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Abstract

Generalized t-designs, which form a common generalization of objects such as t-
designs, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron,
A generalisation of t-designs, Discrete Math. 309 (2009), 4835–4842]. In this paper, we
define a related class of combinatorial designs which simultaneously generalize packing
designs and packing arrays. We describe the sometimes surprising connections which
these generalized designs have with various known classes of combinatorial designs,
including Howell designs, partial Latin squares and several classes of triple systems,
and also concepts such as resolvability and block colouring of ordinary designs and
packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on
the size of a generalized packing design and construct optimal generalized packings in
certain cases. In particular, we provide methods for constructing maximum generalized
packings with t = 2 and block size k = 3 or 4.

1 Introduction

In his 2009 paper [13], Cameron introduced a new class of combinatorial designs, which si-
multaneously generalizes various well-known classes of designs, including t-designs, mutually
orthogonal Latin squares, orthogonal arrays and 1-factorizations of complete graphs. Further
work on Cameron’s “generalized t-designs” has been done by Soicher [46] and others [21, 37].
Related objects are also discussed in the earlier papers of Martin [32, 33] and Teirlinck [51].
In a remark near the end of his paper, Cameron suggests that a similar definition can be
made for generalizing both packing and covering designs.

In a recent paper [8], the authors, Cavers and Meagher considered the analogue of
Cameron’s generalization for covering designs. In this paper, we pursue the “dual” notion of
generalized packing designs. The key difference when studying packing or covering problems
rather than “traditional” designs is that the question is typically not whether the designs
exist (this is usually trivial to answer), but obtaining bounds on the maximum (for pack-
ings) or minimum (for coverings) size, and constructing optimal (or near-optimal) designs.
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However, the similarity between packing and covering only goes so far. In this paper, we
shall see how a number of families of known designs (including Howell designs, partial Latin
squares and several classes of triple systems) arise as special cases of generalized packing
designs. We shall also see how concepts such as resolvability and block colouring of ordinary
designs and packings, and orthogonal resolutions and colourings, appear in this setting.

Background material on most classes of designs can be found in the Handbook of Com-
binatorial Designs [14]. Before introducing our generalized packing designs, we will review
ordinary packing designs.

1.1 Ordinary packing designs

Definition 1.1.1. Let v, k, t, λ be positive integers with v ≥ k ≥ t. A t-(v, k, λ) packing
design, or more succinctly a packing, is a family D of k-subsets (called blocks) of a v-set X,
where any t-subset of X is contained in at most λ members of D.

Example 1.1.2. The following is an example of a 2-(6, 3, 1) packing:

{1, 2, 4}
{2, 3, 5}
{3, 4, 6}
{1, 5, 6}.

It is straightforward to check that no 2-subset of {1, . . . , 6} appears in more than one block.
Also, this packing is of maximum possible size.

Note that in the case where each t-subset occurs in exactly λ blocks, we have a t-(v, k, λ)
design. However, as we have a weaker requirement, it is trivial to show that that a t-(v, k, λ)
packing exists: a single k-subset satisfies the definition almost vacuously. Instead, what is
considered interesting is to determine the maximum possible size of a t-(v, k, λ) packing, and
give constructions of packings which meet that bound. To that end, we make the following
definition.

Definition 1.1.3. Let v, k, t, λ be positive integers with v ≥ k ≥ t. The packing number
Dλ(v, k, t) is the maximum possible number of blocks in a t-(v, k, λ) packing.

In this paper, we are primarily interested in the case where λ = 1, in which case we omit
the subscript λ.

There are a number of bounds known on Dλ(v, k, t); the reader is referred to the survey
by Mills and Mullin [35] for details. (An updated list of results on packing numbers can
be found in [14, §VI.40].) The most general bound was found independently in the 1960s
by both Johnson [27] and Schönheim [42, 43] (in fact, Johnson was studying the equivalent
problem of bounding the size of a constant-weight binary error-correcting code). We shall
refer to this bound as the Johnson–Schönheim bound.

Proposition 1.1.4. Let v, k, t, λ be positive integers with v ≥ k ≥ t. Then the packing
number satisfies

Dλ(v, k, t) ≤ Uλ(v, k, t) =

⌊
v

k

⌊
v − 1

k − 1
· · ·
⌊
λ(v − t+ 1)

k − t+ 1

⌋
· · ·
⌋⌋

.
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Various refinements of this bound are known. For many small values of k, t and λ, the
structure of maximum t-(v, k, λ) packings is completely described: the cases t = 2, λ = 1
and k = 3 or 4 will be especially important in this paper, and these will be discussed later
in Sections 4 and 5, respectively.

2 Generalized packings

2.1 Definitions and notation

To define our generalized packing designs, we require various pieces of notation and termi-
nology.

If x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) are m-tuples of integers, we write x ≤ y
to mean that xi ≤ yi for all i ∈ {1, 2, . . . ,m}. Similarly, if A = (A1, A2, . . . , Am) and
B = (B1, B2, . . . , Bm) are m-tuples of sets, we write A ⊆ B to mean that Ai ⊆ Bi for all
i ∈ {1, 2, . . . ,m}, and say A is contained in B.

For any set X, we use the notation
(
X
k

)
to denote the set of all k-subsets of X. (Thus

if X is finite and has size n, then the size of
(
X
k

)
is
(
n
k

)
.) If we have an m-tuple of sets

X = (X1, X2, . . . , Xm) and an m-tuple of integers k = (k1, k2, . . . , km), define(
X

k

)
=

(
X1

k1

)
×
(
X2

k2

)
× · · · ×

(
Xm

km

)
.

So a member of
(
X
k

)
consists of an m-tuple of finite sets, of sizes (k1, k2, . . . , km).

Now suppose v, k, t, λ are integers where v ≥ k ≥ t ≥ 1 and λ ≥ 1. Let v =
(v1, v2, . . . , vm) be an m-tuple of positive integers with sum v, and let k = (k1, k2, . . . , km) be
an m-tuple of positive integers with sum k, and where k ≤ v. Then let X = (X1, X2, . . . , Xm)
be an m-tuple of pairwise disjoint sets, where |Xi| = vi. Let t = (t1, t2, . . . , tm) be an m-tuple
of non-negative integers. We say t is (k, t)-admissible if t ≤ k and

∑
ti = t. In a similar

manner, if T = (T1, T2, . . . , Tm) is an m-tuple of disjoint sets, we say that T is (v,k, t)-
admissible if each Ti is a ti-subset of Xi, where (t1, t2, . . . , tm) is (k, t)-admissible. (Note that
since ti is allowed to be zero, the corresponding set Ti is allowed to be empty.)

Definition 2.1.1. Suppose v,k, t, λ,X are as above. Then a t-(v,k, λ) generalized packing
design, or more succinctly a generalized packing, is a family P of elements of

(
X
k

)
, called

blocks, with the property that every T = (T1, T2, . . . , Tm) which is (v,k, t)-admissible is
contained in at most λ blocks in P .

We call X = X1∪̇X2∪̇ · · · ∪̇Xm the point set of the generalized packing design; one can
think of X as being a partition of the point set X. However, by an abuse of notation, we
will often label the elements of each Xi as {1, 2, . . . , vi}.

We remark that our definition of a generalized packing is identical to Cameron’s definition
of a generalized t-design, except his definition requires “exactly λ”. It is also identical to
that given in [8] for generalized covering designs, except that definition requires “at least
λ”. Clearly, a generalized t-design is simultaneously a generalized packing and a generalized
covering design.
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As with ordinary packings, the existence of a t-(v,k, λ) generalized packing is trivial
to establish: a single block satisfies the definition. So the interesting question is to bound
the size of a generalized packing. Again borrowing the notation from ordinary packings, we
make the following definition.

Definition 2.1.2. Suppose v,k, t, λ,X are as above. The generalized packing number
Dλ(v,k, t) is the maximum possible number of blocks in a t-(v,k, λ) generalized packing.

Again, we are usually only interested in the case where λ = 1, in which case we omit the
subscript λ. Various bounds on D(v,k, t) are given in Section 3.1. Before we do so, we shall
consider some straightforward examples.

2.2 Basic examples

That we do indeed have a generalization of ordinary packings is shown by the next result.

Proposition 2.2.1. Suppose v = (v) and k = (k). Then a t-(v,k, λ) generalized packing is
equivalent to an ordinary t-(v,k, λ) packing.

However, numerous other objects arise as generalized packings, as we spend much of this
paper demonstrating. An easy example is the following.

Proposition 2.2.2. Suppose v = (v1, v2), k = (2, 1), t = 2 and λ = 1. Then a 2-(v,k, 1)
generalized packing is equivalent to a proper edge colouring of a simple graph on v1 vertices,
using at most v2 colours.

Proof. Suppose we have such a graph. An edge {x, y} with colour α corresponds to a
block ({x, y}, {α}). The two admissible vectors t are t = (2, 0) and t = (1, 1). That
no T corresponding to t = (2, 0) is repeated is because the graph is simple; that no T
corresponding to t = (1, 1) is repeated is saying that no colour can appear more than once
at a vertex, i.e. the colouring of the edges is proper.

On the other hand, given such a generalized packing, we can always construct an edge-
coloured graph from it.

Example 2.2.3. Suppose v = (5, 4) and k = (2, 1). Figure 1 shows 2-(v,k, 1) packing
equivalent to the 4-edge-colouring of the given graph on 5 vertices.

3 General results

Throughout the remainder of the paper, unless otherwise specified, we let v = (v1, v2, . . . , vm)
and k = (k1, k2, . . . , km) and assume that v ≥ k.

3.1 A few bounds

As mentioned above, one of our goals is to determine the maximum size of a given generalized
packing. In this subsection, we obtain a number of upper bounds on the generalized packing
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({1, 2}, {a})
({1, 4}, {b})
({1, 5}, {c})
({2, 3}, {b})
({2, 4}, {c})
({3, 4}, {d})
({4, 5}, {a}) t t
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Figure 1: A 2-(v,k, 1) generalized packing, for v = (5, 4) and k = (2, 1).

number Dλ(v,k, t), particularly when λ = 1. Many of the results are analogous to lower
bounds on the sizes of generalized covering designs given in [8].

We begin by giving a bound based on the ordinary packing number, which is similar
to [8, Corollary 3.10].

Proposition 3.1.1. Suppose v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km) where v ≥ k.
Then Dλ(v,k, t) ≤ min

ki≥t
Dλ(vi, ki, t).

Proof. The vector t which has t in position i and 0 elsewhere is admissible whenever ki ≥ t.
Now, the entries of the ith component of each block form a t-(vi, ki, λ) ordinary packing, and
the result follows.

If the bound given in Proposition 3.1.1 is met with equality, withDλ(v,k, t) = Dλ(vi, ki, t),
then increasing the size of any part other than the ith does not change the packing number.
We formalize this idea, which will prove crucial in determining the packing number in many
cases, as follows.

Proposition 3.1.2. Suppose v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km) and that there
exists an i ∈ {1, 2, . . . ,m} such that Dλ(v,k, t) = Dλ(vi, ki, t). For j 6= i, suppose that
v′j ≥ vj. Let v′ = (v′1, v

′
2, . . . , v

′
i−1, vi, v

′
i+1, v

′
i+2, . . . , v

′
m). Then Dλ(v

′,k, t) = Dλ(vi, ki, t).

Proof. Let P be a maximum t-(v,k, λ) packing. Then the blocks of P form a t-(v′,k′, λ)
packing, where v′j − vj points in Xj are unused (whenever j 6= i). By Proposition 3.1.1,
Dλ(v

′,k′, t) cannot exceed the size of P .

By considering an admissible vector t with t entries equal to 1 and all other entries 0,
we obtain our next bound, which is somewhat reminiscent of the Johnson–Schönheim bound
(Proposition 1.1.4). It is analagous to [8, Proposition 5.1] for generalized covering designs.

Lemma 3.1.3. Let v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km) and suppose that t ≤ m. Let
{i1, . . . , it} be a t-subset of {1, . . . ,m}, and let B be a collection of blocks with the property
that each t-tuple of the form (xi1 , xi2 , . . . , xit), where xij ∈ Xij , appears in at most one block.
Then

|B| ≤
⌊
vi1
ki1

⌊
vi2
ki2
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.
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Proof. We prove the result by induction on t, noting that the case t = 1 is obvious. Sup-
pose that the result holds for any (t − 1)-subset {j1, j2, . . . , jt−1} of {1, . . . ,m}. Now, let
{i1, . . . , it} ⊆ {1, . . . ,m} and let B be a set of blocks which contain each t-tuple of the form
(xi1 , xi2 , . . . , xit), where xij ∈ Xij , at most once. The number of occurrences (with repeti-
tion) of elements of Xi1 in these blocks is ki1 |B|. Note that for each element x ∈ Xi1 , each
t-tuple (x, xi2 , xi3 , . . . , xit), where xij ∈ Xij , occurs in at most one block. By the induction
hypothesis, the total number of blocks such containing x ∈ Xi1 is therefore at most⌊

vi2
ki2

⌊
vi3
ki3
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.

Hence the total number of blocks is at most

vi1

⌊
vi2
ki2

⌊
vi3
ki3
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.

We obtain that

ki1|B| ≤ vi1

⌊
vi2
ki2

⌊
vi3
ki3
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

,

and hence

|B| ≤
⌊
vi1
ki1

⌊
vi2
ki2
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.

By considering all possible such admissible vectors t, we have the following corollary
(analogous to [8, Corollary 5.2] for generalized covering designs).

Corollary 3.1.4. Let v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km) and suppose that t ≤ m.
Then

D(v,k, t) ≤ min
{i1,...,it}⊆{1,...,m}

⌊
vi1
ki1

⌊
vi2
ki2
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.

Proof. Let B be the set of blocks in a t-(v,k, 1) packing and {i1, . . . , it} ⊆ {1, . . . ,m}.
Consider the admissible vector t which has 1 in positions i1, . . . , it and 0 elsewhere. Cor-
responding to this vector, we obtain that each t-tuple of the form (xi1 , xi2 , . . . , xit), where
xij ∈ Xij for each j, is contained in at most one block of B. By Lemma 3.1.3, it follows that

|B| ≤
⌊
vi1
ki1

⌊
vi2
ki2
· · ·
⌊
vit
kit

⌋
· · ·
⌋⌋

.

In the particular case that t = 2 and λ = 1, by combining the results of Proposition 3.1.1
and Corollary 3.1.4, we obtain the following bound.

Proposition 3.1.5. Let v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km), where v ≥ k and
m ≥ 2. Then

D(v,k, 2) ≤ min

{
min
ki≥2

D(vi, ki, 2), min
i,j∈{1,...,m}

⌊
vi
ki

⌊
vj
kj

⌋⌋}
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We conclude this section by providing a way of constructing a generalized packing from
an existing one by merging parts. Again, this is an analogy of an idea for generalized covering
designs (see [8, Proposition 3.22]).

Proposition 3.1.6. Let v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km), and suppose there
exists a t-(v,k, λ) packing with N blocks. Then for all i, j ∈ {1, 2, . . . ,m} with i < j, there
exists a t-(v+,k+, λ) packing with N blocks, where

v+ = (v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vm, vi + vj)

and
k+ = (k1, . . . , ki−1, ki+1, . . . , kj−1, kj+1, . . . , km, ki + kj).

In particular, Dλ(v
+,k+, t) ≥ Dλ(v,k, t).

Proof. Let B denote the collection of blocks in the t-(v,k, λ) design. We form a new collec-
tion of blocks B+ in the following way. For each block (B1, B2, . . . , Bm) ∈ B, let

(B1, . . . , Bi−1, Bi+1, . . . , Bj−1, Bj+1, . . . , Bm, Bi ∪Bj) ∈ B+.

It is easy to see that the N blocks in B′ form a t-(v′,k′, λ) packing, and thus the bound
follows.

3.2 The case t = 2 and λ = 1: a graphical interpretation

In [8], many of the results obtained for generalized covering designs made use of an interpre-
tation in terms of graphs. Such an interpretation is also available for generalized packings.

Suppose G is a graph, and H a subgraph of G. An H-packing of G is a collection of
edge-disjoint subgraphs of G, each isomorphic to H. Now, an ordinary 2-(v, k, 1) packing
design can easily be regarded as a Kk-packing of Kv: that the subgraphs are edge-disjoint is
equivalent to the condition that no pair of points occurs in more than one block. We can also
represent generalized packings in terms of graphs: to do so requires the following definition.

Definition 3.2.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1 ∩ V2 = ∅. Then
the join of G1 and G2, denoted G1 + G2, is the graph with vertex set V1 ∪ V2, and whose
edge set is E1 ∪ E2 ∪ {xy : x ∈ V1, y ∈ V2}.

For example, the join of two complete graphs is also complete, and the join of two empty
graphs is a complete bipartite graph. We note that this can be extended to a join of any
number of graphs, and that this operation is associative.

Now suppose that v = (v1, v2, . . . , vm) and k = (k1, k2, . . . , km) are vectors of positive
integers with k ≤ v. We define a graph as follows,

Hi =

{
Kvi , if ki = 1,
Kvi , if ki ≥ 2,

where Kvi represents the complement of Kvi (that is, the empty graph). Form the graph

Gv,k = H1 + · · ·+Hm

7



consisting of the join of the graphs Hi such that Gv,k has vertex set V =
⋃
iXi, where

|Xi| = vi and each Xi is the set of vertices of the corresponding Hi.
Analagous to [8, Theorem 3.5] for generalized covering designs, we have the following

result.

Theorem 3.2.2. Let Gv,k be the graph described above. Then a 2-(v,k, 1) generalized pack-
ing is equivalent to a Kk-packing of Gv,k, with the property that for each copy of Kk, there
are ki vertices in the set Xi (for each i).

Proof. Suppose P is a 2-(v,k, 1) generalized packing. Now, from each block in P , we can
easily construct a subgraph of Gv,k with ki vertices in each set Xi, and the subgraph induced
on those vertices is necessarily a complete graph Kk. The admissible vectors t have two
possible forms: (i) a vector with a single entry of 2, and all other entries 0; and (ii) a vector
with two entries 1 and the rest 0. Type (i) vectors are only possible with the single 2 in
position i with ki ≥ 2; these vectors ensure that no edge within a part with ki ≥ 2 appears
in more than one copy of Kk. Type (ii) vectors ensure that no edge between two parts is
ever repeated. Consequently, we have a Kk-packing of Gv,k.

A similar argument works in the reverse direction: given a Kk-packing of Gv,k with the
specified form, each copy of Kk gives us a block, and the way Gv,k was constructed ensures
these blocks form a 2-(v,k, 1) generalized packing.

In the case of ordinary packings, where v = (v) and k = (k), this interpretation reduces
to packing copies of Kk into a complete graph Kv, a common way of thinking about packings.
In this situation, the leave graph (or the leave for short) is defined to be the subgraph of
Kv obtained by deleting the edges from all the blocks. We give an analoguous definition for
generalized packings below.

Definition 3.2.3. Let P be a 2-(v,k, 1) generalized packing. The leave graph, or leave, of
P is the subgraph of Gv,k obtained by deleting the edges contained in blocks of P .

Example 3.2.4. Recall Example 2.2.3, where we exhibited a 2-(v,k, 1) packing with v =
(5, 4) and k = (2, 1). By Theorem 3.2.2, this packing may be viewed as a K3-packing of the
graph Gv,k, which is illustrated, along with its leave, in Figure 2.

3.3 Packing arrays and partial Latin squares: the case k = (1, 1 . . . , 1)

One of Cameron’s motivating examples in [13] for generalized t-(v,k, λ) designs was the case
k = (1, 1, . . . , 1), which (when v = (s, s, . . . , s)) corresponds to orthogonal arrays. Likewise,
in [8] one of the motivating examples of generalized covering designs was covering arrays.
There is also a “packing” version of these objects, which we define now.

Definition 3.3.1. Let N, k, s, t, λ be positive integers. A packing array PAλ(N ; k, s, t) is an
N × k array with entries from an alphabet of size s, with the property that in every set of t
columns, any t-tuple of symbols from the alphabet occurs in at most λ rows.

Usually, we are interested in the case λ = 1, and omit the subscript λ. Note that such
an array where every t-tuple occurs in exactly λ rows is an orthogonal array (see the book
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Figure 2: The generalized packing of Example 2.2.3.
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by Hedayat et al. [25]). The typical question for packing arrays is to determine, for given
values of k, s and t, the largest N such that there exists a PA(N ; k, s, t): this value of N is
called the packing array number, and is denoted by PAN(k, s, t). A listing of known packing
array numbers is given in [14, Table III.3.123].

Unlike orthogonal arrays and covering arrays, not much attention has been paid to pack-
ing arrays in the literature, with the main references being the papers of Stevens and Mendel-
sohn [47, 48]. However, they arise as generalized packings in the same manner as did or-
thogonal arrays and covering arrays.

Proposition 3.3.2. Let v = (s, s, . . . , s) and k = (1, 1, . . . , 1) have length k. Then a
t-(v,k, λ) generalized packing (with N blocks) is equivalent to a packing array PAλ(N ; k, s, t).

In particular, in the case where λ = 1 and t = 2, we have the following result.

Proposition 3.3.3. The existence of the following objects are equivalent:

(i) a packing array PA(N ; k, s, 2);

(ii) k− 2 mutually orthogonal partial Latin squares of order v, each with the same N cells
filled;

(iii) a 2-(v,k, 1) generalized packing with N blocks, where v = (s, s, . . . , s) and k = (1, 1, . . . , 1)
have length k.

Of course, we wish to consider arbitrary vectors v. Without loss of generality, if k =
(1, 1, . . . , 1), we may assume that v1 ≤ v2 ≤ · · · ≤ vk. Now, in this case, the bound given by
Proposition 3.1.5 simplies greatly as follows:

D(v,k, 2) ≤ min
i 6=j

vivj = v1v2.

To construct a generalized packing meeting this bound, we can use the same kind of idea as
Proposition 3.3.3.

Proposition 3.3.4. Let v = (v1, v2, . . . , vk), where v1 ≤ v2 ≤ · · · ≤ vk, and k = (1, 1, . . . , 1).
If there exist k − 2 mutually orthogonal v1 × v2 Latin rectangles, then D(v,k, 2) = v1v2.

Proof. By Proposition 3.1.5, D(v,k, 2) ≤ v1v2. Suppose L1, L2, . . . , Lk−2 are a collection
of k − 2 mutually orthogonal v1 × v2 Latin rectangles. These rectangles give rise to a
2-(v′,k, 1) packing of size v1v2, where v′ = (v1, v2, . . . , v2), by taking blocks of the form
({i}, {j}, {L1(i, j)}, {L2(i, j)}, . . . , {Lk−2(i, j)}) where 1 ≤ i ≤ v1 and 1 ≤ j ≤ v2. Hence, by
Lemma 3.1.2, there is a 2-(v,k, 1) packing of size v1v2.

Clearly, when there exist k − 2 MOLS(v2), we can use these to obtain the required
MOLR(v1, v2), although there are examples of MOLR that do not arise from MOLS. For
example, there exist two MOLR(4, 6) [24], from which we can construct a 2-(v,k, 1) gener-
alized packing, for v = (4, 6, v3, v4) (where 6 ≤ v3 ≤ v4) and k = (1, 1, 1, 1), with 4× 6 = 24
blocks.

The case where k = 4, i.e. when we require two orthogonal Latin rectangles, is considered
in detail in Section 5.5.
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3.4 Resolvability and block colouring: the case t = 2, k = (k− 1, 1)

Recall Proposition 2.2.2, which showed that if k = (2, 1), a generalized packing is equivalent
to an edge-coloured graph. This idea holds more generally.

A block colouring of a block design is an assignment of colours to the blocks, so that
blocks which intersect receive different colours. As for graphs, the chromatic index of a
design is the smallest number of colours needed for a block colouring. We notice that, for
a given colour, the blocks assigned that colour must all be disjoint; if these blocks contain
all the points of the design, we call them a parallel class. More generally, any collection of
disjoint blocks is referred to as a partial parallel class; if all points except one appear, it is
an almost parallel class. A design where the blocks can be partitioned into parallel classes
is said to be resolvable; the partition into parallel classes is called a resolution of the design.
(More information on resolvable designs can be found in [14, §II.7].)

In [13], Cameron observes that when k = (k − 1, 1) and v = (v1, v2), a generalized 2-
(v,k, λ) design is equivalent to a resolvable 2-(v1, k − 1, λ) design; here, v2 must equal the
number of parallel classes. Basically, a block in the generalized design consists of a block of
the 2-(v − 1, k − 1, λ)-design, with an element of X2 indexing the parallel class it is in. The
same idea works for generalized packings.

Proposition 3.4.1. Suppose v = (v1, v2) and k = (k − 1, 1). Then a 2-(v,k, λ) generalized
packing is equivalent to a 2-(v1, k − 1, λ) packing whose blocks are partitioned into at most
v2 partial parallel classes.

Equivalently, such a generalized packing may be thought of as a v2-block colouring of an
ordinary 2-(v1, k − 1, λ) packing.

In this case, the bounds from Proposition 3.1.1 and Corollary 3.1.4 simplify as follows.

Lemma 3.4.2. If k = (k − 1, 1), then D(v,k, 2) ≤ min {D(v1, k − 1, 2), v2 bv1/(k − 1)c}.
Later in the paper (in Sections 4.2 and 5.2), we will see that this bound is always met

when k = 3, and usually met when k = 4.

3.5 Orthogonal colourings and orthogonal resolutions: The case
t = 2, k = (k − 2, 1, 1)

In the case that k = (k − 2, 1, 1), the necessary conditions given in [13, Proposition 1]
assert that a 2-(v,k, 1) design exists only if v = k = (k − 2, 1, 1), which is a trivial case.
Nevertheless, generalized packings with k = (k − 2, 1, 1) have interesting design-theoretical
interpretations, and many objects in the literature arise as examples.

Let X = (V,B) be a 2-(v, k − 2, 1) packing, and let f : B → {1, 2, . . . , s} and g : B →
{1, 2, . . . , t} be two proper block colourings of X . Let F1, F2, . . ., Fs be the colour classes
of the block colouring f and let G1, G2, . . ., Gt be the colour classes of g. We say that block
colourings f and g are orthogonal if |Fi ∩ Gj| ≤ 1 for any i ∈ {1, . . . , s} and j ∈ {1, . . . , t}.
That is, if two blocks receive the same colour in one of the colourings, then they must receive
different colours in the other.

From colourings f and g, we may create an s × t array A in the following manner: for
each block B, we place B in the (i, j)-entry of A if f(B) = i and g(B) = j. The array A has
the following properties:

11



(i) each entry of A is either empty or else contains a (k − 2)-subset of V ;

(ii) each symbol in V appears at most once in each row and at most once in each column;

(iii) each pair of elements occurs at most once as a subset of an entry of A.

Conversely, it is easy to see that given an s × t array A satisfying properties 1, 2 and 3,
then by letting B be the set of (nonempty) entries of A, and for each B ∈ B, f(B) = i and
g(B) = j, where B appears in the (i, j)-entry of A, then we obtain two orthogonal block
colourings of the packing (V,B).

Moreover, an s × t array A satisfying properties 1, 2 and 3 is equivalent to a 2-(v,k, 1)
packing, where v = (v, s, t) and k = (k − 2, 1, 1), with blocks of the form (B, i, j), where
B is the (i, j)-entry of A. Thus, a 2-(v,k, 1) packing is equivalent to the existence of two
orthogonal block colourings of a 2-(v, k − 2, 1) packing, with s and t colour classes.

In the case where each block colouring is a resolution of the design, we refer to them as
orthogonal resolutions, and the design is said to be doubly resolvable. For example, a doubly
resolvable Steiner triple system is known as a Kirkman square (see Colbourn et al. [17]); this
is a 2-(v,k, 1) generalized packing with v = (v, r, r) (where r = (v − 1)/2) and k = (3, 1, 1).
The name arises as the blocks are arranged in an r × r square array. The smallest known
example of a Kirkman square is for v = 27: see [17, Figure 1].

The case where k = (2, 1, 1) is considered in detail in Section 5.3.

4 The case t = 2 and k = 3

In [13], Cameron’s motivating examples were generalized 2-designs where k = 3: these
correspond to Steiner triple systems, 1-factorizations of complete graphs and Latin squares.
We extend this characterization to generalized packings where k = 3, where these provide
prototypical examples for the three possibilities for k.

4.1 k = (3): ordinary packings

When k = (3), a generalized 2-(v,k, 1) packing is equivalent to an ordinary 2-(v, 3, 1) pack-
ing, also sometimes known as a partial Steiner triple system. In this case, the packing
numbers, structure of maximum packings, and leave graphs are all known, and were deter-
mined in the 1966 paper of Schönheim [43]. They depend on congruences modulo 6, and are
summarised in Table 1 below (taken from [14, Table VI.40.22]).

v ≡ D(v, 3, 2) Structure of leave graph

1, 3 (mod 6) v(v − 1)/6 empty

0, 2 (mod 6) v(v − 2)/6 1-factor

4 (mod 6) (v2 − 2v − 2)/6 K1,3 and a matching of size (v − 4)/2

5 (mod 6) (v2 − v − 8)/6 4-cycle

Table 1: Maximum 2-(v, 3, 1) packings.
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Of course, the cases v ≡ 1, 3 (mod 6) are Steiner triple systems. A detailed descrip-
tion of the constructions of maximum packings can be found in Chapter 4 of Lindner
and Rodger [31]. We note that D(v, 3, 2) meets the Johnson–Schönheim bound (Proposi-
tion 1.1.4) with equality when v ≡ 0, 1, 3 (mod 6), and is 1 less than the Johnson–Schönheim
bound otherwise. See also the survey by Mills and Mullin [35], where the case λ > 1 is also
described: this was solved by Hanani [22].

4.2 k = (2, 1): edge-colourings and factorizations

Recall from Proposition 2.2.2 that if k = (2, 1), a 2-(v,k, 1) generalized packing corresponds
to a proper edge-colouring of a graph. To construct maximum generalized packings, it helps
to consider graphs, and edge-colourings, with some structure.

We will show that the bound given in Lemma 3.4.2 can be achieved. When k = (2, 1),
that reduces to

D(v,k, 2) ≤ min

{(
v1
2

)
, v2

⌊v1
2

⌋}
.

When a generalized 2-design exists for k = (2, 1), it is equivalent to a 1-factorization of
a complete graph Kv1 . (One can regard each 1-factor as a colour, which appears at every
vertex.) This occurs when v1 is even and v2 = v1 − 1. We can extend this idea to obtain
maximum generalized packings for arbitrary v = (v1, v2).

Proposition 4.2.1. Suppose v = (v1, v2) and k = (2, 1). Then there exists a 2-(v,k, 1)
generalized packing meeting the bound given in Lemma 3.4.2.

Proof. First, we suppose v1 is even. If v2 = v1 − 1, a 1-factorization of Kv1 gives us a
generalized 2-design, and thus a a generalized packing whose leave is empty. If v1 is even
and v2 ≥ v1− 1, then we use the same design, with the excess vertices in X2 not used in any
block. The size of the design is

(
v1
2

)
= D(v1, 2, 2), and the leave graph is Kv1,v2−v1+1. If v1 is

even and v2 < v1 − 1, then we use v2 of the 1-factors in a 1-factorization of Kv1 , with the v2
1-factors indexed by X2. The size of the packing is v1v2/2, and the leave graph consists of
the union of (v1 − v2 − 1) 1-factors in Kv1 ; its precise structure is dependent on the choice
of the 1-factorization.

Next, suppose that v1 is odd. In this case, there exists a near 1-factorization F of Kv1 ,
containing v1 matchings of size (v1−1)/2. If v2 = v1, then we take as a block an edge of Kv1 ,
together with an element of X2 indexing the near 1-factor of F to which the edge belongs. In
this way, we achieve a packing of size D(v1, 2, 2) whose leave consists of a matching of size v1
between X1 and X2. If v2 > v1, then we use the same design, with the excess vertices in X2

not occurring in any block. Again, the design has size D(v1, 2, 2). If v2 < v1, then we take
v2 of the near 1-factors in F . In this case, the design has size v2(v1 − 1)/2 = v2bv1/2c.

4.3 k = (1, 1, 1): Latin rectangles

This is the easiest case. Let v = (v1, v2, v3), where v1 ≤ v2 ≤ v3. By Corollary 3.1.4, we have
that D(v,k, 2) ≤ v1v2. The existence of a v1 × v2 Latin rectangle guarantees the existence
of a generalized packing of size v1v2 (cf. Corollary 3.3.4). The graphical interpretation of
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Section 3.2 in this case is also straightforward: it is simply a packing of 3-cycles into a
complete multipartite graph Kv1,v2,v3 .

5 The case t = 2 and k = 4

The bulk of this paper is devoted to constructing optimal generalized packings where t = 2
and k = 4. There are five cases, corresponding to the five partitions of 4. Cameron [13]
showed that generalized 2-designs can only exist in three of these cases, namely k = (4), (3, 1)
and (1, 1, 1, 1): these correspond to 2-(v, 4, 1) designs, Kirkman triple systems and pairs of
orthogonal Latin squares, respectively. As we did for k = 3, we extend this characterization
to generalized packings with k = 4. This also requires us to study the cases k = (2, 1, 1) and
k = (2, 2); while no generalized 2-design exists in those cases, there are still (at least when
k = (2, 1, 1)) plenty of examples of generalized packings which exist in the literature.

5.1 k = (4)

A 2-((v), (4), λ) generalized packing is equivalent to an ordinary 2-(v, 4, λ) packing. For
λ = 1, the packing numbers were determined in 1978 by Brouwer [12]. Let U(v, 4, 2) denote
the Johnson–Schönheim bound (see (Proposition 1.1.4)).

Theorem 5.1.1 (Brouwer [12]). The packing number D(v, 4, 2) = U(v, 4, 2)− ε, where

ε =


1, if v ≡ 7, 10 (mod 12), v 6= 10, 19
1, if v ≡ 9, 17 (mod 12)
2, if v = 8, 10, 11
3, if v = 19
0, otherwise.

Brouwer also gave constructions in all cases: these are listed in [14, Table VI.40.23]. We
note that 2-(v, 4, 1) designs exist exactly when v ≡ 1, 4 (mod 12).

If λ > 1, the packing numbers have also been determined completely: this is due to work
of Billington et al. [10], Hartman [23] and Assaf [5]. (The reader is referred to Mills and
Mullin [35] for full details.)

5.2 k = (3, 1)

Recall that in the case k = (k− 1, 1), then a 2-(v,k, λ) generalized packing corresponds to a
proper colouring of a 2-(v1, k − 1, 1) packing using v2 colours, where a block (B, {i}) in the
generalized packing tells us that in the 2-(v1, k − 1, 1) packing, block B is assigned colour i.
(We will refer to a generalized packing in this case by listing the colour classes of blocks in
the corresponding ordinary packing.) In this section, we will show that if k = (3, 1), t = 2
and λ = 1, then the bound given in Lemma 3.4.2 can be achieved in many cases. This
simplifies as follows.

Proposition 5.2.1. Suppose v = (v1, v2) and k = (3, 1) with v ≥ k. Then

D(v,k, 2) = min{D(v1, 3, 2), v2bv1/3c}.
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If k = (3, 1), the only possibility for a generalized 2-design is if v1 ≡ 3 (mod 6) and
v2 = (v1 − 1)/2 (see [13, subsection 3.2.2]). Such a design corresponds to a Kirkman triple
system on v1 points, i.e. a Steiner triple system with a resolution into parallel classes, and
denoted KTS(v1). These originate in a problem of Kirkman from 1850 [28], often known as
Kirkman’s schoolgirls problem, for the case v1 = 15. Kirkman solved the problem for v1 = 15
himself the following year [29], but the existence of Kirkman triple systems for all values of
v1 ≡ 3 (mod 6) was not settled until the late 1960s, when it was shown by Ray-Chaudhuri
and Wilson [39]. (A survey on Kirkman triple systems and related designs can be found in
Stinson [50].)

More generally, if we have a block colouring of 2-(v1, 3, 1) packing with s colours, its
colour type is the sequence (m1, . . . ,ms), where mi is the number of blocks assigned colour i.
We may also use exponential notation: colour type wα1

1 w
α2
2 · · ·wαn

n means that there are αi
colour classes of size wi for each i = 1, 2, . . . , n, and so

∑
αi = s.

Motivated by an application to unipolar communications, Colbourn and Zhao [19] in-
troduced the notion of a Kirkman signal set, which is a 2-(v1, 3, 1) packing partitioned into
s colour classes of size m (that is, it has colour type ms), where s is as large as possible.
If m = bv1/3c (and so is also as large as possible), we have a maximum Kirkman signal
set. More recently, Colbourn, Horsley and Wang [16] introduced a strong Kirkman signal
set (denoted SKSS(v1)) to be a block colouring of a maximum 2-(v1, 3, 1) packing of colour
type msr1, where D(v1, 3, 1) = sm+ r and r < m. That is, an SKSS(v1) has s colour classes
of size m = bv1/3c, and the remaining r blocks all receive the same colour. For example, a
KTS(v1) is an SKSS(v1) when v1 ≡ 3 (mod 6); in this case, r = 0.

For v1 ≡ 0, 1, 2 (mod 6), various other known objects arise as SKSS(v1). When v1 ≡ 2
(mod 6), an SKSS(v1) can be obtained by deleting a point from a KTS(v1 + 1); here r = 0
also. When v1 ≡ 1 (mod 6), an SKSS(v1) is a Hanani triple system, namely an STS(v1)
whose triples may be partitioned into s = (v1 − 1)/2 almost parallel classes and one partial
parallel class of size r = (v1 − 1)/6. These were introduced in a 1993 paper of Vanstone et
al. [52], who showed that such a system exists if and only if v ≡ 1 (mod 6) and v1 /∈ {7, 13}.
When v1 ≡ 0 (mod 6), an SKSS(v1) is a nearly Kirkman triple system, which is a colouring
of a maximum packing of triples on v1 points, with s = (v1 − 2)/2 colour classes of size
m = v1/3; once again we have r = 0. These were introduced by in 1974 by Kotzig and
Rosa [30]. In 1977, it was shown by Baker and Wilson [9] that there exists such a system
if and only if v1 ≡ 0 (mod 6) and v1 ≥ 18, with three possible exceptions. Two of the
exceptional cases were later solved by Brouwer [11], and the remaining case by Rees and
Stinson [40].

The remaining possibilities, namely v1 ≡ 4, 5 (mod 6), were dealt with by Colbourn,
Horsley and Wang [16] (see also [15]).1 Combined with the results of the previous paragraphs,
they proved the following.

Theorem 5.2.2 (Colbourn, Horsley and Wang [16, Theorem 2.4]). Suppose v1 ≥ 3. Then
there exists a strong Kirkman signal set SKSS(v1) unless v1 ∈ {6, 7, 11, 12, 13}.2

1Some of the results of Colbourn, Horsley and Wang [15, 16] for v1 ≡ 5 (mod 6) were independently
obtained by the authors of the present paper, using exactly the same approach; however, their results were
submitted for publication before the present authors became aware of their work.

2The value v1 = 11 is missing from the statement of [16, Theorem 2.4]; however, it is addressed elsewhere
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The connection between strong Kirkman signal sets and generalized packings is estab-
lished in the result below.

Theorem 5.2.3. Suppose v = (v1, v2) and k = (3, 1). If there exists a strong Kirkman
signal set SKSS(v1), then there exists a 2-(v,k, 1) generalized packing meeting the bound of
Proposition 5.2.1.

Proof. First, we note that if k = (3, 1), the bound of Proposition 5.2.1 works out as

D(v,k, 2) = min
{
D(v1, 3, 2), v2

⌊v1
3

⌋}
.

Now suppose there exists an SKSS(v1), which has colour type msr1, where m = bv1/3c and
D(v1, 3, 2) = ms + r. If v2 ≤ s, we take v2 of the colour classes of size m, which yield
a generalized packing of size v2bv1/3c. If v2 > s, then the SKSS(v1) itself is a 2-(v,k, 1)
generalized packing of size D(v1, 3, 2).

Thus Theorem 5.2.2 establishes the existence of generalized packings for k = (3, 1) unless
v1 ∈ {6, 7, 11, 12, 13}. In [16, §3.1], Colbourn, Horsley and Wang determine all the possible
colour types for 2-(v1, 3, 1) packings where v1 ≤ 13. From this, it is possible to determine
the value of D(v,k, 2) for k = (3, 1) in the five exceptional cases.3 We now consider each of
these exceptions, beginning with v1 = 6.

Lemma 5.2.4. Let v = (6, v2) and k = (3, 1). Then

D(v,k, 2) =


2, if v2 = 1, 2
3, if v2 = 3
4, if v2 ≥ 4.

This is straightforward to show, so we leave the proof as an exercise. Almost as straight-
forward is the case v1 = 7, which we do next.

Lemma 5.2.5. Let v = (7, v2) and k = (3, 1). Then

D(v,k, 2) =



2, if v2 = 1
3, if v2 = 2
4, if v2 = 3
5, if v2 = 4, 5
6, if v2 = 6
7, if v2 ≥ 7.

Proof. The unique maximum 2-(7, 3, 1) packing is, of course, the Fano plane, which has
chromatic index 7: since any two blocks intersect, each must receive its own colour. So if
v2 ≥ 7, we are done. Also, if v2 = 6, we obtain a maximum generalized packing by taking
six of the blocks from the Fano plane.

Now, with seven points, it can be shown that there can be at most one colour class of
size 2, and the maximum size of a packing containing such a colour class is 5. The remaining
results follow from this observation.

in their paper.
3Solutions in all but three of these exceptional cases, namely v = (11, 6), (12, 6) and (13, 6), were also

determined independently by the present authors.
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The remaining exceptions are slightly more involved. We continue with the case v1 = 11.

Lemma 5.2.6. Let v = (11, v2) and k = (3, 1). Then

D(v,k, 2) =


3v2, if v2 ≤ 5
16, if v2 = 6
17, if v2 ≥ 7.

Thus, the packing number D(v,k, 2) meets the bound of Proposition 5.2.1, except when v2 =
6.

Proof. Note that Proposition 5.2.1 gives an upper bound of D(v,k, 2) ≤ min{17, 3v2}. It
was shown by Colbourn and Rosa [18] that a maximum 2-(11, 3, 1) packing has chromatic
index 7, so if v2 ≥ 7, we are done. This also implies that for v2 = 6, the maximum size of
a generalized packing is at most 16. Furthermore, Colbourn, Horsley and Wang obtained
a colouring of the 17 blocks with colour type 3512 (an example is given in Appendix A,
Example A.1); the remaining results follow from the existence of this.

Lemma 5.2.7. Let v = (12, v2) and k = (3, 1). Then

D(v,k, 2) =


4v2, if v2 ≤ 4
19, if v2 = 5, 6
20, if v2 ≥ 7.

Thus, the packing number D(v,k, 2) meets the bound of Proposition 5.2.1, except when v2 = 5
or 6.

Proof. Proposition 5.2.1 gives the upper bound D(v,k, 2) ≤ min{20, 4v2}. Now, as there
is no NKTS(12), there cannot exist a 5-block colouring of a maximum 2-(12, 3, 1) packing.
Furthermore, the enumeration of colour types by Colbourn, Horsley and Wang shows that
the chromatic index is in fact 7. Thus the maximum number of blocks in a generalized
packing for v2 = 5, 6 is at most 19.

Now, there exists a colouring of 20 blocks with colour type 3621 and a colouring of 19
blocks with colour type 4431, given in Appendix A, Examples A.2 and A.3 respectively; these
were obtained independently by the present authors. For v2 ≥ 7, the result follows from the
existence of the former, and for v2 ≤ 6, it follows from the latter.

Lemma 5.2.8. Let v = (13, v2) and k = (3, 1). Then

D(v,k, 2) =


4v2, if v2 ≤ 6
25, if v2 = 7
26, if v2 ≥ 8.

Thus, the packing number D(v,k, 2) meets the bound of Proposition 5.2.1, except when v2 =
7.

Proof. This time, the upper bound of Proposition 5.2.1 works out asD(v,k, 2) ≤ min{26, 4v2}.
Now, a maximum 2-(13, 3, 1) packing is a Steiner triple system: there are exactly two
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STS(13), and each has chromatic index 8 (see [34]). Thus for v2 ≥ 8, we are done, while for
v2 = 7, the best we can hope for is 25 blocks. Fortunately, there is an STS(13) with colour
type 443311 (see Appendix A, Example A.4), and deleting the colour class of size 1 yields a
maximum generalized packing if v2 = 7.

For v2 ≤ 6, there is a packing with colour type 46 (see Appendix A, Example A.5)
obtained by Colbourn, Horsley and Wang: taking v2 colour classes from this gives maximum
generalized packings.

We pull together all the results above for k = (3, 1) in the following theorem.

Theorem 5.2.9. Suppose v = (v1, v2) and k = (3, 1), where v1 ≥ 3. Then there exists a
2-(v,k, 1) generalized packing meeting the bound of Proposition 5.2.1, except for the specific
values listed in Table 2 below.

v = (v1, v2) Projected bound Packing number

(6, 2) 4 2

(6, 3) 4 3

(7, 2) 4 3

(7, 3) 6 4

(7, 4), (7, 5) 7 5

(7, 6) 7 6

(11, 6) 17 16

(12, 5), (12, 6) 20 19

(13, 7) 26 25

Table 2: Exceptions for when D(v, (3, 1), 2) does not meet the bound of Proposition 5.2.1.

5.3 k = (2, 1, 1)

This is the first case for k = 4 where no generalized 2-(v,k, 1) design exists to provide a
starting point for us (apart from the trivial case where v = (2, 1, 1)). However, as mentioned
in Section 3.5, interesting objects still arise.

When k = (2, 1, 1), we let v = (v1, v2, v3) and note that we may assume without loss of
generality that v2 ≤ v3. Proposition 3.1.5 gives us the following upper bound on the packing
number in this case.

Proposition 5.3.1. Let v = (v1, v2, v3), where v2 ≤ v3 and k = (2, 1, 1). Then

D(v,k, 2) ≤ min

{(
v1
2

)
, v2

⌊v1
2

⌋
, v2v3

}
.

In Section 3.5, we saw that 2-(v,k, 1) generalized packings with k = (k − 2, 1, 1) can
be described in terms of orthogonal colourings. In this case, we observe that a 2-(v,k, 1)
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generalized packing with v = (v1, v2, v3) and k = (2, 1, 1) is precisely equivalent to a pair of
orthogonal edge colourings of a graph on v1 vertices, where the two colourings use at most
v2 and at most v3 colours respectively. This concept was introduced by Archdeacon, Dinitz
and Harary in 1985 [4], but does not appear to be particularly well-known. (The case where
each edge colouring is a 1-factorization is better-known: see Alspach et al. [2], for instance.)
However, an alternative interpretation is as follows.

Lemma 5.3.2. Let S be a set of size v1. The existence of a 2-(v,k, 1) generalized packing
with N blocks, where v = (v1, v2, v3) and k = (2, 1, 1) is equivalent to the existence of a
v2 × v3 array A with the following properties:

(i) each cell is either empty or else contains an unordered pair of elements from S;

(ii) exactly N cells are non-empty;

(iii) each symbol appears at most once in each row and at most once in each column of A;

(iv) each pair of symbols appears in at most one cell.

Proof. Suppose we have a 2-(v,k, 1) packing of size b, and suppose that X1 = S, X2 =
{x1, x2, . . . , xv2} and X3 = {y1, y2, . . . , yv3}. We form the desired array A by, for each block
{{s, s′}, {xi}, {yj}}, placing the pair {s, s′} in cell (i, j). It is easy to verify that A has the
desired properties.

Conversely, suppose we have an array A of the type described. We form a collection
of blocks B by taking all blocks of the form {{s, s′}, {xi}, {yj}}, where the (i, j)-entry of
A is nonempty and contains the pair {s, s′}. These blocks form the desired generalized
packing.

Example 5.3.3. The array
12 34 56

16 23 45
35 14 26
46 25 13

is equivalent to the 2-((6, 4, 4), (2, 1, 1), 1) packing with the following blocks:

({1, 2}, {1}, {1}) ({1, 6}, {2}, {2}) ({3, 5}, {3}, {1}) ({4, 6}, {4}, {1})
({3, 4}, {1}, {2}) ({2, 3}, {2}, {3}) ({1, 4}, {3}, {3}) ({2, 5}, {4}, {2})
({5, 6}, {1}, {3}) ({4, 5}, {2}, {4}) ({2, 6}, {3}, {4}) ({1, 3}, {4}, {4}).

In this section, we will describe generalized packings with k = (2, 1, 1) in terms of the
associated array, as given in Lemma 5.3.2. In particular, we will construct maximum gener-
alized packings by showing the existence of such an array. In most cases, our constructions
will use arrays known as Howell designs, introduced in a 1974 paper of Hung and Mendel-
sohn [26], which we now define.

Definition 5.3.4. Let s and n be integers. A Howell design H(s, 2n) is an s × s array
satisfying the following properties:
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(i) each cell is either empty or contains an unordered pair of symbols chosen from an
alphabet of size 2n;

(ii) each symbol appears exactly once in each row and column;

(iii) each pair of symbols appears in at most one cell.

Note that since each of the s rows contains n filled cells, the total number of nonempty
cells in a Howell design H(s, 2n) is sn. The question of the existence of Howell designs was
settled in two papers from the 1980s, and is stated below.

Theorem 5.3.5 (Anderson, Schellenberg and Stinson [3]; Stinson [49]). There exists a How-
ell design H(s, 2n) if and only if s+ 1 ≤ 2n ≤ 2s and (s, 2n) 6= (2, 4), (3, 4), (5, 6) or (5, 8).

There are two extreme cases of Howell designs that are worth mentioning here. The
first is the case s = n, where an H(n, 2n) is known as a SOMA(2, n) (see [45]). (The name
is an acronym for simple orthogonal multi-array, and is due to Phillips and Wallis [38].)
In this case, every cell is filled, and a SOMA(2, n) may be obtained by superimposing two
MOLS(n) with disjoint symbol sets; such a SOMA is said to be Trojan [6]. Of note is the
existence of a SOMA(2, 6), first shown by Hung and Mendelsohn [26]; several examples are
now known [6, 7, 44]. However, it is not difficult to see that there is no SOMA(2, 2).

The second extreme case is when s = 2n − 1, where an H(2n − 1, 2n) is known as a
Room square of side 2n − 1, denoted RS(2n − 1), after T. G. Room [41]. The existence of
Room squares is less straightforward to demonstrate: this was done by Mullin and Wallis in
1975 [36], who showed that there exists an RS(2n − 1) if and only if 2n − 1 ≥ 7. Detailed
information on Room squares can be found in the survey by Dinitz and Stinson [20]. Note
that in a Room square, every possible pair of symbols appears in exactly one cell.

In light of Lemma 5.3.2, the following application of Howell designs is clear. (Note that if
v = (2n, s, s) and k = (2, 1, 1), the bound of Proposition 5.3.1 implies that D(v,k, 2) ≤ sn.)

Lemma 5.3.6. Let v = (2n, s, s) and k = (2, 1, 1). If there exists a Howell design H(s, 2n),
then there exists a 2-(v,k, 1) generalized packing of size sn, and so meeting the bound of
Proposition 5.3.1.

Example 5.3.3 provides an illustration of Lemma 5.3.6, in which we construct a 2-(v,k, 1)
generalized packing of size 12 from a Howell design H(4, 6).

For other vectors v, Howell designs nevertheless provide the prototypical example of a
generalized packing on which we base our constructions. Recall that a generalized packing
is equivalent to an array similar to a Howell design on v1 symbols (which may be thought of
as a partial Howell design, or a Howell packing). If v1 is even, our constructions frequently
start with a Howell design on v1 symbols. However, if v1 is odd, there is no Howell design on
v1 symbols. Our strategy in such cases is to begin with a Howell design on v1 + 1 symbols,
and then remove all entries containing the superfluous symbol. We thus define the symbol
set X̃1 and integer ṽ1 to be given by

X̃1 =

{
X1, if v1 is even
X1 ∪ {∞}, if v1 is odd (where ∞ /∈ X1)
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and

ṽ1 =

{
v1, if v1 is even
v1 + 1, if v1 is odd.

We will show, that except for a finite number of exceptional vectors v, the upper bound on
the packing number from Proposition 5.3.1 can be achieved. Letm = min

{(
v1
2

)
, v2bv1/2c, v2v3

}
,

and recall that Proposition 5.3.1 states that D(v,k, 2) ≤ m. It is easy to see that

m =


(
v1
2

)
, if v1 ≤ v2

v2bv1/2c, if v2 < v1 ≤ 2v3
v2v3, if v1 > 2v3.

Each of these three cases will be considered separately. In addition, we will split the case
in which v2 < v1 ≤ 2v3 into two separate cases: v2 < v1 ≤ 2v2 (in which we will employ a
Howell design H(v2, ṽ1)) and 2v2 < v1 ≤ 2v3 (in which no such Howell design exists).

The first case which we consider is that v1 ≤ v2.

Lemma 5.3.7. Let v = (v1, v2, v3), where v1 ≤ v2 ≤ v3, and k = (2, 1, 1). If v1 /∈ {3, 4, 5, 6},
then D(v,k, 2) =

(
v1
2

)
.

Proof. Proposition 5.3.1 guarantees that D(v,k, 2) ≤
(
v1
2

)
, so it suffices to construct a pack-

ing of this size. Construct a Room square RS(ṽ1 − 1) on symbol set X̃. From this Room
square, form an array A by deleting the pair in any cell containing ∞ (if v1 is odd), and
appending v2 − ṽ1 + 1 empty rows and v3 − ṽ1 + 1 empty columns, so that A is a v2 × v3
array on symbol set X. If v1 is even, then A contains v1− 1 nonempty rows, each with v1/2
filled entries, while if v1 is odd, then A contains v1 nonempty rows, each with (v1 − 1)/2
filled entries. In either case, we obtain a 2-(v,k, 1) packing of size

(
v1
2

)
.

The exceptional values v1 ∈ {3, 4, 5, 6} arise from the fact that there is no RS(ṽ1) in these
cases. We deal with these exceptions now, showing that the bound of Proposition 5.3.1 is
met except for v = (4, 4, 4) and v = (5, 5, 5).

Lemma 5.3.8. Let v = (3, v2, v3), where 3 ≤ v2 ≤ v3. Then D(v,k, 2) = 3.

Proof. By Proposition 5.3.1, we have that D(v,k, 2) ≤
(
3
2

)
= 3. A packing of size 3 is easy

to construct: form a v2 × v3 array, and place three entries so that no two occur in the same
row or column.

Lemma 5.3.9. Let v = (4, v2, v3), where 4 ≤ v2 ≤ v3. Then

D(v,k, 2) =

{
5, if v = (4, 4, 4)
6, otherwise.

Proof. If v1 = 4, then Proposition 5.3.1 says that D(v,k, 2) ≤
(
4
2

)
= 6. If v 6= (4, 4, 4), then

we have that v3 ≥ 5. In this case, it suffices to show a packing of size 6 with v = (4, 4, 5), as
otherwise, we may append v2−4 empty rows and v3−5 empty columns. For such a packing,
see Example B.5 in Appendix B.

The remaining case is that v = (4, 4, 4). A packing of size 6 would require a 4× 4 array
whose entries are pairs of elements in {1, 2, 3, 4}, such that each pair occurs in the array,
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and no symbol appears twice in any row or column. It is not difficult to show that no such
array can exist. However, it is possible to find a packing of size 5; an example is given in
Appendix B, Example B.4.

Lemma 5.3.10. Let v = (5, v2, v3), where 5 ≤ v2 ≤ v3. Then

D(v,k, 2) =

{
9, if v = (5, 5, 5)
10, otherwise.

Proof. We know by Proposition 5.3.1 that D(v,k, 2) ≤
(
5
2

)
= 10. First consider the case

that v = (5, 5, 5). It is not difficult, although somewhat tedious, to show that no packing of
size 10 exists; we leave it as an exercise for the reader. An example of a packing of size 9
may be found in Appendix B, Example B.6.

Otherwise, we have that v3 ≥ 6, and it suffices to find a packing of size 10 where v =
(5, 5, 6). An example may be found in Appendix B, Example B.7.

Lemma 5.3.11. Let v = (6, v2, v3), where 6 ≤ v2 ≤ v3. Then D(v,k, 2) = 15.

Proof. From Proposition 5.3.1, we have that D(v,k, 2) ≤
(
6
2

)
= 15. To show that this upper

bound is realizable, it suffices to construct a 2-(v,k, 1) generalized packing of size 15 where
v = (6, 6, 6). For such a packing, see Example B.11 of Appendix B.

The next case we consider is that v2 < v1 ≤ 2v2.

Lemma 5.3.12. Let v = (v1, v2, v3), where v2 < v1 ≤ 2v2 and v2 ≤ v3, and let k = (2, 1, 1).
If (v1, v2) /∈ {(3, 2), (4, 2), (4, 3), (6, 5), (7, 5), (8, 5)}, then D(v,k, 2) = v2bv1/2c.

Proof. By Proposition 5.3.1, we know that D(v,k, 2) ≤ v2bv1/2c, and so we need only show
the existence of a packing of this size. Construct a Howell design H(v2, ṽ1), with symbols in

X̃ and append v3−v2 empty columns. If v1 is odd, remove from this array the entries in any
cell containing∞, noting that there is one such cell in each row, so that the total number of
filled positions is now (ṽ1/2) − 1 = bv1/2c. The resulting v2 × v3 array A has entries in X,
and the number of filled cells is v2bv1/2c, and so we have a 2-(v,k, 1) packing of the desired
size.

The nonexistence of Howell designs H(2, 4), H(3, 4), H(5, 6) and H(5, 8) means that we
have not yet constructed maximum packings in the following cases: v = (3, 2, v3), where
v3 ≥ 2; v = (4, 2, v3), where v3 ≥ 2; v = (4, 3, v3), where v3 ≥ 3; v = (6, 5, v3), where v3 ≥ 5;
v = (7, 5, v3), where v3 ≥ 5; and v = (8, 5, v3), where v3 ≥ 5. The bound of Proposition 5.3.1
projects maximum packings in these cases of sizes 2, 4, 6, 15, 15, and 20, respectively. We
deal with these cases in the following lemmas. The first two find the packing number in
the cases that v = (3, 2, v3) or v = (4, 2, v3); their proofs are straightforward, and so are
omitted.

Lemma 5.3.13. Let v = (3, 2, v3), where v3 ≥ 2. Then D(v,k, 2) = 2.

Lemma 5.3.14. Let v = (4, 2, v3), where v3 ≥ 2. Then

D(v,k, 2) =


2, if v3 = 2
3, if v3 = 3
4, if v3 ≥ 4.
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Lemma 5.3.15. Let v = (4, 3, v3), where v3 ≥ 3. Then

D(v,k, 2) =


4, if v3 = 3, 4
5, if v3 = 5
6, if v3 ≥ 6.

Proof. Proposition 5.3.1 asserts that D(v,k, 2) ≤ 6. If v3 ≥ 6, then it suffices to find a
packing of size 6 in the case that v = (4, 3, 6); such a packing can be found in Example B.3
of Appendix B.

Now suppose that v3 = 5. We must form a 3 × 5 array on an alphabet of size 4. Note
that each row can contain at most two entries, so six entries are only possible if each row
contains exactly two non-empty cells; in this case, there must be a column which contains
two non-empty cells. However, if the (i1, j) and (i2, j) cells are both non-empty, then neither
row i1 nor row i2 can contain two non-empty cells, as the only pair disjoint from the (i1, j)-
entry already appears in the (i2, j)-entry, and vice-versa. Thus, no packing of size 6 exists.
A packing of size 5 may be found in Appendix B, Example B.2.

Similar arguments show that if v3 ≤ 4, then there can be no packing of size 5. However,
a packing of size 4 does exist if v = (4, 3, 3) (see Appendix B, Example B.1); this array also
forms a packing with v = (4, 3, 4).

Lemma 5.3.16. Let v = (6, 5, v3), where v3 ≥ 5. Then

D(v,k, 2) =

{
13, if v3 = 5
15, if v3 ≥ 6.

Proof. The upper bound asserted by Proposition 5.3.1 is 15. If v3 = 5, a packing of size
15 would be equivalent to a Howell design H(5, 6), which does not exist by Theorem 5.3.5.
Furthermore, it can be shown that no packing of size 14 exists, as this would also imply the
existence of an H(5, 6); this argument is due to Stinson (personal communication). However,
a packing of size 13 is given in Appendix B, Example B.9.

For v3 ≥ 6, it suffices to construct a packing of size 15 for v = (6, 5, 6); an example of
such a packing may be found in Appendix B, Example B.10.

Lemma 5.3.17. Let v = (7, 5, v3), where v3 ≥ 5. Then D(v,k, 2) = 15.

Proof. By Proposition 5.3.1, we have that D(v,k, 2) ≤ 15. An example of a 2-(v,k, 1)
packing of size 15 with v = (7, 5, 5) may be found in Appendix B, Example B.12.

Lemma 5.3.18. Let v = (8, 5, v3), where v3 ≥ 5, and k = (2, 1, 1). Then

D(v,k, 2) =

{
19, if v3 = 5
20, if v3 ≥ 6.

Proof. Proposition 5.3.1 gives us an upper bound of 20. If v3 = 5, however, then there is no
packing of size 20, as otherwise, there would exist an H(8, 5). A packing of size 19 is given
in Appendix B, Example B.13.

If v3 ≥ 6, then it suffices to find a packing of size 20 for v = (8, 5, 6); an example may be
found in Appendix B, Example B.14.
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Having dealt with those exceptions, we move on to consider the case where 2v2 < v1 ≤ 2v3.

Lemma 5.3.19. Let v = (v1, v2, v3), where 2v2 < v1 ≤ 2v3. Then D(v,k, 2) = v2bv1/2c.

Proof. Proposition 5.3.1 asserts thatD(v,k, 2) ≤ v2bv1/2c, and so it suffices to find a packing
of this size.

Note that the condition 2v2 < v1 implies that v1 ≥ 4. Let us first suppose that v1 6= 4.
Then there exists a SOMA(2, ṽ1/2) with symbol set X̃. Let A be the array formed by taking
the first v2 rows of the SOMA and appending v3− v1/2 empty columns. Note that each row
of A contains dv1/2e nonempty cells. Now, if v1 is odd, delete from A the entries in any cell
containing ∞. We obtain a v2 × v3 array on symbol set X, with v2bv1/2c nonempty cells,
which gives the desired 2-(v,k, 1) packing.

If v1 = 4, then no SOMA(2, ṽ1/2) exists. The condition 2v2 < v1 ≤ 2v3 implies that
v2 = 1 and v3 ≥ 2. We seek a 2-(v,k, 1) packing of size 2, which is trivial to find.

The final case is that v1 > 2v3.

Lemma 5.3.20. Let v = (v1, v2, v3), where v1 > 2v3 and v2 ≤ v3. If v3 6= 2, then
D(v,k, 2) = v2v3.

Proof. By Proposition 5.3.1, we know that D(v,k, 2) ≤ v2v3, and so it suffices to show that
a packing of this size exists. Since v3 6= 2, we may construct a SOMA(2, v3), and let A be
the v2 × v3 array formed by taking the first v2 rows of the SOMA. Note that each of the
v2v3 cells of A are filled. The array A contains 2v3 distinct symbols, and since v1 > 2v3, it
follows that A is a 2-(v,k, 1) packing.

The only exception is the case that v3 = 2, as there is no SOMA(2, 2). Since v1 > 2v3
and v2 ≤ v3, we have in this case that v1 ≥ 5 and v2 ≤ 2.

Lemma 5.3.21. Let v = (v1, v2, 2), where v1 ≥ 5 and v2 ≤ 2. Then

D(v,k, 2) =


2, if v2 = 1
3, if v1 = 5 and v2 = 2
4, otherwise.

Proof. By Proposition 5.3.1, we have that D(v,k, 2) ≤ 2 if v2 = 1 and D(v,k, 2) ≤ 4 if
v2 = 2. If v2 = 1, then a packing of size 2 is easy to construct. If v = (5, 2, 2), then it is
easy to see that no packing of size 4 exists; a packing of size 3 can be obtained by deleting
the (2, 2)-entry of the array given in Example B.8 of Appendix B. To see that D(v,k, 2) = 4
in the remaining case, it suffices to show that D(v,k, 2) = 4 for v = (6, 2, 2); a 2-(v,k, 1)
packing of size 4 may also be found in Example B.8.

We conclude this section by combining the results for k = (2, 1, 1) above into the following
theorem.

Theorem 5.3.22. Suppose v = (v1, v2, v3) and k = (2, 1, 1), where v2 ≤ v3. Then, except
for the specific values listed in Table 3 below, there exists a 2-(v,k, 1) generalized packing
meeting the bound of Proposition 5.3.1.
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v = (v1, v2, v3) Projected bound Packing number

(4, 2, 2) 4 2

(4, 2, 3) 4 3

(4, 3, 3), (4, 3, 4) 6 4

(4, 3, 5) 6 5

(4, 4, 4) 6 5

(5, 2, 2) 4 3

(5, 5, 5) 10 9

(6, 5, 5) 15 13

(8, 5, 5) 20 19

Table 3: Exceptions for when D(v, (2, 1, 1), 2) does not meet the bound of Proposition 5.3.1.

5.4 k = (2, 2)

This is the other case for k = 4 where no generalized 2-(v,k, 1) design can exist (except in
the trivial case v = (2, 2)). Furthermore, unlike the previous section, in this case the authors
are unaware of any known objects which form generalized packings with these parameters.
However, we do have the option of applying Proposition 3.1.6 to a generalized packing with
k = (2, 1, 1), and merging the two parts with ki = 1 to form a packing with k = (2, 2). In
fact, in many cases if we begin with a maximum packing with k = (2, 1, 1), this approach
yields a maximum packing with k = (2, 2).

When v = (v1, v2) and k = (2, 2), we can assume without loss of generality that v1 ≤ v2.
In this case, the bound of Proposition 3.1.5 gives us the following.

Proposition 5.4.1. Let v = (v1, v2), where v1 ≤ v2, and k = (2, 2). Then

D(v,k, 2) ≤ min

{(
v1
2

)
,
⌊v1

2

⌊v2
2

⌋⌋
,
⌊v2

2

⌊v1
2

⌋⌋}
The exact value of this upper bound, which is given in Table 4, depends on the parities

of v1 and v2, as well as their relative sizes. It is clear from Table 4 that the upper bound

v1 v2 Range Upper bound
Even Even v2 ≥ 2v1

(
v1
2

)
v1 ≤ v2 < 2v1 v1v2/4

Even Odd v2 > 2v1
(
v1
2

)
v1 < v2 < 2v1 v1(v2 − 1)/4

Odd Even v2 ≥ 2v1
(
v1
2

)
v1 < v2 < 2v1 v2(v1 − 1)/4

Odd Odd v2 > 2v1
(
v1
2

)
v1 ≤ v2 < 2v1 bv2(v1 − 1)/4c

Table 4: Upper bounds on D(v,k, 2) when k = (2, 2).
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posited by Proposition 5.4.1 is
(
v1
2

)
whenever v2 ≥ 2v1. We first consider this case.

Lemma 5.4.2. Suppose that v2 ≥ 2v1 ≥ 4. Let v = (v1, v2) and k = (2, 2). Then
D(v,k, 2) =

(
v1
2

)
, except possibly if v ∈ {(4, 8), (5, 10)}.

Proof. Proposition 5.4.1 guarantees that D(v,k, 2) ≤
(
v1
2

)
, and so it suffices to prove the

existence of a packing of this size. Let x1 = v1, x2 = bv2/2c and x3 = dv2/2e. Notice that
x1 ≤ x2 ≤ x3 and x2 + x3 = v2. Let x = (x1, x2, x3) and κ = (2, 1, 1). By Lemma 5.3.7,
there exists a 2-(x,κ, 1) packing of size

(
x1
2

)
=
(
v1
2

)
. Hence, by Proposition 3.1.6, there is a

2-(v,k, 1) packing of size
(
v1
2

)
.

The exceptions for v = (4, 8) and (5, 10) arise from the fact that there is no 2-(x, (2, 1, 1), 1)
packing meeting the bound of Proposition 5.3.1 if x = (4, 4, 4) or (5, 5, 5). SinceD((4, 4, 4), (2, 1, 1), 2) =
5 by Lemma 5.3.9, by merging parts we have that D((4, 8), (2, 2), 2) ≥ 5. However, Proposi-
tion 5.4.1 projects an upper bound of 6. Similarly, we know that D((5, 5, 5), (2, 1, 1), 2) = 9
by Lemma 5.3.10, so that D((5, 10), (2, 2), 2) ≥ 9, while the upper bound of Proposition 5.4.1
says that D((5, 10), (2, 2), 2) ≤ 10.

Problem. For v ∈ {(4, 8), (5, 10)} and k = (2, 2), find the exact value of D(v,k, 2).

It remains to consider the case that v1 ≤ v2 < 2v1. Here, the upper bound from
Lemma 5.4.1 is bv1/2c · bv2/2c unless v1 and v2 are both odd.

Lemma 5.4.3. Suppose that 2 ≤ v1 ≤ v2 < 2v1. Let v = (v1, v2) and k = (2, 2). Then
there is a 2-(v,k, 1) packing of size bv1/2c · bv2/2c, except possibly in the case that v ∈
{(4, 4), (4, 5), (4, 6), (4, 7), (6, 10), (8, 10)}.

Proof. As in the proof of Lemma 5.4.2, we let x1 = v1, x2 = bv2/2c, x3 = dv2/2e, x =
(x1, x2, x3) and κ = (2, 1, 1). It is not difficult to show that x2 + 1 ≤ x1 ≤ 2x2 if x2 is even,
and x2+1 ≤ x1 ≤ 2x2+1 if x2 is odd. Hence by Lemmas 5.3.19 (in the case that x1 = 2x2+1,
noting that here 2x2 < x1 ≤ 2x3) and 5.3.12 (otherwise), there exists a 2-(x,κ, 1) packing
of size x2bx1/2c = bv1/2c · bv2/2c. Applying Proposition 3.1.6 gives a 2-(v,k, 1) packing of
the same size.

Corollary 5.4.4. Suppose that 2 ≤ v1 ≤ v2 < 2v1, and let v = (v1, v2) and k = (2, 2). If
v /∈ {(4, 4), (4, 5), (4, 6), (4, 7), (5, 10), (6, 10), (8, 10)} and at least one of v1 and v2 is even,
then D(v,k, 2) = bv1/2c · bv2/2c.

Proof. In the case that v1 ≤ v2 < 2v1, where v1 and v2 are not both odd, the upper bound on
D(v,k, 2) given by Proposition 5.4.1 simplifies to bv1/2c · bv2/2c. Lemma 5.4.3 guarantees
the existence of a packing of this size.

The exceptions to Lemma 5.4.3 arise from instances in which no Howell design exists, and
as a result there does not exist a 2-(x,κ, 1) packing meeting the bound of Proposition 5.3.1.
The values of D(x,κ, 2) for the vectors x = (4, 2, 2), (4, 2, 3), (4, 3, 3), (4, 3, 4), (5, 5, 5),
(6, 5, 5), (8, 5, 5) are 2, 3, 4, 4, 9, 13 and 19, respectively. Using Proposition 3.1.6, we can
construct 2-(v,k, 1) packings of these sizes for v = (4, 4), (4, 5), (4, 6), (4, 7), (6, 10) and
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(8, 10), respectively. Applying the upper bound given by Proposition 5.4.1, we obtain the
following:

2 ≤ D((4, 4),k, 2) ≤ 4
3 ≤ D((4, 5),k, 2) ≤ 4
4 ≤ D((4, 6),k, 2) ≤ 6
4 ≤ D((4, 7),k, 2) ≤ 6
13 ≤ D((6, 10),k, 2) ≤ 15
19 ≤ D((8, 10),k, 2) ≤ 20.

If v ∈ {(4, 4), (4, 5), (4, 6), (4, 7)}, we can determine the packing numbers exactly.

Lemma 5.4.5. Let v = (4, 4) and k = (2, 2). Then D(v,k, 2) = 2.

Proof. Suppose we have a maximum 2-(v,k, 2) generalized packing. We can assume that
it contains the block ({1, 2}, {1, 2}). If the packing contains the block ({3, 4}, {3, 4}), then
it can contain no other blocks, and so has size 2. Otherwise, we can assume that a second
block in the packing is ({1, 3}, {3, 4}). Again, no other block can be added.

Lemma 5.4.6. Let v = (4, 5) and k = (2, 2). Then D(v,k, 2) = 3.

Proof. We know that D(v,k, 2) ≥ 3. Suppose we have a maximum 2-(v,k, 1) packing.
Without loss of generality, we can assume that it contains the block ({1, 2}, {1, 2}). If the
packing contains a block (B1, B2) such that B1 ∩ {1, 2} = ∅ and B2 ∩ {1, 2} = ∅ (we can
assume that (B1, B2) = ({3, 4}, {3, 4})), then it can contain no other block, and so this
packing, of size 2, cannot be maximum.

So each block (B1, B2) in the packing must have either B1∩{1, 2} 6= ∅ or B2∩{1, 2} 6= ∅.
If there is a block (B1, B2) such that B1 ∩ {1, 2} 6= ∅, we can assume that this block is
({1, 3}, {3, 4}). Now the only remaining possible blocks are ({2, 4}, {3, 5}), ({2, 4}, {4, 5}),
({3, 4}, {1, 5}) and ({3, 4}, {2, 5}); however, the packing can contain at most one of these
blocks.

Similarly, if there is a block (B1, B2) such that B2∩{1, 2} 6= ∅, then there can be at most
one further block added.

Lemma 5.4.7. Let v = (4, 6) and k = (2, 2). Then D(v,k, 2) = 4.

Proof. Since there exists a 2-((4, 3, 3), (2, 1, 1), 1) packing of size 4 (see Example B.1 in Ap-
pendix B), we have that D(v,k, 2) ≥ 4 by Proposition 3.1.6.

To see that there can be no larger packing, it is enough to show that in any packing
of size at least 4, no element of X1 can occur in three blocks. Let X1 = {1, 2, 3, 4} and
X2 = {a, b, c, d, e, f}. Suppose that there are three blocks containing element 1 ∈ X1. Since
no pair in X1, X2 or X1 × X2 can be repeated in a block, we can assume without loss
of generality that these blocks are ({1, 2}, {a, b}), ({1, 3}, {c, d}) and ({1, 4}, {e, f}). Now
consider the pair {2, 3} ∈ X1. The only possible elements of X2 which can occur in a block
with both 2 and 3 are e and f , but the pair {e, f} has already been used. So no block can
contain {2, 3}. Similarly, no block can contain {2, 4} or {3, 4}, so the packing has size 3.

Lemma 5.4.8. Let v = (4, 7) and k = (2, 2). Then D(v,k, 2) = 4.
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Proof. Since there is a 2-((4, 3, 4), (2, 1, 1), 1) packing of size 4 (given by the array in Exam-
ple B.1 with an empty column added), we have that D(v,k, 2) ≥ 4.

Consider a maximum 2-(v,k, 1) packing on symbol setX1∪X2 = {1, 2, 3, 4}∪{a, b, c, d, e, f, g}.
If there is no element of X1 occurring in three blocks, then the packing can have size at most
4. Otherwise, we can assume without loss of generality that the packing contains blocks
({1, 2}, {a, b}), ({1, 3}, {c, d}), ({1, 4}, {e, f}). It is a simple exercise to show that only one
further block can be added.

For the other exceptional values of v with v1 or v2 even, the packing number remains
unknown.

Problem. Determine the value of D(v,k, 2) if v ∈ {(6, 10), (8, 10)} and k = (2, 2).

Finally, we discuss the case in which v1 and v2 are both odd and v1 ≤ v2 < 2v1. In
this case, Proposition 5.4.1 tells us that D(v,k, 2) ≤ bv2(v1 − 1)/4c, while Lemma 5.4.3
proves the existence of a packing of size bv1/2c · bv2/2c. Unfortunately, the construction
of Lemma 5.4.3 does not always give an optimal packing. For instance, if v = (5, 5) and
k = (2, 2), then the packing found by Lemma 5.4.3 has size 4. However, the following blocks
give a maximum packing, of size 5 = v2(v1 − 1)/4:

({1, 2}, {1, 2})
({1, 3}, {3, 4})
({2, 4}, {3, 5})
({3, 5}, {1, 5})
({4, 5}, {2, 4}).

Problem. Let v = (v1, v2), where v1 and v2 are odd and v1 ≤ v2 ≤ 2v1 − 1. Determine
whether D(v,k, 2) meets the bound of Proposition 5.4.1.

We conclude this section by combining the results for k = (2, 2) above into the following
theorem.

Theorem 5.4.9. Suppose v = (v1, v2) and k = (2, 2), where v1 ≤ v2 ≥ 2. Then there
exists a 2-(v,k, 1) generalized packing meeting the bound of Proposition 5.4.1, except for the
specific values listed in Table 5 below, and with the possible exception of the values of v listed
in Table 6 (where the value of D(v,k, 2) remains unknown).

v = (v1, v2) Projected bound Packing number

(4, 4) 4 2

(4, 5) 4 3

(4, 6) 6 4

(4, 7) 6 4

Table 5: Known exceptions for when D(v, (2, 2), 2) does not meet the bound of Proposi-
tion 5.4.1.

28



v = (v1, v2) Projected bound Comments

(4, 8) 6 5 ≤ D ≤ 6

(5, 10) 10 9 ≤ D ≤ 10

(6, 10) 15 13 ≤ D ≤ 15

(8, 10) 20 19 ≤ D ≤ 20

v1, v2 odd; v1 ≤ v2 ≤ 2v1 − 1 bv2(v1 − 1)/4c D ≥ bv1/2c · bv2/2c

Table 6: Parameters for which D = D(v, (2, 2), 2) is unknown.

5.5 k = (1, 1, 1, 1)

We recall from Section 3.3 that if k = (1, 1, 1, 1) and v = (s, s, s, s), a 2-(v,k, 1) generalized
packing with N blocks is equivalent to a packing array PA(N ; 4, s, 2). When s /∈ {2, 6},
the existence of two mutually orthogonal Latin squares of order s implies the existence of a
maximum generalized packing of size s2. For other vectors v = (v1, v2, v3, v4) (where we as-
sume, without loss of generality, that v1 ≤ v2 ≤ v3 ≤ v4), we can appeal to Proposition 3.3.4
to obtain a maximum generalized packing, provided there exist a pair of v1 × v2 orthogonal
Latin rectangles.

If v2 = 2 or 6, then there do not exist two MOLS(v2). In particular, this means that there
does not exist a 2-(v,k, 1) packing of size v1v2 if v = (2, 2, 2, 2) or (6, 6, 6, 6). However, for
certain values of v with v2 ∈ {2, 6}, we can still obtain a packing of size v1v2. The following
lemmas give us the exact values of the packing number in the remaining cases.

Lemma 5.5.1. Let v = (v1, v2, v3, v4), where v2 = 2 and v1 ≤ v2 ≤ v3 ≤ v4, and let
k = (1, 1, 1, 1). Then

D(v,k, 2) =


2, if v = (1, 2, v3, v4) where 3 ≤ v3 ≤ v4
2, if v = (2, 2, 2, 2)
3, if v = (2, 2, 2, 3)
4, if v = (2, 2, 2, v4) where v4 ≥ 4
4 if v = (2, 2, 3, v4) where v4 ≥ 3.

Proof. If v1 = 1 or v = (2, 2, 2, 2), the result is straightforward to verify. If v = (2, 2, 2, 3),
it is not hard to show by contradiction that there is no packing of size 4. However, the
following two arrays give a packing of size 3:

1 2
2

and
1 2
3

.

Next, suppose that v = (2, 2, 2, 4). The arrays

1 2
2 1

and
1 2
3 4

give a maximum packing.
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Finally, if v = (2, 2, 3, v4), where v4 ≥ 3, then the following two arrays give a maximum
packing:

1 2
2 3

and
1 2
3 1

.

The other exceptions arise as the result of the non-existence of two MOLS of order 6.

Lemma 5.5.2. Let v = (v1, v2, v3, v4), where v2 = 6 and v1 ≤ v2 ≤ v3 ≤ v4, and let
k = (1, 1, 1, 1). Then

D(v,k, 2) =


6v1 if v1 ≤ 5
34, if v = (6, 6, 6, 6)
36, otherwise.

Proof. Proposition 3.1.5 tells us that D(v,k, 2) ≤ 6v1. If v = (6, 6, 6, 6), then a 2-(v,k, 1)
design with N blocks is equivalent to a pair of 6 × 6 mutually orthogonal partial Latin
squares with N entries: it is known that the largest possible number of entries is 34 (see
Abdel-Ghaffar [1]). We next consider the case in which v1 ≤ 5. Although there do not exist
any MOLS(6), there does exist a pair of orthogonal 5 × 6 Latin rectangles on 6 symbols
(obtained by filling in the (5, 5) and (5, 6) entries in [14, Example III.4.3]).

In the remaining cases, we have that v4 ≥ 7. In the Problem Session at the CanaDAM
conference in June 2011, the authors posed the problem of determining D(v,k, 2) where
v = (6, 6, 6, 7) and k = (1, 1, 1, 1) as a programming challenge: by the following morning
two separate solutions had been provided (the first by C. Sato and M. Silva, the second by
T. Britz) which showed that D(v,k, 2) = 36.

The following two arrays (obtained by Sato and Silva) give a packing of size 36:

5 3 4 2 6 1
6 4 1 5 2 3
2 5 3 1 4 6
3 2 5 6 1 4
4 1 6 3 5 2
1 6 2 4 3 5

and

3 2 5 1 7 4
4 7 3 2 5 1
7 6 4 5 1 2
5 4 1 3 2 6
2 1 6 7 4 3
6 5 2 4 3 7

.

Alternatively, the following solution was found by Britz:

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 5 6 2 3 1
5 6 2 1 4 3
6 3 1 5 2 4

and

1 2 3 4 5 6
3 4 1 5 2 7
4 7 2 1 6 5
5 1 4 6 7 3
6 5 7 2 3 1
7 6 5 3 1 2

.
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6 Conclusion

We have seen that, for specific values of the parameters of a t-(v,k, λ) generalized packing,
examples often correspond to other interesting combinatorial objects. It seems possible that
other classes of combinatorial designs may arise as instances of generalized packings, which
warrants further investigation.

When t = 2, λ = 1 and k = 3 or 4, we have determined the generalized packing numbers
exactly, except in the case that k = (2, 2) and the entries of v are both odd. In particular, in
the remaining cases, D(v,k, 2) has been shown to meet the upper bound given by Proposi-
tion 3.1.5 with only a finite number of exceptional values of v. We suspect that this may hold
more generally, yet demonstrating this will likely be extremely challenging. As an example
of the difficulty of this problem, a special case would be the determination of D(v,k, 2) for
v = (10, 10, 10, 10, 10) and k = (1, 1, 1, 1, 1); meeting the bound of Proposition 3.1.5 would
require proving the existence of three MOLS of order 10.
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A Exceptional maximum generalized packings for k = (3, 1)

In this appendix, we give examples of maximum generalized packings for k = (3, 1), t = 2
and λ = 1 which arise as a result of the exceptions in Theorem 5.2.2, for v1 = 11, 12 and 13.

Example A.1. A block colouring of a maximum 2-(11, 3, 1) packing with colour type 3512,
which yields maximum 2-(v,k, 1) generalized packings for v = (11, v2), k = (3, 1) (for all
v2):

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
{{1, 4, 7}, {2, 5, 8}, {3, 6, 10}}
{{1, 5, 9}, {2, 6, 7}, {3, 8, 11}}
{{1, 6, 8}, {3, 4, 9}, {5, 10, 11}}
{{3, 5, 7}, {4, 8, 10}, {6, 9, 11}}
{{2, 4, 11}}
{{2, 9, 10}}.

(This example was taken from Colbourn, Horsley and Wang [16].)
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Example A.2. A 7-block colouring of a maximum 2-(12, 3, 1) packing with colour type
3621, which yields maximum 2-(v,k, 1) generalized packings for v = (12, v2), k = (3, 1)
where v2 ≥ 7:

{{1, 2, 3}, {5, 9, 12}}
{{1, 4, 5}, {2, 11, 12}, {3, 9, 10}}
{{1, 6, 7}, {4, 10, 12}, {5, 8, 11}}
{{1, 8, 9}, {3, 7, 11}, {5, 6, 10}}
{{1, 10, 11}, {2, 4, 6}, {7, 8, 12}}
{{2, 5, 7}, {3, 4, 8}, {6, 9, 11}}
{{2, 8, 10}, {3, 6, 12}, {4, 7, 9}}.

(This was found by deleting a point from an 8-block colouring of an STS(13) with colour
type 443311: cf. Example A.4 below.)

Example A.3. A 5-block colouring of a 2-(12, 3, 1) packing with 19 blocks and colour type
3621, which yields maximum 2-(v,k, 1) generalized packings for v = (12, v2), k = (3, 1)
where v2 ≤ 6:

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
{{1, 4, 7}, {2, 6, 10}, {3, 8, 11}, {5, 9, 12}}
{{1, 5, 8}, {2, 9, 11}, {3, 6, 7}, {4, 10, 12}}
{{1, 6, 9}, {2, 4, 8}, {3, 5, 10}, {7, 11, 12}}
{{1, 10, 11}, {2, 5, 7}, {3, 4, 9}, {6, 8, 12}}.

(This was found by manipulating a 5-block colouring of 20 blocks on 13 points, obtained by
the authors in a computer search.)

Example A.4. An 8-block colouring of Steiner triple system STS(13) with colour type
443311, which yields maximum 2-(v,k, 1) generalized packings for v = (13, v2), k = (3, 1)
where v2 ≥ 7:

{{1, 2, 3}, {4, 11, 12}, {5, 9, 13}}
{{1, 4, 5}, {2, 11, 13}, {3, 9, 10}, {6, 8, 12}}
{{1, 6, 7}, {2, 9, 12}, {4, 10, 13}, {5, 8, 11}}
{{1, 8, 9}, {3, 7, 11}, {5, 6, 10}}
{{1, 10, 11}, {2, 4, 6}, {3, 5, 12}, {7, 8, 13}}
{{1, 12, 13}, {2, 5, 7}, {3, 4, 8}, {6, 9, 11}}
{{2, 8, 10}, {3, 6, 13}, {4, 7, 9}}
{{7, 10, 12}}.

(This example was found by manipulating STS(13) number 2 in Mathon, Phelps and Rosa [34].)

Example A.5. A 6-block colouring of a 2-(13, 3, 1) packing with 24 blocks and colour type
46, which yields maximum 2-(v,k, 1) generalized packings for v = (13, v2), k = (3, 1) where
v2 ≤ 6:

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}
{{1, 4, 7}, {2, 5, 8}, {3, 6, 10}, {9, 11, 13}}
{{1, 5, 9}, {2, 10, 13}, {3, 7, 11}, {6, 8, 12}}
{{1, 6, 11}, {2, 7, 12}, {3, 5, 13}, {4, 9, 10}}
{{1, 8, 10}, {2, 4, 11}, {3, 9, 12}, {6, 7, 13}}
{{1, 12, 13}, {2, 6, 9}, {3, 4, 8}, {5, 7, 10}}.
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(This example was also taken from Colbourn, Horsley and Wang [16].)

B Exceptional maximum generalized packings for k = (2, 1, 1)

In this appendix, we compile a list of generalized packings with k = (2, 1, 1), t = 2 and
λ = 1 in certain small cases. In particular, these packings arise where the Howell design
which would be required to construct a maximum packing does not exist.

Example B.1. A packing of size 4 where v = (4, 3, 3):

12 34
13
24

Example B.2. A packing of size 5 where v = (4, 3, 5):

12 34
13 24

14

Example B.3. A packing of size 6 where v = (4, 3, 6):

12 34
13 24

14 23

Example B.4. A packing of size 5 where v = (4, 4, 4):

1, 2 3, 4
1, 3

1, 4
2, 4

Example B.5. A packing of size 6 where v = (4, 4, 5):

1, 2 3, 4
1, 3 2, 4

1, 4
2, 3

Example B.6. A packing of size 9 where v = (5, 5, 5):

1, 2 3, 4
3, 5 1, 4

2, 5 1, 3
2, 3 1, 5

4, 5

36



Example B.7. A packing of size 10 where v = (5, 5, 6):

1, 2 3, 4
3, 5 1, 4

2, 5 1, 3
2, 3 1, 5

4, 5 2, 4

Example B.8. A packing of size 4 where v = (6, 2, 2):

1, 2 3, 4
3, 5 1, 6

Example B.9. A packing of size 13 where v = (6, 5, 5):

1, 2 3, 4 5, 6
3, 5 1, 6 2, 4
4, 6 2, 5 1, 3

1, 4 2, 3
2, 6 1, 5

Example B.10. A packing of size 15 where v = (6, 5, 6):

1, 2 3, 4 5, 6
3, 5 1, 6 2, 4
4, 6 1, 5 2, 3

2, 5 3, 6 1, 4
1, 3 4, 5 2, 6

Example B.11. A packing of size 15 where v = (6, 6, 6):

1, 2 3, 4 5, 6
3, 5 1, 6 2, 4
4, 6 1, 5 2, 3

2, 5 3, 6 1, 4
1, 3 4, 5 2, 6

Example B.12. A packing of size 15 where v = (7, 5, 5):

1, 2 3, 4 5, 6
3, 5 1, 6 2, 4
4, 6 1, 3 2, 5

2, 7 4, 5 3, 6
3, 7 2, 6 1, 4
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Example B.13. A packing of size 19 where v = (8, 5, 5):

1, 2 3, 4 5, 6 7, 8
3, 5 1, 6 2, 7 4, 8
4, 7 2, 8 1, 5 3, 6
6, 8 5, 7 1, 4 2, 3

3, 8 4, 6 1, 7

Example B.14. A packing of size 20 where v = (8, 5, 6):

1, 2 3, 4 5, 6 7, 8
3, 5 1, 6 2, 7 4, 8
4, 6 2, 8 1, 5 3, 7

5, 7 1, 4 2, 3 6, 8
3, 8 2, 6 1, 7 4, 5
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