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Sharkovskii order for non-wandering points

Maria Carvalho and Fernando Moreira∗

Abstract

For a map f : I → I, a point x ∈ I is periodic with period p ∈ N if fp(x) = x and
f j(x) 6= x for all 0 < j < p. When f is continuous and I is an interval, a theorem
due to Sharkovskii ([1]) states that there is an order in N, say ⊳, such that, if f has
a periodic point of period p and p ⊳ q, then f also has a periodic point of period q.
In this work, we will see how an extension of this order ⊳ to an ultrapower of the
integer numbers yields a Sharkovskii-type result for non-wandering points of f .

MSC 2000: primary 37E05; 26E35; secondary 54J05.

keywords: Sharkovskii order; transfer principles.

1 Introduction

Let f : [a, b] → R be a continuous map. A point x0 ∈ [a, b] is non-wandering if, for
each neighborhood V of x0, there is a positive integer N such that fN(V) ∩ V 6= ∅. If
fk(V) ∩ V = ∅ for all k ∈ {1, 2, · · · , N − 1}, we say that N is a first return of V to
itself. This notion is a weak form of recurrence and gathers recurrent points (the ones
that are accumulated by their orbits) and the periodic ones. The aim of this work is
to generalize Sharkovskii’s theorem to non-wandering points, where periodic points are
replaced by neighborhoods of the non-wandering point, and periods by return times. The
main difficulty of such a formulation lies on the control of the speed of the return and its
nearness to the starting point, parameters that, in the case of a periodic orbit, are not only
elementary to express but completely determined by the period.

A straight extension of Sharkovskii’s result should state that, given sequences (Rn)n∈N
and (Sn)n∈N of positive integers related by the ultrapower extension of the order ⊳, if
f : [a, b] → R has a non-wandering point x0 with a fundamental system of neighborhoods
whose first returns happen at times (Rn)n∈N, then f has a non-wandering point x1 with
a fundamental system of neighborhoods returning at times (Sn)n∈N. This is true, but
uninteresting, if the sequences (Rn)n∈N and (Sn)n∈N are eventually constant (equal to c
and d, respectively). In fact, if each neighborhood Vn of a fundamental system at x0 has
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1

http://arxiv.org/abs/1107.3945v1


a first return by the power f c, then there is yn ∈ Vn (so the sequence (yn)n∈N converges to
x0) such that f c(yn) ∈ Vn (the sequence (f c(yn))n∈N also converges to x0), and, therefore,
as f is continuous, x0 is periodic with period c; so, as c⊳ d, Sharkovskii’s theorem informs
that f has a periodic point with period d, to whom we may easily find a fundamental
system of neighborhoods first returning by f d.

However, for more general sequences of returns, our argument demands a strict mastery
of the size of the neighborhoods with respect to the amount of time a return needs to occur.

Theorem 1.1 Let f : [a, b] → R be a continuous function and x0 a non-wandering point

of f . Consider two sequences, (Rn)n∈N and (Sn)n∈N, of positive integers related by the

nonstandard extension of the order ⊳. Given ǫ > 0, there exists a sequence of positive real

numbers (δ (ǫ, Sn))n∈N converging to zero such that, if the fundamental system of neigh-

borhoods (Vn)n∈N = (]x0 − δ (ǫ, Sn), x0 + δ (ǫ, Sn)[)n∈N has first returns at times (Rn)n∈N,
then there exists a subsequence (Snk

)k∈N and a non-wandering point x1 of f which has a

fundamental system of neighborhoods returning at times (Snk
)k∈N.

In this work, we apply techniques coming from nonstandard analysis in such a way that,
infinite returns of a set to itself may be described by a periodic point of a suitable dynamics
acting on the set of hyperreals, ⋆R, to where the statement of Sharkovskii’s theorem may
be conveyed. The proof goes as follows: starting with a non-wandering point x0, we create,
through small local perturbations of f , a sequence of periodic points of a countable family
of dynamics transferable to ⋆R; here, the corresponding dynamical system is continuous
and has a periodic point with period equal to the hyperinteger represented by the sequence
(Rn)n∈N; then, we apply the nonstandard version of Sharkovskii’s theorem, getting another
periodic point with period given by the hyperinteger associated to (Sn)n∈N; finally, this
information is projected on f and R, thus emerging the requested non-wandering point x1.
This strategy has its cost: in general, we can not ensure that x1 6= x0 nor that (Snk

)k∈N
are first returns.

2 Preliminaries from nonstandard analysis

In this section we present the nonstandard tools used in the proof of Theorem 1.1. We will
not need all the strength of a general nonstandard framework; therefore we will follow the
approach to basic nonstandard analysis from [2].

2.1 The space of hyperreals

The hyperreals, denoted by ⋆R, is the structure obtained by an ultrapower construction of
the real numbers R. The building process begins considering the space of real sequences,
RN, and the equivalence relation given by

(αn)n∈N ≡ (βn)n∈N ⇔ {n ∈ N : αn = βn} is big,
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where big means that the set belongs to a fixed ultrafilter1 of N that contains all the co-
finite sets. In the sequel, the quotient space RN/ ≡ will be denoted by ⋆R. Within it, each
real number α is identified with the equivalence class of the constant sequence equal to α,
say [(α)n∈N]. Besides, it may be endowed with a sum operation

[(αn)n∈N]⊕ [(βn)n∈N] = [(αn + βn)n∈N],

a product
[(αn)n∈N]⊗ [(βn)n∈N] = [(αn × βn)n∈N]

and an order defined by

[(αn)n∈N] ≺ [(βn)n∈N] ⇔ {n ∈ N : αn < βn} is big,

[(αn)n∈N] � [(βn)n∈N] ⇔ {n ∈ N : αn ≤ βn} is big.

With this structure, (⋆R,⊕,⊗,≺,�) is an ordered field with infinitesimals2 and unlimited
numbers.3

2.2 Extension of sets and functions

Let A be a subset of R. By ⋆A, we denote the subset of ⋆R defined by the condition

[(αn)n∈N] ∈
⋆A ⇔ {n ∈ N : αn ∈ A} is big.

Given a map f : A ⊆ R → R, its extension to ⋆A is the function ⋆f : ⋆A → ⋆
R

that assigns to each [(αn)n∈N] ∈
⋆A the hyperreal [(f(αn))n∈N]. There are hyperfunctions

which are not extensions of maps of a real variable (so called not internal), as the map
that assigns to each bounded hyperreal θ its shadow 4.

With these two notions, we may extend the concepts of sequence and dynamical system.

1. A hypersequence is a map S : ⋆N → ⋆R.

Therefore, on the sequel, the term SN is also defined for hyperintegers N .

2. A discrete dynamical system in ⋆R is a map F : ⋆N × ⋆R → ⋆R such that, for each
X ∈ ⋆

R and all pair N,M ∈ ⋆
N, we have F (N ⊕ M,X) = F (N,F (M,X)).

Accordingly, an element α in ⋆R is periodic by F with period P ∈ ⋆N if and only if
F (P, α) = α and F (Q,α) 6= α for every Q ∈ ⋆N such that [(1)n∈N] � Q ≺ P .

1Given a nonempty subset S, an ultrafilter of S is a collection F of subsets of S such that ∅ /∈ F;
A, B ∈ F ⇒ A ∩ B ∈ F; A ∈ F and A ⊆ B ⊆ S ⇒ B ∈ F; ∀A ⊆ S either A ∈ F or S − A ∈
F, but not both by the two first properties.

2A hyperreal [(rn)n∈N] is an infinitesimal if and only if limn→∞ rn = 0.
3A hyperreal [(rn)n∈N] is unlimited if and only if limn→∞ rn = ∞; it is the inverse of an infinitesimal.
4The shadow of a bounded hyperreal θ is the unique real number t such that θ ⊕ [(−t)n∈N] is an

infinitesimal.
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2.3 Nonstandard closeness

Two hyperreals θ and ϑ are infinitely close to each other (abbreviated into θ ≈ ϑ) if θ − ϑ
is an infinitesimal. This condition defines in ⋆R an equivalence relation, say ∝, whose
classes are called halos. This notion is useful to reformulate real assertions in nonstandard
notation, or by suggesting on how to extend them to the nonstandard realm. For instance:

1. A map f : R → R is continuous at c ∈ R if and only if for any x ∈ R such that
[(x)n∈N] ≈ [(c)n∈N] we have [(f(x))n∈N] ≈ [(f(c))n∈N].

Similarly, a map F on the hyperreals is continuous at a point C if and only if
F
(

halo(C)
)

⊆ halo
(

F (C)
)

.

2. A sequence of real numbers (αn)n∈N converges to L ∈ R is and only if [(αn)n∈N] ≈
[(L)n∈N].

Analogous definition in ⋆R.

3. L ∈ R is an accumulation point of the real sequence (α)n∈N if and only if there is a
non-bounded5 element in ⋆N such that αN ≈ [(L)n∈N].

4. Given a map f : A ⊆ R → R, a point x0 ∈ A is non-wandering if there are
z ∈ ⋆R and N ∈ ⋆N, say N = [(m1, m2, · · · , mk, · · · )], such that z ≈ [(x0)n∈N] and
fN(z) ≈ [(x0)k∈N], where fN(z) = [(fm1(z), fm2(z), · · · , fmk(z), · · · )].

If we are allowed to choose z = [(x0)n∈N], then x0 is said to be recurrent.

If z = [(x0)n∈N] and N = [(p)n∈N] for a positive integer p, then x0 is periodic with
period p.

2.4 Transfer principles

The construction of ⋆R endows it with logical principles that allow the exchange of notions
and valid properties between R and ⋆R. More precisely, we have:

1. The ⋆-transfer.

The field R has a complete structure R =≪ R, Rel(R), Fun(R) ≫, where Rel(R)
represents all the finite relations on R and Fun(R) all the real maps with real variable.
Accordingly, to ⋆R we assign the structure ⋆R =≪ ⋆R, {⋆P : P ∈ Rel(R)}, {⋆f : f ∈
Fun(R)} ≫. This way, ⋆R is the natural extension of all the relations and maps
in R. However, this mere extension does not ensure completeness of ⋆R since, for
instance, the map f : ⋆

R → ⋆
R given by f(x) = ǫx, where ǫ is an infinitesimal,

is not an extension of any element of Fun(R). Anyway, this is a mechanism that
transforms a formula ϕ of the language LR with relational symbols P and functionals

5A hyperreal [(tn)n∈N] is bounded if and only if there is a real M such that the set {n ∈ N : tn < M}
is big.
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F into another formula of a la nguage L⋆R from the structure ⋆R, replacing P by ⋆P
and F by ⋆F . For example, the proposition

[∀x ∈ R ∃n ∈ N : x < n]

yields
[∀X ∈ ⋆

R ∃N ∈ ⋆
N : X ≺ N ].

2. The universal transfer and its dual.

The principle that rules this operator asserts that if a property is valid for all reals,

then it is valid for all hyperreals. That is, (∀x ∈ R)ϕ → (∀X ∈ ⋆R) ⋆ϕ.

Dually, if there exists an hyperreal verifying some property, than there is a real one

that also satisfies it. That is, (∃X ∈ ⋆R) ⋆ϕ ⇒ (∃x ∈ R)ϕ.

The main example we have in mind is Sharkovskii’s theorem. Its full extension to
the hyperreals depends on the lift of Sharkovskii’s ordering

3⊳ 5⊳ 7⊳ . . .⊳ (2n+ 1)⊳ (2n+ 3)⊳ . . .

. . .⊳ 2× 3⊳ 2× 5⊳ 2× 7⊳ . . .⊳ 2× (2n+ 1)⊳ 2× (2n+ 3)⊳ . . .

. . .⊳ 22 × 3⊳ 22 × 5⊳ 22 × 7⊳ . . .⊳ 22 × (2n+ 1)⊳ 22 × (2n+ 3)⊳ . . .

...

. . .⊳ 2ℓ × 3⊳ 2ℓ × 5⊳ 2ℓ × 7⊳ . . .⊳ 2ℓ × (2n+ 1)⊳ 2ℓ × (2n+ 3)⊳ . . .

...

. . .⊳ 2ℓ ⊳ 2ℓ−1
⊳ . . .⊳ 23 ⊳ 22 ⊳ 1

to the nonstandard setting. The ⋆-transfer of the positive integers and corresponding
positions in this ordering

[(3)n∈N]
⋆
⊳ [(5)n∈N]

⋆
⊳ · · · ⋆⊳ [(2)n∈N]⊗ [(3)n∈N]

⋆
⊳ [(2)n∈N]⊗ [(5)]n∈N

⋆
⊳ · · · ⋆⊳ · · ·

· · · ⋆ ⊳ [(2n)n∈N]
⋆
⊳ [(2n−1)n∈N]

⋆
⊳ · · · [(2)n∈N]

⋆
⊳ [(1)n∈N]

works finely and suggests how to pursue.

Definition 2.1 Two elements θ = [(tn)n∈N] and ϑ = [(un)n∈N] in ⋆N verify the

relation θ ⋆
⊳ ϑ if and only if the set {n ∈ N : tn ⊳ un} is big.

Moreover, as ⊳ is complete in N, the universal transfer guarantees its extension to
all other hypernatural numbers of ⋆N. Thus the nonstandard version of Sharkovskii’s
theorem states that:

Theorem 2.1 Let F : ⋆N × ⋆R → ⋆R be a dynamical system in ⋆R. Consider two

sequences of positive integers, say [(Rn)n∈N] and [(Sn)n∈N], verifying [(Rn)n∈N]
⋆
⊳

[(Sn)n∈N]. If F has a periodic point with period [(Rn)n∈N], then F has a periodic

point with period [(Sn)n∈N].
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3 The size of the neighborhoods

In the sequel we will consider the uniform norm ‖ g ‖ = max {|g(x)| : a ≤ x ≤ b} on the
space of real continuous maps defined on the interval [a, b]. Let f : [a, b] → R be such a
map. As f is uniformly continuous in [a, b], given τ > 0 there exists η(τ) > 0 such that, if
x and y belong to [a, b] and |x− y| < η(τ), then |f(x)− f(y)| < τ

2
.

Consider a non-wandering point x0 of f , a sequence (Sn)n∈N of positive integers and
ǫ > 0.

Definition 3.1 For each n ∈ N, the number δ(ǫ, Sn) is the maximum of the set with Sn+1
elements given by

{ 1

n
,
ǫ

2
,
η(ǫ)

2
,
η(η(ǫ))

2
, · · · ,

η(η(η(· · ·η(ǫ) · · · )))

2

}

.

Notice that, this way, 0 < δ(ǫ, Sn) ≤
1
n
. Besides,

Lemma 3.1 Given n ∈ N, if ‖f − g‖ < δ(ǫ, Sn), then ‖fk − gk‖ < ǫ for all k ∈
{1, 2, · · · , Sn}.

Proof: Let us fix n and the corresponding Sn. If k = 1, the assertion is a direct
consequence of the fact that δ(ǫ, Sn) < ǫ. For k = 2, as ‖f − g‖ < δ(ǫ, Sn), we know
that |f − g‖ < ǫ

2
and ‖f − g‖ < η(ǫ). Therefore, by the definition of η(ǫ), we have

‖f ◦ f − f ◦ g‖ < ǫ
2
; besides, ‖f ◦ g − g ◦ g‖ ≤ ‖f − g‖ < ǫ

2
. So

‖f 2 − g2‖ ≤ ‖f ◦ f − f ◦ g‖+ ‖f ◦ g − g ◦ g‖ < ǫ.

Similarly, from ‖f − g‖ < δ(ǫ, Sn), we deduce that ‖f − g‖ < ǫ
2
, ‖f − g‖ < η(ǫ)

2
and

‖f − g‖ < η(η(ǫ)), which together imply, as just checked, that

‖f 2 − g2‖ ≤ ‖f ◦ f − f ◦ g‖+ ‖f ◦ g − g ◦ g‖ <
η(ǫ)

2
+

η(ǫ)

2
= η(ǫ),

and so
‖f 3 − g3‖ ≤ ‖f ◦ f 2 − f ◦ g2‖+ ‖f ◦ g2 − g ◦ g2‖ <

ǫ

2
+

ǫ

2
.

The argument proceeds inductively. ⊔⊓

4 A related dynamical system in ⋆
R

Let f : [a, b] → R be a continuous function and x0 a non-wandering point of f . Consider
two sequences, (Rn)n∈N and (Sn)n∈N, of positive integers related by ⋆

⊳ and assign to them,
according to Definition 3.1, the sequence (δ(ǫ, Sn))n∈N. Take the fundamental system of
neighborhoods of x0 given by

(Vn)n∈N = (]x0 − δ (ǫ, Sn), x0 + δ (ǫ, Sn)[)n∈N ,

6



whose first returns happen at times (Rn)n∈N. Since fRn(Vn) ∩ Vn 6= ∅, we may choose a
sequence (yn)n∈N of elements of [a, b] such that, for all n, yn and fRn(yn) both belong to
Vn.

Proposition 4.1 For each n, there is a continuous map gn : [a, b] → R such that

gRn

n (yn) = yn and ‖f − gn‖ < δ(ǫ, Sn).

Proof: As yn and fRn(yn) belong to the open interval Vn, we may find a ζ > 0 such
that the intervals In (the one that connects these two points inside [a, b], which may be
degenerated if yn = fRn(yn)) and Jn (which we obtain from In adding to it two short
segments, with length ζ , on its extremes) are contained in Vn. Consider a continuous
bump-function φn : [a, b] → R so that the restriction of φn to In is constant and equal to
1, and the value of φn in [a, b]\Jn is zero. Denote by Tn : [a, b] → R the map

Tn(t) = t+
[

yn − fRn(yn)
]

× φn(t).

The function Tn is the identity in the complement of Jn and translates the elements of Jn

of an amount that does not exceeds |yn − fRn(yn)|.
Define now the map gn : [a, b] → R by gn = Tn ◦ f . This is a continuous function and,

as Rn is the first return of Vn, we have

gRn

n (yn) = (Tn ◦ f)
Rn(yn) = Tn(f

Rn(yn)) =

= fRn(yn) +
[

yn − fRn(yn)
]

× 1 = yn

and, for any positive integer ℓ such that 1 ≤ ℓ < Rn,

gln(yn) = Tn(f
l(yn)) = f l(yn) 6= yn.

Besides, gn coincides with f in [a, b]\f−1(Vn) since, if t /∈ f−1(Vn), then φ(f(t)) = 0 and
therefore

gn(t) = Tn(f(t)) = f(t) +
[

yn − fRn(yn)
]

× φ(f(t)) = f(t).

Moreover, if t ∈ f−1(Vn), then

|gn(t)− f(t)| =
∣

∣f(t) +
[

yn − fRn(yn)
]

× φ(f(t))− f(t)
∣

∣ =

=
∣

∣

[

yn − fRn(yn)
]

× φ(f(t))
∣

∣ ≤
∣

∣yn − fRn(yn)
∣

∣ < δ(ǫ, Sn).

So ‖gn − f‖ < δ(ǫ, Sn). ⊔⊓

Definition 4.1 Denote by G : ⋆[a, b] → ⋆R the map that assigns to each equivalence class

[(tn)n∈N] in
⋆[a, b] the class

[

g1(t1), g2(t2), · · · , gn(tn), · · ·
]

.

It is straightforward to verify that:

7



Lemma 4.2 G is well defined, internal and continuous.

Proof: Let (sn)n∈N and (tn)n∈N be sequences in the same equivalence class of ⋆[a, b].
This means that sm = tm for a big set of positive integers m. Then, for the same set,
we have gm(sm) = gm(tm) and, therefore, the classes

[

g1(s1), g2(s2), · · · , gn(sn), · · ·
]

and
[

g1(t1), g2(t2), · · · , gn(tn), · · ·
]

also coincide. G is internal since it is the class of the sequence
of real maps (gn)n∈N. Moreover, by transfer of the continuity of each gn, we get the

continuity of G: for all α in ⋆[a, b], we have G
(

halo(α)
)

⊂ halo
(

G(α)
)

. ⊔⊓

Consider now in ⋆R the equivalence classes of the sequences (Rn)n∈N, (Sn)n∈N and
(yn)n∈N, say P = [R1, R2, · · · , Rn, · · · ], Q = [S1, S2, · · · , Sn, · · · ] and y0 = [y1, y2, · · · , yn, · · · ].

Definition 4.2 G : ⋆N0 ×
⋆[a, b] → ⋆R denotes the dynamical system associated with the

map G, given by

G

(

[n1, n2, · · · , nk, · · · ], [t1, t2, · · · , tk, · · · ]
)

=
[

gn1

1 (t1), g
n2

2 (t2), · · · , g
nk

k (tk), · · ·
]

.

Notice that, if ⋆n = [n1, n2, · · · , nk, · · · ],
⋆m = [m1, m2, · · · , mk, · · · ] and

⋆n ⊕ ⋆m =
[

n1 +m1, n2 +m2, · · · , nk +mk, · · ·
]

, then

G

(

⋆n⊕ ⋆m, [t1, t2, · · · , tk, · · · ]
)

=
[

gn1+m1

1 (t1), g
n2+m2

2 (t2), · · · , g
nk+mk

k (tk), · · ·
]

and

G

(

⋆n,G(⋆m, [t1, t2, · · · , tk, · · · ])
)

= G

(

⋆n,
[

gm1

1 (t1), g
m2

2 (t2), · · · , g
mk

k (tk), · · ·
]

)

=

=
[

gn1

1 (gm1

1 (t1)), g
n2

2 (gm2

2 (t2)), · · · , g
nk

k (gmk

k (tk)), · · ·
]

)

=

[

gn1+m1

1 (t1), g
n2+m2

2 (t2), · · · , g
nk+mk

k (tk), · · ·
]

= G

(

⋆n⊕ ⋆m, [t1, t2, · · · , tk, · · · ]
)

.

5 Proof of Theorem 1.1

Proof: By construction, as (Rn)n∈N is a sequence of first returns, the dynamical system
G has a periodic point with period P :

G

(

P, y0

)

= G

(

[R1, R2, · · · , Rn, · · · ], [y1, y2, · · · , yn, · · · ]
)

=

=
[

gR1

1 (y1), g
R2

2 (y2), · · · , g
Rn

n (yn), · · ·
]

= [y1, y2, · · · , yn, · · · ] = y0.

Thus, by Theorem 2.1, G has a periodic point z0 = [z1, z2, · · · , zn, · · · ] with period Q. Take
an accumulation point x1 of (zn)n∈N in [a, b] (observing that x1 may coincide with x0) and
consider a sequence of positive integers (nk)k∈N verifying the condition

∀k ∈ N znk
∈ ]x1 −

1

2nk

, x1 +
1

2nk

[.
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By Proposition 4.1, for each nk and ǫ = 1
2nk

, we have ‖gnk
− f‖ < δ(ǫ, Snk

), and so, by

Lemma 3.1, we get ‖g
Snk

nk
− fSn

k‖ < ǫ = 1
2nk

. Consequently, as znk
is a periodic point with

period Snk
by the iteration of the map gnk

, the neighborhood Wk = ]x1−
1
nk

, x1 +
1
nk

[ of x1

returns to itself by fSn
k . Hence x1 is the non-wandering point we were looking for. ⊔⊓
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