic domain of X which contains the image of V .
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For any u ∈ V , the map E → F is X-universally injective at y if and only if
E|V → F|V is U -universally injective at y.

(5.2.3) Definition 5.1 of universal injectivity is equivalent to the same one in
which one (apparently) weakens the condition by taking for X ′ a good space,
or even an affinoid one.

(5.3) Remark. We could also have defined the notion of universal surjectivity
(resp. bijectivity) at a point in the same way, and obtained analogous properties;
but as one sees after having reduced to the good case, universal surjectivity
(resp. universal bijectivity) at a point is simply equivalent to surjectivity (resp.
bijectivity) at that point, because of Nakayama’s lemma (resp. for obvious
reasons).

Universal injectivity and universal flatness

(5.4) Let T be a k-analytic space, let U be a Zariski-open subset of T and let
t ∈ T ; set F = T − U . We immediately see that the following are equivalent :

i) t ∈ U
T
;

ii) U intersects at least one of the irreducible components of T that contain
t;

iii) there exists an irreducible component Z of T which contains t and such
that dimk (F ∩ Z) < dimk Z.

This has two straightforward consequences:

(5.4.1) If S is an analytic domain in T containing t, then t ∈ U
T
if and only

if t ∈ (U ∩ S)S .

(5.4.2) If L is an analytic extension of k and if s is a point of TL lying above

t, then t ∈ U
T ⇐⇒ s ∈ UL

TL
.

(5.5) Standard notations. We will often have to consider the following
situation: T and X are affinoid k-spaces, T → X is a quasi-smooth morphism,
t is a point of T and x is its image on X . Then we will systematically denote
by t (resp. tx) the image of t on T (resp. Tx), by x the image of x on X , by
m the maximal ideal of OX ,x and by z an arbitrary point on T whose image
zx on Tx is the generic point of the connected component of tx (as Tx is a
quasi-smooth, hence geometrically regular, H (x)-analyic space, Tx is a regular
scheme by GAGA); note that OTx,zx is the fraction field of the regular local
ring OTx,tx . The image of z on T will be denoted by z.

Let us make some remarks about those notations.

(5.5.1) One can choose such a z on any given neighborhood U on t in Tx;
indeed, let n be the dimension of Tx at x and let V be the intersection of U
and of the connected component of t in Tx; then the dimension of V at x is also
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n, and as a consequence, it exists z in V satisfying d(H (z)/H (x)) = n, which
proves the claim.

(5.5.2) Any Zariski-open subset of T containing t has a non-empty intersection
with the connected component of t in Tx, hence contains z; as a consequence,

t ∈ {z}T

and OT ,z is a localization of OT ,t.

(5.6) Proposition. Let T → X be a quasi-smooth morphism between k-
analytic spaces. Let L be a free OT -module of finite rank and let N be a coherent
sheaf on T . Let t ∈ T , and let x be its image on X. Let L → N be a map such

that t ∈ Bij(L|Tx
→ N|Tx

)
Tx
; the following are equivalent:

i) the map L → N is X-universally injective at t;

ii) the map L → N is injective at t;

iii) t ∈ Bij(L → N )x
T
.

Proof. We first begin with a remark. Using 5.4.2 and the fact that the
bijectivity locus can only increase by any base change, we see that the property
iii) is universal, that is, remains true after any base change. Then, it is sufficient
to prove that ii) ⇐⇒ iii). We can assume that T and X are affinoid, and we
use the standard notations (5.5).

(5.6.1) Let us prove that ii) ⇒ iii). Assume that ii) holds. It means that the
arrow L ⊗ OT,t → N ⊗ OT,t is injective. Therefore:

α) L ⊗ OT ,t → N ⊗ OT ,t is injective by 0.13.5;

β) L ⊗ OT ,z → N ⊗ OT ,z is injective by α) and 5.5.2.

By assumption, t ∈ Bij(L|Tx
→ N|Tx

)
Tx

; hence z ∈ Bij(L|Tx
→ N|Tx

) and
L ⊗ H (z) → N ⊗ H (z) is an isomorphism. Therefore:

γ) L ⊗ κ(z) → N ⊗ κ(z) is an isomorphism too;

δ) L⊗ OT ,z → N ⊗ OT ,z is surjective by γ) and Nakayama’s lemma;

ε) L ⊗ OT ,z → N ⊗ OT ,z is bijective by δ) and β).

By ε), z ∈ Bij(L → N ); by the choice of z, one has t ∈ Bij(L → N )x
T
.

(5.6.2) Let us now show that iii) ⇒ ii). Assume that iii) holds. By 0.13.3, we
can prove ii) after having replaced k by any of its analytic extensions; it allows
us to assume that x is a k-point. As iii) holds, L ⊗ OT ,z ≃ N ⊗ OT ,z.

Thanks to 0.13.5, it is sufficient to prove that the top horizontal arrow of
the following commutative diagram

L ⊗ OT ,t //

��

N ⊗ OT ,t

��
L ⊗ OT ,z

// N ⊗ OT ,z
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is an injection; the bottom horizontal arrrow beeing an isomorphism, it is enough
to establish the injectivity of the left vertical arrow. The OT -module L is free
of finite rank; therefore, we have reduced the problem to proving that the map
OT ,t → OT ,z is injective.

Let S be the multiplicative subset of OT ,t wich consists in all elements a
such that a(z) 6= 0; then OT ,z = S−1OT ,t (5.5.2). Let a in S. Since a(z) 6= 0,
the image of a in κ(zx) is non-zero. But κ(zx) coincides with OTx,zx , that is,
with Frac OTx,tx . Therefore the image of a in the domain OTx,tx is non-zero,
and hence is not a zero divisor.

As x is a k-point, OTx,tx is nothing but OT ,t/m. It then follows from [16],
chapt. 0, §10.2.4 that for any a ∈ S, the multiplication by a in OT ,t is injective;
as a consequence, the localization map OT ,t → OT ,z is injective. �

(5.7) Proposition. We keep the assumptions and notations of the proposition
above. Let P be the cokernel of L → N . The following are equivalent:

i) N is universally X-flat at t;

ii) L → N is injective at t and P is universally X-flat at t.

If moreover t ∈ Int T/X, then the following are equivalent:

i′) N is X-flat at t;

ii′) L → N is injective at t, and P is X-flat at t.

Proof. We can assume that T and X are affinoid; we will use the standard
notations (5.5). Let us first make some observations.

(5.7.1) The quasi-smoothness of T → X implies hat OT is universally X-flat
at t; as L is free, it is universally X-flat at t too.

(5.7.2) By prop. 5.6 above,

L → N is injective at t ⇐⇒ L → N is universally injective at t

⇐⇒ t ∈ Bij(L → N )x
T
.

(5.7.3) By using 5.7.1 and the first equivalence of 5.7.2, it is easily seen that
if L → N is injective at t, then N is X-flat (resp. universally X-flat) at t
if and only if P is X-flat (resp. universally X-flat) at t; in order to prove the
proposition, it is then sufficient to show that if N is universallyX-flat at t (resp.
if N is X-flat at t and if t ∈ Int T/X), then L → N is injective at t; moreover, as
far as the first implication is concerned, we can prove it after having extended
the ground field (0.13.3), which allows to reduce to the case where t is a k-
point; in this particular case, t ∈ Int T/X . Hence it is fact sufficient for both
our purposes to prove that if t ∈ Int T/X and if N is X-flat at t, then L → N
is injective at t. Using the second equivalence of 5.7.2, we eventually reduce the
problem to proving the following claim: if t ∈ Int T/X and if N is X-flat at t,

then t ∈ Bij(L → N )x
T
; that is what we are going to do.
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(5.7.4) From now on, we assume that t ∈ Int T/X and that N is X-flat at
t. We will use the standard notations (5.5); we can shrink X such that m is
generated by global functions (f1, . . . , fr) on X , and such that mOX,x is the
maximal ideal of OX,x, that is, such that OX,x/m is a field; since Int T/X is an
open subset of T , we can choose z such that it also belongs to Int T/X (5.5.1).

Let R be the kernel of L → N . As t ∈ Bij(L|Tx
→ N|Tx

)
Tx
, the point z

belongs to Bij(L|Tx
→ N|Tx

), and one has thus P ⊗ H (z) = 0. It follows from
Nakayama’s lemma that P ⊗ OT ,z = 0; we thus have an exact sequence

0 → R ⊗ OT ,z → L⊗ OT ,z → N ⊗ OT ,z → 0.

By assumption, N⊗OT,t is OX,x-flat. By 0.13.5, the OX ,x-module N⊗OT ,t

is therefore flat; by 5.5.2, the OX ,x-module N ⊗ OT ,z is also flat. Hence

0 → R ⊗ OT ,z/m → L⊗ OT ,z/m → N ⊗ OT ,z/m → 0

is exact.

Let Y be the closed analytic subspace of X defined by the fi’s, and let S be
the fiber product T ×X Y . The exact sequence above is nothing but

0 → R ⊗ OS ,z → L⊗ OS ,z → N ⊗ OS ,z → 0.

By construction, OY,x = OX,x/m is a field and z ∈ Int S/Y . But th. 4.15
then tells us that OSx,z is a flat OS,z-algebra; using 0.13.5, it implies that the
OS ,z-algebra OSx,z is flat, whence we deduce the exactness of

0 → R ⊗ OSx,z → L⊗ OSx,z → N ⊗ OSx,z → 0,

that is, of
0 → R ⊗ OTx,z → L⊗ OTx,z → N ⊗ OTx,z → 0.

As t ∈ Bij(L|Tx
→ N|Tx

)
Tx
, the point z belongs to Bij(L|Tx

→ N|Tx
). Therefore

R ⊗ OTx,z = 0; hence R ⊗ H (z) = 0. By Nakayama’s lemma, R ⊗ OT,z = 0;

this exactly means that t ∈ Bij(L → N )x
T
. �

(5.8) Lemma. Let Y, T and X be good k-analytic spaces, let Y → X be a
morphism which can be written as a composition

Y
π // T // X

where π is finite. Let y ∈ Y , let t and x be its images on T and X, and let F
be a coherent sheaf on Y . Then:

i) if π∗F is X-flat (resp. universally X-flat) at t, then F is X-flat (resp.
universally X-flat) at y;

ii) if y is the only pre-image of t on Y and if F is X-flat (resp. universally
X-flat) at y, then π∗F is X-flat (resp. universally X-flat) at t.

Proof. Let X ′ be a good analytic space over an analytic extension of k, let
X ′ → X be a map, set T ′ = T ×X X ′, Y ′ = T ×X X ′ and Z ′ = Z ×X Z ′;
denote by F ′ the inverse image of F on Y ′ and by π′ the morphism Z ′ → T ′
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induced by π. The inverse image of π∗F on T ′ is then π′
∗F ′. Let t′ be a point

on T ′ lying above t, and let x′ be the image of t′ on X ′. Let y1, . . . , yr be the
pre-images of t′ on Y ′. The OX′,x′-module (π′

∗F ′) ⊗ OT ′,t′ beeing nothing but⊕F ′ ⊗ OY ′,yi , it is flat if and only if all F ′ ⊗ OY ′,yi ’s are flat. Both assertions
follow straightforwardly from those facts. �

Dévissages: definition and existence

If Y is a k-analytic space and if F is a coherent sheaf on Y , the unique coherent
sheaf on Supp F that induces F will be also denoted by F , if there is no risk of
confusion.

(5.9) Definition. Let Y → X be a morphism between good k-analytic spaces.
Let F be a coherent sheaf on Y , let y ∈ Supp F and let x be its image on X .
Let r be a positive integer, and let n1 > n2 > . . . > nr be a decreasing sequence
of positiver integers. A Γ-strict X-dévissage of F at y in dimensions n1, . . . , nr
is a list of data V, {Ti, πi, ti,Li,Pi}i∈{1,...,r}, where:

1) V is a Γ-strict affinoid neighborhood of y in Y ;

2) Ti is for any i a Γ-strict k-affinoid domain of a smooth X-space of pure
relative dimension ni and ti is a point of Ti lying over x;

3) for any i, Li and Pi are coherent OTi -modules and Li is free;

4) ti ∈ Supp Pi if i < r, and Pr = 0;

5a) π1 is a finite map Supp F|V → T1 through which Supp F|V → X goes, and

such that we have π−1
1 (t1) = {y} set-theoretically;

5b) πi is for any i ∈ {2, . . . , r} a finite map from Supp Pi−1 to Ti through
which Supp Pi−1 → X goes and such that we have π−1

i (ti) = {ti−1}
set-theoretically;

6a) L1 is endowed with a map L1 → π1∗F|V whose cokernel is P1 and such

that t1 ∈ Bij(L1|T1,x
→ (π1∗F|V )|T1,x

)
T1,x

;

6b) for any i ∈ {2, . . . , r}, Li is endowed with a map Li → πi∗Pi−1 whose

cokernel is Pi and such that ti ∈ Bij((Li)|Ti,x
→ (πi∗Pi−1)|Ti,x

)
Ti,x

.

The following commutative diagram of pointed spaces will hopefully make
things easier to understand; at the beginning of every line, we have put the
corresponding exact sequence of coherent sheaves (they live on the space Ti
that lies on the line).
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(Supp F|V , y)

π1

��

�

� // (V, y)

��

L1 → π1∗F|V → P1 → 0 (Supp P1, t1)
�

� //

π2

��

(T1, t1)

��)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

L2 → π2∗P1 → P2 → 0 (Supp P2, t2)
�

� // (T2, t2)

��8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8

Lr−1 → πr−1,∗Pr−2 → Pr−1 → 0 (Supp Pr−1, tr−1)

πr

��

�

� // (Tr−1, tr−1)

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

Lr → πr∗Pr−1 → Pr = 0 (Tr, tr) // (X, x)

(5.10) Theorem. Let Y → X be a map between good k-analytic spaces, let
F be a coherent module on Y , let y ∈ Supp F and let x be its image on X.
Assume that the germ (Y, y) is Γ-strict. Let c = codepthOYx,y

F ⊗ OYx,y and
let n = dimy (Supp F)x. Then c 6 n and there exists a Γ-strict X-dévissage of
F|V at y in dimensions belonging to [n− c ; n].

Proof. We have c 6 dimKrull O(Supp F)x,y 6 dimy (Supp F)x = n (the second
inequality is due to corollary 1.12).

(5.10.1) According to the corollary 4.7 of [14], there exist an affinoid neigh-
borhood Z of y in Supp F , an affinoid domain T of a smooth X-space of pure
relative dimension n, and a finite map π : Z → T through which Z → X goes.
Let us set t = π(y). We can first assume, by shrinking T , that y is the only
pre-image of t. By 1.9.3, the germ (T, t) is Γ-strict; then 0.30.2 allows to shrink
Z and T such that both are Γ-strict (and still k-affinoid). By replacing T by a
small enough Laurent neighborhood of t whose definition only involves scalars
belonging to Γ, one eventually can assume that Z = Supp F|V for a suitable
Γ-strict affinoid neighborhood V of y in Y . To simplify the notations, we will
write F instead of F|V in the remining part of the proof; this should not cause
any confusion.

(5.10.2) The map Z → T is finite and Zx is of dimension n at y; it follows that
dimt (Supp π∗F)x = n. As Tx is of pure dimension n, (Supp π∗F)x contains the
connected component of t in Tx.

(5.10.3) As π−1(t) = {y}, π∗F ⊗ OTx,t = F ⊗ OYx,y ; therefore

depthOTx,t
π∗F ⊗ OTx,t = depthOYx,y

F ⊗ OYx,y
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([16], chapt. 0, §16.4.8).

(5.10.4) As dimy Zx = dimt Tx = n, it follows from cor. 1.12 and lemma
1.13 that OZx,y and OTx,t have the same Krull dimension, say δ. By 5.10.2,
dimKrull π∗F ⊗ OTx,t = δ.

As a consequence, and thanks to 5.10.3,

codepthOTx,t
π∗F ⊗ OTx,t = codepthOYx,y

F ⊗ OYx,y = c.

We are now going to argue by induction on c.

(5.10.5) Assume that c = 0. Then π∗F ⊗ OTx,t is a finitely generated module
of codepth 0 and of maximal Krull dimension over the regular local ring OTx,t.
It is thus free ([16], chapt. 0, 17.3.4). Let (fi)16i6r be a family of analytic
functions on the affinoid space T such that (fi(t)) is a basis of π∗F ⊗H (t) ; set
L = Or

T and consider the map L → π∗F which sends (a1, . . . , ar) to
∑
aifi. By

Nakayama’s lemma, this map is surjective at t; moreover, its restriction to Tx
is bijective at t, because its stalk at t is a surjective map between free modules
of the same finite rank over OTx,t. Hence by suitably shrinking T (and all other
data), one can assume that L → π∗F is surjective, and that its restriction to Tx
is bijective. We get this way a Γ-strict X-dévissage of F at y in dimension n.

(5.10.6) Suppose now that c > 0, and that the theorem has been proved in
codepth < c. We will use the standard notations (5.5). By 5.10.2, the vector
space π∗F ⊗ κ(zx) is of positive dimension; let us call it r. Let (fi)16i6r be
a family of analytic functions on T such that (fi(zx))i is a basis of the κ(zx)-
vector space π∗F ⊗ κ(zx). Set L = Or

T and consider the map L → π∗F which
sends (a1, . . . , ar) to

∑
aifi. By construction, it induces an isomorphism on

a Zariski neighborhood of zx in Tx. The scheme Tx being regular and the
coherent sheaf L being free, L ⊗ OTx,tx → L ⊗ OTx,zx is injective; those facts
imply the injectivity of L⊗ OTx,tx → π∗F ⊗ OTx,tx .

Therefore, t ∈ Bij(L|Tx
→ π∗F|Tx

)
Tx
, and L⊗OTx,t → π∗F⊗OTx,t is injective

in view of 0.13.5. The arrow L ⊗ OTx,t → π∗F ⊗ OTx,t is thus not surjective,
because if it were, it would then be bijective and the codepth of π∗F ⊗ OTx,t

would be equal to zero (OTx,t is regular), which would contradict the fact that
c > 0. Therefore, if we set P = Coker (L → π∗F), then t lies on Supp P .
Moreover, (Supp P)x is included in Tx − Bij(L|Tx

→ π∗F|Tx
) by Nakayama’s

lemma; hence dimt (Supp P)x < n.

Therefore there exists an analytic function ξ on Tx whose zero-locus contains
no neighborhood of t and which is such that ξP|Tx

= 0; the image of ξ in
OTx,t is a non-zero element of the annihilator of P ⊗ OTx,t; as a consequence,
dimKrull P ⊗ OTx,t < δ. We thus have depthOTx,t

P ⊗ OTx,t < δ; moreover,
since r > 0 and since OTx,t is regular, depthOTx,t

L ⊗ OTx,t = δ. Let κ be the

residue field of OTx,t. Using [16], chapt. 0, cor. 16.4.4 and the Ext•(κ, .)’s exact
sequence associated with

0 → L⊗ OTx,t → π∗F ⊗ OTx,t → P ⊗ OTx,t → 0,
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we see that

depthOTx,t
P ⊗ OTx,t = depthOTx,t

π∗F ⊗ OTx,t = δ − c.

But dimKrull P ⊗ OTx,t < δ ; therefore, codepthOTx,t
P ⊗ OTx,t < c. Now, by

the induction hypothesis, P admits a Γ-strict X-dévissage at t, in dimensions
belonging to

I := [dimt (Supp P)x − codepthOTx,t
P ⊗ OTx,t ; dimt (Supp P)x].

We will now show that I ⊂ [n− c ; n[; by shrinking suitably V , Z, and T , the
dévissage of P together with V, T, π,L,P ,L → π∗F , will then provide a Γ-strict
dévissage of F at y in dimensions belonging to [n− c ; n].

(5.10.7) Proof of the inclusion I ⊂ [n − c ; n[. As dimt (Supp P)x < n, I is
strictly bounded above by n.

Let us now prove that it is bounded below by n− c. The term

dimt (Supp P)x − codepthOTx,t
P ⊗ OTx,t

can be rewritten as

dimt (Supp P)x − dimKrull O(Supp P)x,t + depthOTx,t
P ⊗ OTx,t.

By cor. 1.12, we have the equalities

dimt (Supp P)x − dimKrull O(Supp P)x,t = centdim (Tx, t)

and dimy Zx − dimKrull OZx,y = centdim (Zx, y).

Since Z → T is finite, centdim (Tx, t) = centdim (Zx, y) by lemma 1.13.
Moreover, it follows from 5.10.6 that

depthOTx,t
P ⊗ OTx,t = depthOTx,t

π∗F ⊗ OTx,t,

and 5.10.3 ensures that the latter coincides with depthOYx,y
F ⊗ OYx,y. Fitting

all those facts together, we obtain that dimt (Supp P)x− codepthOTx,t
P ⊗OTx,t

is equal to dimy (Supp F)x − dimKrull O(Supp F)x,y + depthOYx,y
F ⊗ OYx,y, that

is, to n− c; it ends the proof of the theorem. �

Boundaryless flatness is automatically universal

(5.11) Let Y → X be a map between good k-analytic spaces and let F be a
coherent module on Y . Let y be a point of Y . We will say that F isX-extendable
at y if there exist an affinoid neighborhoodW of y in Y , an isomorphism between
W and an affinoid domain of a boundaryless X-spaceW ′, and a coherent sheaf G
on W ′ such that F|W ≃ G|W . Note that if y ∈ Int Y/X , then F is X-extendable
at y.

(5.12) Let Y → X be a map between good k-analytic spaces and let F be a
coherent module on Y . Let y ∈ Y . We want to give some criteria for F to be
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universally X-flat at y, and to use them to show that in the boundaryless (and,
more generally, extendable) case, X-flatness at y is automatically universal; this
fact had already been proved by Berkovich, using a completely different method,
in some unpublished notes.

(5.12.1) If y /∈ Supp F then F is universally X-flat at y.

(5.12.2) Assume that y ∈ Supp F , let c = codepthOYx,y
F ⊗ OYx,y and let

n = dimy (Supp F)x. Thanks to theorem 5.10, there exists an X-dévissage
(we don’t care about Γ-strictness here) of F at y in dimensions belonging to
[n− c;n]. Let V, {Ti, πi, ti,Li,Pi}i∈{1,...,r} be the corresponding list of data.

(5.12.3) Theorem. We work with the notations introduced above. The fol-
lowing are equivalent:

i) F is universally X-flat at y;

ii) the arrow L1 → π1∗F|V is injective at t1 and for any i > 2, the arrow
Li → πi∗Pi−1 is injective at ti.

If moreover F is X-extendable at y (e.g. y ∈ Int Y/X), then both proposi-
tions above also are equivalent to the following third one:

iii) F is is X-flat at y.

Proof. Thanks to lemma 5.8, X-flatness (resp. X-universal flatness) of F
at y is equivalent to that of π1∗F|V at t1 ; for the same reason, if i 6 r − 1,
then X-flatness (resp. X-universal flatness) of Pi at ti is equivalent to that of
πi+1∗Pi at ti+1. Hence the equivalence of i) and ii), and the equivalence of i),
ii) and iii) when y ∈ Int Y/X , follow from a repeated application of proposition
5.7, once one has remarked that since Pr = 0, it is universally X-flat at tr.

It remains to show that iii) ⇒ i) as soon as F is X-extendable at y. Let we
assume that F is X-flat at Y , that Y is an affinoid domain of a boundaryless
X-space Y ′, and that F is the restriction to Y of a coherent sheaf G on Y ′; one
is going to prove that F is X-universally flat at y.

By assumption, F⊗OY,y = G⊗OY,y is OX,x-flat. Since OY,y is a (faithfully)
flat OY ′,y-algebra (0.13.4), G ⊗ OY ′,y is OX,x-flat. By the boundaryless case
already established, G is universally X-flat at y. Therefore, F is universally
X-flat at y (2.12). �

(5.12.4) Remark. If properties i) and ii) are satisfied, it turns out that
Lr → πr∗Pr−1 (or L1 → π1∗(F|V ) if r = 1) is bijective at tr, because it is
injective by ii), and surjective since its cokernel Pr is zero.

Thanks to theorem 5.12.3above, it is possible to slightly improve theorem
2.6.

(5.12.5) Theorem. Let Y → X be a morphism between k-affinoid spaces and
let Z be a Zariski-closed subspace of Y such that Z → X is finite. Let y ∈ Z
and let y be its image on Y . Let F be a coherent sheaf on Y . If F is X -flat
at y, then it is universally X-flat at x.
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Proof. Theorem 2.6 tells us that F is X-flat at y. As Z → X is finite,
Y → X is inner at y; in view of theorem 5.12.3, F is universally X-flat at y. �

(5.13) Let Y → X be a morphism of k-analytic spaces, let y ∈ Y , let x be its
image on X and let F be a coherent sheaf on Y . Let P be one of the properties
listed in 0.19.5 a) (resp. 0.19.5 b), except flatness). We will say that Y → X
(resp. that F) satisfies P at y (resp. satisfies P over X at y ) if it is universally
flat at y (resp. if it is X-universally flat at y) and if Yx (resp. F|Yx

) satisfies P
at y.

About the CM property

(5.14) Lemma. Let Y → T be a finite morphism and let T → X be a quasi-
smooth morphism. Let F be a coherent sheaf on Y which is universally T -flat.
The sheaf F is CM over X.

Proof. One can assume that Y, T and X are k-affinoid. The universal X-
flatness of F is clear. Let x ∈ X . One will show that F|Yx

is CM. Let y ∈ Yx
and let t be its image on Tx. The ring OTx,t is regular by quasi-smoothness
of Tx, hence CM. The morphism Spec OYx,y → Spec OTx,t is finite, hence has
zero-dimensional fibers; the finite module F ⊗ OYx,y is OTx,t-flat by universal
T -flatness of F . It follows then from prop. 6.4.1 of [17] that F ⊗OYx,y is CM. �

This lemma admits kind of a converse claim.

(5.15) Theorem. Let Y → X be a morphism of good k-analytic spaces and
let y ∈ Y . Assume that (Y, y) is Γ-strict. Let n be an integer. Let F be a
coherent sheaf on Y such that y ∈ Supp F . Assume that F is CM and of
relative dimension n over X at y. There then exist:

• a Γ-strict k-affinoid neighborhood V of y in Y , which is included in the
CM locus of F over X;

• a Γ-strict k-affinoid domain T of a smooth X-space of pure relative di-
mension n;

• a finite X-morphism π : Supp F|V → T with respect to which F|V is T -flat.

Proof. Let us call x the image of y onX ; we then have codepth F⊗OYx,y = 0.
By th. 5.10, F admits a full Γ-strict X-dévissage V, T, π, t,L,P = 0 at y in
dimension n. As F is universally X-flat at y, th. 5.12.3 and remark 5.12.4
ensure that L → π∗F|V is bijective at t. We can hence shrink the data so that
π∗F|V is a free OT -module. Lemma 5.14 above then ensures that V is included
in the CM-locus of F over X . �

(5.16) Remark. Let Y → X be a morphism of k-analytic spaces and let F
be a coherent sheaf on Y which is universally X-flat. Let U be the CM locus of
F over X ; it follows from thm. 5.15 that U is an open subset of Y .

Now let x ∈ X . As F is universally flat, the intersection U ∩ Yx is the CM-
locus of F|Yx

. It is a Zariski-open subset if Yx (cf.[15], th. 4.4), which is dense.
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Indeed, to show it one can assume that Y is affinoid. Now if y is the generic
point of an irreducible component of Yx then F|Yx

⊗OY ,y is CM because OY ,y

is zero-dimensional; this fact, together with GAGA, cf.0.20), implies our claim.

6 Images of maps

The zero-dimensional CM case

(6.1) Proposition. Let Y be a Γ-strict compact k-analytic space, let X be
a separated k-analytic space and let ϕ : Y → X be a morphism. Let F be a
coherent sheaf on Y which is CM and purely zero-dimensional over X. The
image ϕ(Supp F) is a Γ-strict compact analytic domain of X.

Proof. We can replace Y by the support of F , that is, we can assume that
Supp F = Y . We will first reduce to a particular case.

(6.1.1) Since Y is compact, this allows us to argue G-locally on Y .

• By 1.10.2, one can assume that X is Γ-strict and k-affinoid.

• Thanks to cor. 5.15, one can assume that there exist a Γ-strict k-affinoid
quasi-étale X-space T , and a factorization of Y → X through a finite
map π : Y → T such that π∗F is a non-zero free OT -module. The latter
condition implies that π(Y ) = T . Replacing Y by T , one can assume that
Y → X is quasi-étale.

• We can suppose that the quasi-étale map Y → X can be written as a
composition Y →֒ X ′ → X where Y →֒ X ′ identifies Y with a Γ-strict
compact analytic domain of X ′, whereX ′ is connected and whereX ′ → X
goes through a finite étale map from X ′ to a connected Γ-strict affinoid
domain Z of X . Let X ′′ be by a connected finite Galois covering of Z
going through X ′. One can replace X by Z and Y by its preimage on
X ′′; the union of all Galois conjugates of Y is a Γ-strict compact analytic
domain of X ′′ whose image on X coincides with that of Y .

We can eventually assume that X is a Γ-strict k-affinoid space and that Y
is a Galois-invariant Γ-strict compact analytic domain of a finite Galois
cover X ′′ of X.

(6.1.2) Let y ∈ Y and let x = ϕ(y). Let (U, x) be the smallest analytic domain
of (X, x) through which (Y, y) → (X, x) goes (1.9.2 and 1.9.4). It is Γ-strict,

and its reduction (̃U, x)
Γ

its the image of (̃Y, y)
Γ

on P
H̃ (x)

Γ
/k̃Γ

. As Y is Galois-

invariant, the pre-image of (̃U, x)
Γ

on P
H̃ (y)

Γ
/k̃Γ

is precisely (̃Y, y)
Γ

. It means

that the map (Y, y) → (U, x) is boundaryless (0.30.5). Being quasi-étale, it is
étale. Therefore, there exist a Γ-strict compact analytic neighborhood W of y
in Y , and a Γ-strict compact analytic neighborhood V of x in U such that ϕ
induces a finite étale map W → V . As a consequence, ϕ(W ) is a finite union
of connected components of V ; in particular, it is a Γ-strict compact analytic
domain of X . Thanks to the compactness of Y , this ends the proof. �
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Existence of CM multisections: the local case

(6.2) Theorem. Assume that |k∗| 6= {1}, and let ϕ : Y → X be a morphism
of k-analytic spaces, with Y being strict and X separated. Let y ∈ Y , let x be
its image on X and let F be a coherent sheaf on Y which is universally X-
flat at y. Denote by Z the CM locus of F over X and by (U, x) the smallest
analytic domain of (X, x) through which (Supp F , y) → (X, x) goes ( (1.9.2 and
1.9.4).There exist r > 1, zero-dimensional maps

ψ1 : X1 → X, . . . , ψr : Xr → X,

and X-morphisms

σ1 : X1 → Z ∩ Supp F , . . . , σr : Xr → Z ∩ Supp F

such that:

i) for every j, the space Xj is compact and strictly k-analytic and the point
x has a unique pre-image xj on Xj;

ii) for every j, the coherent sheaf σ∗
jF is CM over X, and ψj(Xj) is thus a

compact strictly k-analytic domain of X (prop. 6.1);
iii) one has (U, x) =

⋃
(ψj(Xj), x).

Moreover :

α) if Y → X is quasi-smooth at y and if F = OY , the ψj’s can be chosen to
be quasi-étale;

β) if Y → X is boundaryless at y (which implies that (U, x) = (X, x), see
1.9.3) and if the germs (Y, y) and (X, x) are good one can take r = 1, and ψ1

inner, hence finite, at x1.

Proof. By replacing Y with Supp F , we may assume that Y = Supp F .

(6.2.1) Let us first reduce to the case where both Y and X are strictly k-
affinoid, using the fact that all assertions involved are local on Y and X .

We begin with assertion β), that is, under the assumption that Y and X are
good ant that Y → X is inner at y. As we have noticed, this implies in view of
1.9.3 that (U, x) = (X, x); moreover, strictness of (Y, y) implies that of (X, x)
by 1.9.2. Thus we can skrink Y and X so that both are strictly k-affinoid.

Let us now come to the other assertions (so, we don’t assume anymore neither
Y and X to be good nor ϕ to be inner at y). By replacing Y with a compact
neighborhood of y, one can assume that it is compact. Now, as X is separated,
ϕ(Y ) is contained in a compact, strictly analytic domain X0 of X (1.10.2); as
(U, x) ⊂ (X0, x) one can replace X with X0, and hence reduce to the case where
X itself is strict. The point x has thus a neighborhood in X which is a finite
union of strictly affinoid domains containing x; all assertions involved being
G-local on the germ (X, x), one can assume that X itself is strictly k-affinoid.
The point y has a neighborhood in Y which is a finite union of strictly affinoid
domains containing it; all assertions involved being G-local on the germ (Y, y),
one can assume that Y itself is strictly k-affinoid.
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Caution: as the proof will involve from now on only strictly k-analytic
spaces, it will be sufficient to consider non-graded reductions; there-
fore, in order to simplify notations, we will write all this proof along

(̃Y, y), k̃, and so on... instead of (̃Y, y)
1

, k̃1, and so on.

(6.2.2) Let A (resp. B) be the algebra of analytic functions on X (resp.
Y ). Let A o be the subring of A that consists in functions whose spectral
semi-norm is bounded by 1, and let A oo be the ideal of A o that consists in

functions whose spectral semi-norm is strictly bounded by 1, and let Ã be the
quotient A o/A oo; we define Bo,Boo and B̃ in a similar way; both k̃-algebras

Ã and B̃ are finitely generated. By Temkin’s definition of the reduction of an

analytic germ, one has (̃X, x) = P
H̃ (x)/k̃

{Ã } and (̃Y, y) = P
H̃ (y)/k̃

{B̃}. Let

f1, . . . , fn be elements of Bo whose images generate the k̃-algebra B̃. One has

also obviously (̃Y, y) = P
H̃ (y)/k̃

{f̃1(y), . . . , f̃n(y)}.

(6.2.3) If ϕ is inner at y then (̃Y, y) is equal to the pre-image of (̃X, x) in

P
H̃ (y)/k̃

; in other words, P
H̃ (y)/k̃

{B̃} = P
H̃ (y)/k̃

{Ã }, which means that B̃ is

integral over Ã .

(6.2.4) Let B be the sub-H̃ (x)-algebra of H̃ (y) generated by the f̃i(y)’s; note

that if ϕ is inner at y then B is a field, because in that case f̃i(y) is algebraic

over H̃ (x) for every i (6.2.3). By th. 1.4, there exist finitely many closed points
y1, . . . , ym of Spec B such that

(̃U, x) =
⋃
pj

(
Pκ(yj)/k̃{f̃1(y)(yj), . . . , f̃n(y)(yj)}

)
,

where pj denotes for every j the natural map Pκ(yj)/k̃ → P
H̃ (x)/k̃

. For every j,

set Uj = pj

(
Pκ(yj)/k̃{f̃1(y)(yj), . . . , f̃n(y)(yj)}

)
⊂ P

H̃ (x)/k̃
; thanks to prop. 1.3,

Uj is open and quasi-compact. There exist compact strictly strictly analytic

domains U1, . . . , Um of X which contain x and satisfy the equalities (̃Uj , x) = Uj
for j = 1, . . . ,m.

The inner case. If ϕ is inner at y then as B is a field, m = 1 and y1

is the only point of Spec B. It follows that Pκ(y1)/k̃{f̃1(y)(y1), . . . , f̃n(y)(y1)}
is nothing but PB/k̃{f̃1(y), . . . , f̃n(y)}. But since P

H̃ (y)/k̃
{f̃1(y), . . . , f̃n(y)} is,

under our innerness assumption, the pre-image of (̃X, x) in P
H̃ (y)/k̃

, the open

subset PB/k̃{f̃1(y), . . . , f̃n(y)} of PB/k̃ is the pre-image of (̃X, x) in PB/k̃. One

thus has
Pκ(y1)/k̃{f̃1(y)(y1), . . . , f̃n(y)(y1)} = p−1

1 ((̃X, x)).

(6.2.5) We fix an integer j belonging to {1, . . . ,m}. Let R be the subring of
OX,x consisting in functions f such that |f(x)| 6 1. For any i ∈ {1, . . . , n},
let Pi be a polynomial of R[T1, . . . , Ti], which is monic in Ti and which is such
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that P̃i(f̃1(y)(yj), . . . , f̃i−1(y)(yj), T ) is the minimal polynomial of f̃i(y)(yj) over

H̃ (x)[f̃1(y)(yj), . . . , f̃i−1(y)(yj)] (by P̃i we denote of course the image of Pi

under the natural map R[T1, . . . , Ti] → H̃ (x)[T1, . . . , Ti]). Let Z be a strictly
affinoid neighborhood of x in X on which all the coefficients of the Pi’s are
defined. Let Ω be the open subset of Y ×X Z defined as the simultaneous
validity locus of the inequalities

|P1(f1)| < 1, |P2(f1, f2)| < 1, . . . , |Pn(f1, . . . , fn)| < 1.

(6.2.6) Claim: Ωx 6= ∅. Indeed, suppose that Ωx = ∅. Let J be the set of

integers i ∈ {1, . . . , n} such that |Pi(f1(y), . . . , fi(y))| = 1. For every i ∈ J , let
Yi be the affinoid domain of Yx defined by the condition |Pi(f1, . . . , fi)| = 1.
Under our assumption, the union of the Yi’s for i ∈ J is a neighborhood of y

in Yx. We thus have (̃Yx, y) =
⋃
i∈J

(̃Yi, y). Let us describe both terms of this

equality.

• By prop. 4.6 of [25],4 (̃Yx, y) = P
H̃ (y)/H̃ (x)

{f̃1(y), . . . , f̃n(y)}.

• If i is any element of J , then (̃Yi, y) is equal to

P
H̃ (y)/H̃ (x)

{f̃1(y), . . . , f̃n(y), P̃i(f̃1(y), . . . , f̃i(y)), P̃i(f̃1(y), . . . , f̃i(y))−1}.

There exists a valuation 〈.〉 on H̃ (y) which is trivial on H̃ (x) and whose

ring O〈.〉 dominates OSpec A,yj . As f̃1(y), . . . , f̃n(y) belong to A, they belong to

O〈.〉; as P̃i(f̃1(y)(yj), . . . , f̃i(y)(yj)) = 0 for all i, the element P̃i(f̃1(y), . . . , f̃i(y))
belongs to the maximal ideal of O〈.〉 for all i.

It follows now from the explicit descriptions of (̃Yx, y) and of the (̃Yi, y)’s we

have just given that 〈.〉 belongs to (̃Yx, y) but not to
⋃
i∈J

(̃Yi, y), contradiction.

(6.2.7) As Ωx 6= ∅, it follows from remark 5.16 that there exists a point ω
on Ωx lying on Z. From th. 5.15, one deduces the existence of a strictly
affinoid neighborhood V of ω in Ω∩Z such that V → X admits a factorization
V → W → X , where W is a strictly affinoid domain of a smooth X-space T ,
and where V → W is a finite map with respect to which F|V is W -flat; if ϕ is
quasi-smooth at y and if F = OY , one can suppose that V =W .

Let ̟ be the image of ω on W . By cor. 2.17, the image of Int V/Y on
W contains an open neighborhood Ξ of ̟. As Ξx is a non-empty strictly
H (x)-analytic space, it has an H (x)-rigid point, which automatically belongs
to IntWx/Tx. It implies the existence of an open subset of T whose fiber at x is

4The latter proposition a priori only concerns morphisms of k-analytic spaces, but while
reading its proof, one sees that thanks to prop. 3.1 v) of [25], it extends to k-morphisms
between analytic spaces over arbitrary complete extensions of k; hence one can apply it to the
diagram Y → X ←M (H (x)).
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non-empty and is included in Ξx. Applying prop. 4.9 to this open subset provides
an étale X-space X ′ and an X-morphism X ′ → T whose image intersects Ξx.
We fix a pre-image x′ of x in X ′ whose image on T belongs to Ξ and is denoted
by w. We choose a pre-image v of w in Int V/Y . We denote by W ′ the analytic
domainW×TX ′ of X ′, and by V ′ the fiber product V ×WW ′. We chose a point
v′ on V ′ lying above both v and x′. We then have the following commutative
diagram of pointed spaces,

(V, v)

��

�

� // (Z, v)

��

(V ′, v′)

��

99sssssssss

(W,w)
�

� // (T,w)

��
(W ′, x′)

99sssssssss
�

� // (X ′, x′) //

::uuuuuuuuu

(X, x)

in which both squares are cartesian. Since X ′ → X is étale, it is boundary-
less. As a consequence, X ′ → T , W ′ →W and V ′ → V are boundaryless.

As v ∈ Int V/Y , the germ (V, v) coincides with (Y, v); in other words, we

have (̃V, v) = P
H̃ (v)/k̃

{f̃1(v), . . . , f̃n(v)}. Since V ′ → V is boundaryless, 0.30.5

therefore provides the equality ˜(V ′, v′) = P
H̃ (v′)/k̃

{f̃1(v′), . . . , f̃n(v′)} (one still

writes fi for the pull-back of fi into the ring of functions on V ′).

By choice of V , the point v belongs to Ωx. We hence have for every i the

inequality |Pi(f1(v), . . . , fi(v))| < 1. It implies that P̃i(f̃1(v′), . . . , f̃i(v′)) = 0 for

every i. By the very definition of the Pi’s, it follows that there exists an H̃ (x)-

isomorphism between κ(yj) and H̃ (x)[f̃1(v′), . . . , f̃n(v′)] which sends f̃i(y)(yj)

to f̃i(v′) for any i. The image of ˜(V ′, v′) inside P
H̃ (x)/k̃

coincides therefore

with pj

(
Pκ(yj)/k̃{f̃1(y)(yj), . . . , f̃n(y)(yj)}

)
, that is, with Uj . As a consequence,

(Uj , x) is the smallest analytic domain of (X, x) through which (V ′, v′) → (X, x)
goes.

The morphism V ′ → X is purely zero-dimensional. The space W ′ is quasi-
étale, and in particular smooth, over X , and the pull-back of F to V ′ is flat over
W ′, because F|V is flat over W . Lemma 5.14 then ensures that the pull-back
of F to V ′ is CM over X . Moreover, if Y → X is quasi-smooth and if F = OY ,
then V ′ is quasi-étale over X (because in this situation V =W ).

The inner case. If ϕ is inner at y it follows from 6.2.4 that j = 1 and that

Pκ(y1)/k̃{f̃1(y)(y1), . . . , f̃n(y)(y1)} = p−1
1 ((̃X, x)).

Therefore ˜(V ′, v′) is the pre-image of (̃X, x) in P
H̃ (v′)/k̃

, which exactly means

that (V ′, v′) → (X, x) is boundaryless.

(6.2.8) Conclusion As V ′ → X is zero-dimensional, there exists a compact
strictly k-analytic neighborhoodXj of v

′ in V ′ such that v′ is the only pre-image
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of x inside Xj . To emphasize the dependance on j, let us denote now by xj
the point v′, by ψj the natural map Xj → X , and by σj the natural X-map
Xj → Z.

Let us fix j ∈ {1, . . . ,m}. From what has been done in 6.2.7, one deduces
the following: ψj is zero-dimensional; the coherent sheaf σ∗

jF is CM overX ; and
the smallest analytic domain of (X, x) through which (Xj , xj) goes is (Uj , x).
If F = OY and if ϕ is quasi-smooth at y, then ψj is quasi-étale; if ϕ is inner at
y then j = 1 and ψ1 is inner, hence finite, at x1.

As the coherent sheaf σ∗
jF is CM over X (and has support Xj because F

has support Y ), prop. 6.1 ensures that ψj(Xj) is an analytic domain of X . We
can shrink Xj so that ψj(Xj) ⊂ Uj, whence the inclusion (ψj(Xj), x) ⊂ (Uj , x),
and eventually the equality (ψj(Xj), x) ⊂ (Uj , x) by minimality of (Uj , x).

Since (U, x) is the union of the (Uj , x)’s (6.2.4, the data (Xj , ψj , σj)j satisfy
the conclusions of the theorem. �

Existence of CM multisections: the global case

(6.3) Theorem. Assume that |k∗| 6= {1}. Let Y be a compact, strictly k-
analytic space and let X be a separated k-analytic space. Let ϕ : Y → X be a
morphism and let F be a universally X-flat coherent sheaf on Y . Denote by Z
the CM locus of F over X. There exist a compact, strictly k-analytic space X ′,
a zero-dimensional map ψ : X ′ → X and an X-morphism X ′ → Z ∩ Supp F
such that the following hold:

i) σ∗F is CM over X, which implies that ψ(X ′) is a compact strictly analytic
domain of X (prop. 6.1).

ii) one has ϕ(Y ) = ψ(X ′).

If moreover Y → X is quasi-smooth and F = OY , then ψ can be chosen to
be quasi-étale.

Proof. By replacing Y with Supp F we may assume that Supp F = Y . Let
y ∈ Y . Using th. 6.2, and setting Xy :=

∐
Xj, ψy =

∐
ψj and σy =

∐
σj ,

one gets the existence of a compact strictly k-analytic space Xy, which is quasi-
étale if F = OY , of a zero-dimensional map ψy : Xy → X , and of an X-map
σy : Xy → Z, such that the following are satisfied:

• σ∗
yF is CM overX , which forces ψy(Xy) to be a compact strictly k-analytic

domain of X by prop. 6.1;
• (ψy(Xy), x) = (Uy, x), where (Uy, x) is the smallest analytic domain of

(X, x) through which (Y, y) → (X, x) goes.

As (Y, y) → (X, x) goes through (Xy, x), there exists a compact neighbor-
hood Vy of y in Y such that ϕ(Vy) ⊂ ψy(Xy).

By compactness of Y there exist finitely many points y1, . . . , yn on Y such
that the Vyi ’s cover Y . Now set X ′ =

∐
Xyi , ψ =

∐
ψyi , and σ =

∐
σyi . By

construction, i) is satisfied and ψ is quasi-étale as soon as F = OY and ϕ is
quasi-smooth; it thus remains to show ii).
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For every i, one has ϕ(Vyi) ⊂ ψyi(Xyi). As the Vyi ’s cover Y this implies
that ϕ(Y ) ⊂ ψ(X ′); but the existence of σ provides the converse inclusion,
whence ii). �

Images of maps: the compact case

The following theorem contains, and extends, the celebrated result by Raynaud
that tells that if ϕ : Y → X is a flat morphism between affinoid rigid spaces,
then ϕ(Y ) is a finite union of affinoid domains of X (cf. [8], cor. 5.11). But
note that our proof is different – we don’t use any formal geometry.

(6.4) Theorem. Let Y be a Γ-strict k-analytic space, let X be a k-analytic
space and let ϕ : Y → X be a compact morphism. Let F be a coherent sheaf on
Y which is universally X-flat. If X is Γ-strict, or if X is separated and if Y is
paracompact, then ϕ(Supp F) is a closed Γ-strict analytic domain of X.

Proof. By replacing Y by Supp F we reduce to the case where Supp F = Y .
Since ϕ is compact, ϕ(Y ) is a closed subset of X . We are now going to reduce
to the case where both Y and X are Γ-strict and k-affinoid.

(6.4.1) The case where X is Γ-strict. One can check the result G-locally on
X ; it allows to assume that X is Γ-srtict and k-affinoid. affinoid. In this case,
Y is compact, hence admits a finite covering by Γ-strict, affinoid domains; one
therefore immediatly reduces to the case where Y is also Γ-strict and affinoid.

(6.4.2) The case where X is separated and where Y is paracompact.
Since Y is paracompact, it admits a locally finite covering (Yi) by compact Γ-
strict analytic domains. If we prove that ϕ(Yi) is a Γ-strict compact analytic
domain of X for any i, then (ϕ(Yi)) will be by compactness of ϕ a locally finite
covering of ϕ(Y ) by Γ-strict compact analytic domains of X . As X is separated,
this will imply that ϕ(Y ) is itself a Γ-strict analytic domain of X . Hence we
reduced to the case where Y is compact. Thanks to 1.10.2, one can then assume
X is compact and Γ-strict, and even, since one can check the result G-locally on
X , that it is affinoid and Γ-strict. And as Y admits a finite covering by Γ-strict
k-affinoid domains, one eventually reduces to the case where Y is also Γ-strict
and k-affinoid.

(6.4.3) The proof in the case where both Y and X are Γ-strict and
k-affinoid. Let r = (r1, . . . , rn) be a k-free polyray such that the ri’s belong
to Γ, such that |k∗r | 6= {1} and such that Xr and Yr are strictly kr-analytic;
let s : X → Xr be the Shilov section. Thanks to theorem 6.3, ϕr(Yr) is a
compact strictly kr-analytic domain of Xr. The subset ϕ(Y ) of X is nothing
but s−1(ϕr(Yr)). By the Gerritzen-Grauert theorem, ϕr(Yr) is a finite union
of strictly kr-rational domains; it is then easily seen (using the explicit formula
for s, see the proof of the lemma 2.4 of [13]) that s−1(ϕr(Yr)) is itself a finite
union of rational domains whose definitions only involve scalars which belong
to Γ; therefore, it is a compact Γ-strict analytic domain of X . �

(6.5) Theorem. Let n and d be two integers, let Y be a Γ-strict k-analytic
space, and let ϕ be a compact morphism from Y to a normal k-analytic space
X. Assume that X is purely d-dimensional, that ϕ is purely n-dimensional, and
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that Y is purely (n+ d)-dimensional. If X is Γ-strict, or if X is separated and
if Y is paracompact, then ϕ(Y ) is a Γ-strict closed k-analytic domain of X.

Proof. We reduce exactly as at the beginning of the proof of cor. 6.4 to the
case where both Y and X are Γ-strict k-affinoid spaces. By compactness, one
can argue locally on Y . Hence cor. 4.7 of [14] and 1.9.3 allow to suppose that
there exist a factorization Y → T → X where Y → T is finite, where T is
Γ-strict and k-affinoid, and where T → X is quasi-smooth of pure dimension n.
Thanks to 0.15.1 and to th. 6.4, T is purely (n+ d)-dimensional. As Y → T is
finite, the image of Y on T is a Zariski-closed subset Z of T of pure dimension
n+ d. This implies that Z is a union of irreducible components of T . Since X
is normal and since T → X is quasi-smooth, T is normal (cor. 3.24) Therefore
Z is a union of connected components of T , hence is a Γ-strict affinoid domain
of T . By th. 6.4, the image of Z on X , which coincides with that of Y , is a
compact Γ-strict analytic domain of X . �

Images of maps: the boundaryless case

(6.6) Theorem. Let ϕ : Y → X be a morphism between k-analytic spaces and
let F be a coherent sheaf on Y which is universally X-flat. Let y be a point of
Supp F at which ϕ is inner, and let x be its image on X. The image ϕ(Supp F)
is a neighborhood of x.

Proof. By replacing Y by a compact analytic neighborhood of y, one can
assume that Y is compact. It follows then from th. 6.4 that ϕ(Supp F) is an
analytic domain U of X . As ϕ is inner at y, ϕ|Supp F is inner at y too. Therefore
x belongs to Int U/X , that is, to the topological interior of U in X , whence the
result. �

(6.7) Remark. The openness of flat, boundaryless morphisms between good
k-analytic spaces has already been proved by Berkovich, in a slightly different
way, in its unpublished notes we have already mentioned.

(6.8) Theorem. Let n and d be two integers and let ϕ : Y → X be a morphism
between k-analytic spaces. Assume that X is normal and of pure dimension d,
that ϕ is of pure relative dimension n, and that Y is of pure dimension n + d.
Let y be a point of Y at which ϕ is inner, and let x be its image on X. The
image ϕ(Y ) is a neighborhood of x.

Proof. By replacing Y by a compact analytic neighborhood of y, one can
assume that Y is compact. It follows then from th. 6.5 that ϕ(Y ) is an analytic
domain U of X . As ϕ is inner at y, x belongs to Int U/X , that is, to the
topological interior of U in X , whence the result. �

7 Universal flatness and quasi-smoothness loci

We will now apply Kiehl’s method, introduced in [20] to show the Zariski-
openness of the flatness locus of a complex analytic morphism, to prove that it
also holds in the non-Archimedean setting.
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(7.1) Theorem. Let Y → X be a morphism of k-analytic spaces and let F be
a coherent sheaf on Y . The universal X-flatness locus of F is a Zariski-open
subset of Y .

Proof. One can assume that both Y and X are affinoid (2.26.4). Then
Y → X goes through a closed immersion ι : Y →֒ X ×k D for some closed
polydisc D. We can replace Y by X ×k D and F by ι∗F ; hence we reduce to
the case where Y → X is universally flat.

Let p be the first projection Y ×X Y → Y . We call U the universal X-
flatness locus of F ; we call V (resp. W ) the universal Y -flatness locus (resp.
the Y -flatness locus) of p∗F with respect to the second projection Y ×X Y → Y
(resp. Y ×X Y → Y ).

Let y ∈ Y and let z ∈ p−1(y). If y ∈ U , then z ∈ V , by the very definition of
universal flatness. If z ∈ V , it follows from the universal flatness of Y → X and
from prop. 2.29 that y ∈ U . Let σ : Y → Y ×X Y be the diagonal immersion;
by what we have just seen, U = σ−1(V ). If Z denotes the diagonal of Y ×X Y ,
it is then sufficient to prove that V ∩ Z is a Zariski-open subset of Z.

By th. 5.12.5, the intersection V ∩Z is nothing but the pre-image of W ∩Z

under the canonical map Z → Z . Both Y ×X Y and Y are noetherian schemes,
and Z is a Zariski-closed subscheme of Y ×X Y which is of finite type over Y

through the second projection. A theorem by Kiehl ([20], Satz 1) then asserts
that W ∩ Z is a Zariski-open subset of Z , which ends the proof. �

Thanks to this theorem, we recover the well-known fact that in the rigid
setting, global algebraic flatness implies global universal analytic flatness.

(7.2) Corollary. Let A → B be a morphism of strictly k-affinoid algebras,
and let Y → X be the corresponding morphism of k-affinoid spaces. Let M be a
finitely generated B-module, and let F be the corresponding coherent sheaf on
Y . Then F is universally X-flat if and only if M is a flat A -module.

Proof. If F is universally X-flat, it is in particular X-flat, and lemma 2.2
then ensures that M is A -flat. Conversely, assume that M is A -flat. Then by
th. 5.12.5, F is universally X-flat at any rigid point of Y . Let Z be the set
of points of Y at which F is not universally X-flat. By th. 7.1 above, Z is a
Zariski-closed subset of Y , and we have just seen that it contains no rigid point.
By the analytic (resp. algebraic) Nullstellensatz if |k∗| 6= {1} (resp. |k∗| = {1}),
we conclude that Z = ∅. �

(7.3) Corollary. Let Y → X be a topologically finitely presented morphism
between topologically finitely presented Spf ko-formal schemes, and let F be a
coherent sheaf on Y which is X-flat. Then the associated coherent sheaf Fη on
Yη is universally Xη-flat.

Proof. One can assume that both Y and X are affine formal schemes; let us
call B and A the corresponding topologically finitely presented ko-algebras, and
let M be the finitely presented B-module associated with F . By assumption, M
is a flat A-module; therefore, M ⊗ko k is a flat A ⊗ko k-module. In view of the
preceeding corollary, this implies that Fη is universally Xη-flat. �

(7.4) Theorem. Let Y → X be a morphism between k-analytic spaces, and
let d ∈ N. The set E of point of Y at which Y → X is quasi-smooth of relative
dimension d is a Zariski-open subset of Y .
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Proof. We can argue G-locally on Y , which allows to assume that it is
affinoid. A point y ∈ Y lies on E if and only if the three following conditions
are fulfilled:

i) dimy (Y → X) = d;
ii) dimH (y) ΩY/X ⊗ H (y) = d;
iii) Y → X is universally flat at y.

The validity loci of the i), ii), iii) are all Zariski-constructible: for i), it
follows from upper-semi-continuity of the relative dimension ([14], th. 4.6); for
ii), from the fact that the pointwise rank of a coherent sheaf on a noetherian
scheme is a constructible function; and for iii), this is a direct consequence of
th. 7.1.

Moreover, E is open by 3.10.8. Being at the same time open and con-
structible, it is Zariski-open ([2], cor. 2.6.6). �
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[9] S. Bosch, S. Güntzer and U. Remmert, Non-Archimedean analysis. A systematic

approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften
261, Springer-Verlag, Berlin, 1984.

[10] Z. Chatzidakis, Thorie des modles des corps valus, master’s course available at the URL
http://www.logique.jussieu.fr/ zoe.

[11] B. Conrad and M. Temkin, Non-Archimedean analytification of algebraic spaces,
preprint.

[12] B. Conrad and M. Temkin, Descent for non-archimedean analytic spaces, preprint.
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