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Matroid 3-connectivity and branch width∗
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Abstract

We prove that, for each nonnegative integer k and each matroid N , if

M is a 3-connected matroid containing N as a minor, and the the branch

width of M is sufficiently large, then there is a k-element set X ⊆ E(M)

such that one of M \X and M/X is 3-connected and contains N as a

minor.

1 Introduction

We prove the following theorem.

Theorem 1.1. Let M be a matroid, let N be a minor of M, and let k be a

nonnegative constant. If the branch width of M is at least 20k+ 2|E(N)|

then there is a set X ⊆ E(M) that has at least k elements and is both

independent and coindependent, such that one of M \X and M/X is 3-

connected with N as minor.

Our main result (Theorem 5.3) is a strengthening of Theorem 1.1

that involves tangles. Theorem 1.1 can be seen as a generalization of the

Splitter Theorem, proven by Seymour [16] and, independently, by Tan

[17]. In particular, consider the following formulation:

Theorem 1.2 (Splitter Theorem). Let M be a 3-connected matroid, and

N a 3-connected proper minor of M. If M is not a wheel or a whirl, then

there is an e ∈ E(M) such that one of M \e and M/e is 3-connected with a

minor isomorphic to N.
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When the minor N is the empty matroid, this result is known as

Tutte’s Wheels and Whirls Theorem [18]. Several variants exist, such

as [12, 13].

In the Splitter Theorem, the two obstructions to the existence of a

removable element, the wheels and whirls, have branch width 2. The

branch width of a matroid is minor-monotone, so an easy consequence

of Theorem 1.2 is

Corollary 1.3. Let M be a 3-connected matroid with bw(M) ≥ 3, and N a

3-connected proper minor of M. Then there is an e ∈ E(M) such that one

of M\e and M/e is 3-connected with a minor isomorphic to N.

Sometimes deleting one element is insufficient. For instance, in pa-

pers on stabilizers or excluded minors the notion of a deletion pair is

central [19, 5, 6, 8]. In those papers, 3-connectivity cannot be guar-

anteed when two elements are removed, but the 2-separations that are

introduced can be handled at the cost of a more complicated analysis.

Our result generalizes Corollary 1.3 by showing that, if the branch width

is large enough, then we can either delete or contract any number of

elements and preserve both 3-connectivity and a specified minor.

Note that, rather than preserving a matroid isomorphic to the minor

N , we preserve N itself. Additionally, we impose fewer conditions on the

connectivity of N . Oxley [14, Theorem 11.1.2] describes a version of the

Splitter Theorem in which N is not 3-connected, but the conclusion of

that theorem is significantly weaker than in the 3-connected case.

Notation. Our notation and terminology follows Oxley [14]. Addi-

tionally, if X is a collection of sets, ∪X denotes the union of all sets in

X , and ∩X the intersection. As has become customary in matroid the-

ory papers, si(M) denotes the simplification of M and co(M) denotes the

cosimplification.

2 Connectivity, branch width, and tangles

2.1 Closure

Definition 2.1. Let M be a matroid and X ⊆ E(M). We say X is closed if

rkM (X ∪ e) > rkM (X ) for all e ∈ E(M)− X . We say X is coclosed if X is

closed in M∗. We say X is fully closed if X is both closed and coclosed.

As usual we denote the smallest closed set containing X by clM (X ),

and the smallest coclosed set containing X by cl∗M (X ). Additionally, the

smallest fully closed set containing X is denoted by fclM (X ). Some more
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terminology: a line is a closed set of rank two. A line is long if it has at

least three elements.

The following elementary lemma is surprisingly useful. It has ap-

peared in at least [10, 3].

Lemma 2.2. Let M be a matroid, e ∈ E(M), and (A, B) a partition of

E(M)− e. Then e ∈ clM (A) if and only if e 6∈ cl∗M (B).

Proof. Note that e ∈ clM (A) if and only if e is a loop in M/A. Dually,

e ∈ cl∗M (B) if and only if e is a coloop in M\B. Suppose e ∈ clM (A). Then

there is a circuit containing e in M\B, so e 6∈ cl∗M (B). Conversely, suppose

e 6∈ cl∗M (B). Then there is a circuit containing e in M\B, so e ∈ clM (A).

2.2 Connectivity and separations

An unfortunate consequence of the graph-theoretic pedigree of matroid

theory is that two definitions of the connectivity function coexist (dif-

fering from each other by an additive constant of 1). We will take the

smaller of these definitions:

Definition 2.3. Let M be a matroid. The connectivity function λM :

2E(M)→ N is defined by

λM (X ) := rkM (X )+ rkM (E(M)− X )− rk(M).

We will use the following elementary properties of the connectivity

function:

Lemma 2.4. Let M be a matroid, and X , Y ⊆ E(M). The connectivity

function of M has the following properties.

(i) λM (X ) = rkM (X )+ rkM∗(X )− |X |;

(ii) λM (E(M)− X ) = λM (X );

(iii) λM∗(X ) = λM (X );

(iv) If e ∈ E(M)− X then λM\e(X )≤ λM (X )≤ λM\e(X ) + 1.

(v) λM (X ) +λM (Y )≥ λM (X ∩ Y ) +λM (X ∪ Y );

For ease of reference we repeat the usual definitions of separations

and connectivity before stating some less common results.

Definition 2.5. Let M be a matroid. A set X ⊆ E(M) is k-separating if

λM (X )< k. It is exactly k-separating if λM (X ) = k− 1.

Definition 2.6. Let M be a matroid, and let (X , Y ) be a partition of

E(M). If |X |, |Y | ≥ k and λM (X ) < k then (X , Y ) is a k-separation of M .

If λM (X ) = k− 1 then (X , Y ) is an exact k-separation of M .
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Definition 2.7. A matroid M is k-connected if M has no k′-separations

with k′ < k.

Two partitions (X1, Y1) and (X2, Y2) cross if X1 ∩ X2, X1 ∩ Y2, Y1 ∩ X2,

Y1 ∩ Y2 are all nonempty. An application of the following lemma (from

[11]) is called an uncrossing.

Lemma 2.8. Let M be a k-connected matroid, and let X1, X2 be k-separating

sets.

(i) If |X1 ∩ X2| ≥ k− 1 then X1 ∪ X2 is k-separating.

(ii) If |E(M)− (X1 ∪ X2)| ≥ k− 1 then X1 ∩ X2 is k-separating.

Proof. By Lemma 2.4(v),

2(k− 1)≥ λM (X1) +λM (X2)≥ λM (X1 ∩ X2) +λM (X1 ∪ X2). (1)

Since M is k-connected, any set X with at least k − 1 elements has

λM (X ) ≥ k − 1. Therefore, if one of the summands on the right is at

least k− 1 then the other is at most k− 1, and the result follows.

Since we wish to preserve 3-connectivity, we have to know how sep-

arations change when taking minors.

Lemma 2.9. Let M be a k-connected matroid, (X , Y ) an exact k-separation

of M, and e ∈ X , not a loop. The following are equivalent.

(i) (X − e, Y ) is a (k− 1)-separation in M/e;

(ii) e ∈ clM (Y )∩ clM (X − e);

(iii) e 6∈ cl∗M (Y )∪ cl∗M (X − e).

Proof. The equivalence of (ii) and (iii) is an immediate consequence of

Lemma 2.2. Assume (i) holds. Since e is not a loop, rk(M/e) < rk(M).

Hence

k− 2= λM/e(X − e) = rkM/e(X − e) + rkM/e(Y )− rk(M) + 1.

It follows that rkM/e(X − e) < rkM (X ) and rkM/e(Y ) < rkM (Y ). But this

necessarily implies e ∈ clM (Y ). If e 6∈ clM (X − e) then λM (X − e) = k−1,

contradicting k-connectedness of M .

Conversely, assume (ii) holds. Then rkM/e(X − e) < rkM (X − e) =

rkM (X ) and rkM/e(Y ) < rkM (Y ). Since also rk(M/e) < rk(M), the result

follows.

Lemma 2.10. Let M be a k-connected matroid, (X , Y ) a k-separation of

M, and e ∈ X such that M/e is k-connected. Then e 6∈ clM (Y ).
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Proof. Let M , X , Y, e be as stated, and suppose that, contrary to the claim,

e ∈ clM (Y ). If e ∈ clM (X−e) then, by Lemma 2.9, M/e is not k-connected,

a contradiction. If e 6∈ clM (X − e) then λM (X − e) < λM (X ). But M is

k-connected, a contradiction.

In some of our proofs we will require that a minor N of a matroid

M has no loops or coloops. The following easy lemma implies that this

assumption is not overly restrictive:

Lemma 2.11. Let M be a connected matroid and let N be a minor of M. If

N has l elements that are either a loop or a coloop, then M has a minor N ′

such that N is a minor of N ′, such that N ′ has no loops and coloops, and

such that |E(N ′)| ≤ |E(N)|+ l.

Proof. Let M be a connected matroid, let N be a minor of M , and let

C , D ⊆ E(M) be such that N = M/C \D with C independent and D

coindependent. Let e be a loop of N . Since M is connected, e is not

a loop of M . Hence there is a circuit X ⊆ C ∪ {e} using e with |X | ≥ 2.

Let f ∈ X − {e}, and consider N ′′ := M/(C − { f })\D. Since {e, f } is

a parallel pair in N ′′, the matroid N ′′ has strictly fewer loops than N .

Moreover, |E(N ′′)| = |E(N)|+ 1. The result now follows by duality and

induction.

We note that Lemos and Oxley proved that, if N has k components,

then M has a connected minor N ′ on at most |E(N)|+ 2k − 2 elements

[7].

2.3 2-separations

In this subsection we consider preserving a minor in the presence of a

2-separation. We omit the straightforward proof of the following lemma.

Lemma 2.12. Let (A, B) be a 2-separation of a connected matroid M. If

|B| = 2, then B is a parallel or series pair.

Lemma 2.13. Let M be a matroid, N a minor of M, and (A, B) a 2-

separation of M with B ∩ E(N) = ;. Then one of M \B and M/B has

N as minor.

Proof. Let M , N , (A, B) be as stated. Since no element of B is in N , there

are disjoint sets C , D ⊆ B such that B = C ∪ D and M/C \D has N as

minor. If λM\D(C) = 0 then M \D/C = M \D\C and the result follows.

Therefore λM\D(C) = rkM (A)+ rkM (C)− rkM (A∪ C) = 1. But

λM/C (A) = rkM (A∪ C)− rkM (C) + rkM (B)− rkM (C)− (rk(M)− rkM (C))

= rkM (A)+ rkM (C)− 1− rkM (C) + rkM (B)− rk(M)

= λM (A)− 1= 0,
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so D is a separator of M/C . Hence M/C \D = M/C/D, and the result

follows.

An easy consequence is this:

Corollary 2.14. Let M be a matroid, N a minor of M, and (A, B) a 2-

separation of M with B ∩ E(N) = ;. If e ∈ B − clM (A) then M/e has N as

minor.

Proof. Let M , N , (A, B), e be as stated. If M/B has N as minor then we are

done, so we may assume M\B has N as minor. Consider M ′ := M\(B−e).

Since e 6∈ clM ′(A), it is a coloop of M ′, and therefore M ′\e = M ′/e.

We immediately find the following:

Corollary 2.15. Let M be a matroid, N a minor of M, and (A, B) a 2-

separation of M with B ∩ E(N) = ;. If e ∈ B− (clM (A)∪ cl∗M (A)) then both

M\e and M/e have N as minor.

Next we consider the case in which E(N) intersects B in exactly one

element. The following is [14, Lemma 8.3.3].

Lemma 2.16. Let M be a matroid, and let (A, B) be a 2-separation of

M. If C1, C2 are circuits of M, both of which meet both A and B, then

(C1 ∩ A)∪ (C2 ∩ B) is a circuit of M.

Lemma 2.17. Let M be a connected matroid, N a minor of M with no

loops and coloops, and (A, B) a 2-separation of M with B ∩ E(N) = { f }.

If f is not in series or in parallel with any other element in M, then there

exists an element e ∈ B−{ f } such that M\e and M/e both contain N as a

minor.

Proof. Suppose the lemma is false. Let M , N , (A, B), f constitute a coun-

terexample with |B| minimal. Let C and D be disjoint subsets of B − { f }

such that M/C\D has N as a minor, and pick e ∈ D. If there is a circuit X

of M/e using f and at least one element of A, then Lemma 2.16 implies

that M/e has N as minor.

Hence there is a separation (A′, B′) such that E(N)−{ f } ⊆ A′ and f ∈

B′. By uncrossing with (A, B), it follows that B′ ( B. But this contradicts

minimality of B.

The only remaining possibility is that D is empty. But then, by duality,

also C = ;, a contradiction.
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2.4 3-connectivity and fans

Recall the following lemma by Bixby:

Lemma 2.18 (Bixby [1]; see also Oxley [14, Proposition 8.4.6]). Let M

be a 3-connected matroid, and e ∈ E(M). Then at least one of si(M/e) and

co(M\e) is 3-connected.

Recall that a set T ⊆ E(M) is a triangle if M |T ∼= U2,3, and a triad if it

is a triangle of M∗.

Lemma 2.19 (Tutte’s Triangle Lemma; see Oxley [14, Lemma 8.4.9]).

Let M be a 3-connected matroid with |E(M)| ≥ 4, and let T = {e, f , g} be

a triangle such that neither M \e nor M \ f is 3-connected. Then M has a

triad containing e and exactly one of f and g.

Tutte’s Triangle Lemma naturally leads to the notion of a fan:

Definition 2.20. Let M be a matroid, and F = (x1, x2, . . . , xk), k ≥ 3, an

ordered set of distinct elements of E(M). We say that F is a fan of M if

{x1, x2, x3} is either a triangle or a triad, and for each i ∈ {1, . . . , k− 3},

if {x i, x i+1, x i+2} is a triangle then {x i+1, x i+2, x i+3} is a triad, and if

{x i, x i+1, x i+2} is a triad then {x i+1, x i+2, x i+3} is a triangle.

A few trivial observations:

Lemma 2.21. Let F = (x1, x2, . . . , xk) be a fan of a matroid M.

(i) F is a fan of M∗, with triangles and triads exchanged;

(ii) (xk, xk−1, . . . , x1) is a fan of M;

(iii) If X ⊆ E(M) is fully closed, and F is an inclusionwise maximal fan

contained in X , then F is an inclusionwise maximal fan in E(M);

(iv) If k ≥ 4, and 1< l < k, then neither M\x l nor M/x l is 3-connected.

The following lemma is due to Oxley and Wu [9].

Lemma 2.22. Let M be a 3-connected matroid that is not a wheel or a

whirl, and let F be an inclusionwise maximal fan of M with k ≥ 3 ele-

ments. Then the elements of F can be ordered (x1, x2, . . . , xk) such that

(x1, x2, . . . , xk) is a fan, one of M \ x1, M/x1 is 3-connected, and one of

M\xk, M/xk is 3-connected.

Note that in a fan of length at least 4 the ends of the fan, x1 and xk,

are the same for any ordering, and in a fan of length at least 5 the order

is completely fixed. We will upgrade Oxley and Wu’s result so that we

can preserve a minor, at the cost of a slightly worse bound on the size:
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Lemma 2.23. Let M be a 3-connected matroid that is not a wheel or

a whirl, let N be a minor of M without loops or coloops, and let F =

(x1, x2, . . . , xk) be an inclusionwise maximal fan of M with k ≥ 4 elements.

If |E(N)∩ F | ≤ 1 then one of M\x1, M/x1, M\xk, M/xk is 3-connected with

N as minor.

Proof. Let M , N , F, k be as stated, and suppose the theorem fails. To

simplify notation we will assume k to be even, leaving the analogous

case for odd k to the reader. By reversing the fan if necessary we may

assume x1 6∈ E(N). By dualizing M and N if necessary we may assume

that {x1, x2, x3} is a triangle (and therefore that {xk−2, xk−1, xk} is a

triad). Hence M \x1 is 3-connected. Suppose M \x1 does not have N as

minor. Then M/x1 has N as minor. Let M ′ := M/x1. The set F − x1 is

2-separating in M ′.

Claim 2.23.1. xk ∈ E(N).

Proof. Suppose this is not the case. Note that F−{x1, xk} is a separator

of M ′\ xk. First, if E(N) ∩ (F − {x1, xk}) = { f }, then M ′\ xk cannot

have N as minor, since in such a minor f would be either a loop or a

coloop. Hence M ′/xk has N as minor. Next, if E(N) ∩ (F − x1) = ;

then Corollary 2.14 implies that M ′/xk has N as minor. In both cases

it follows that M/xk has N as minor. But that matroid is 3-connected,

and the result holds.

Note that {x2, x3} form a parallel pair in M ′. If k = 4 then xk is a

coloop in M ′\{x2, x3}, so M ′/x2 has N as minor. If k > 4 then {x2, x3, x4}

is a 2-separation in M ′ disjoint from E(N). Moreover, we have x2 ∈

cl∗
M ′
({x3, x4}), so by Lemma 2.2, x2 6∈ clM ′(E(M

′)− {x2, x3, x4}). From

Corollary 2.14 it then follows that M ′/x2 has N as minor.

Therefore M/x2 has N as minor. In that matroid x1 and x3 are in

parallel, from which it follows that M\x1 has N as minor, a contradiction.

2.5 Tangles and their matroids

Instead of using branch width directly, we will use the notion of a tangle,

first defined by Robertson and Seymour [15] for hypergraphs, and ex-

tended to matroids by Dharmatilake [2]. Our definitions follow Geelen,

Gerards, Robertson, and Whittle [4].

Definition 2.24. Let M be a matroid, and T a collection of subsets of

E(M). Then T is a tangle of order θ of M if

(i) For all X ∈ T , λM (X )< θ ;

(ii) For all X ⊆ E(M) with λM (X )< θ , either X ∈ T or E(M)− X ∈ T ;
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(iii) If X , Y, Z ∈ T then X ∪ Y ∪ Z 6= E(M);

(iv) For each e ∈ E(M), E(M)− {e} 6∈ T .

Hence the empty set is a tangle of order 0 of any nonempty matroid.

The following theorem, which was implicit in Robertson and Seymour

[15], shows that tangles and branch width are closely related. A proof

using the definition of tangle given above can be found in Geelen et al.

[4]. Note that they stated and proved the result for arbitrary connectivity

functions.

Theorem 2.25. Let M be a matroid. The branch width of M equals the

maximum order θ of a tangle of M.

Because of this result, there is no need to define branch width here.

We continue with some basic tangle facts, which can easily be deduced

from the definition:

Lemma 2.26. Let M be a matroid, and T a tangle of M of order θ .

(i) If X ∈ T and X ′ ⊆ X is such that λM (X
′)< θ then X ′ ∈ T ;

(ii) If θ ′ < θ , and T ′ = {X ∈ T : λM (X ) < θ
′}, then T ′ is a tangle of

M of order θ ′;

(iii) T is a tangle of order θ of M∗.

Tangles can be helpful in dealing with crossing separations.

Lemma 2.27. Let M be a matroid, T a tangle of order θ , and X , Y ∈ T .

If λM (X ∪ Y )< θ then X ∪ Y ∈ T .

Proof. Let Z := E(M)− (X ∪ Y ). Either X ∪ Y ∈ T or Z ∈ T , by 2.24(ii).

But if Z ∈ T then X ∪ Y ∪ Z = E(M), contradicting 2.24(iii).

We will apply this lemma regularly. In the case Y = {e} we may do so

without referring to it.

A useful means for studying tangles is the tangle matroid. The follow-

ing result is from Geelen et al. [4]: [Changed!]TO DO!

Theorem 2.28. Let M be a matroid, and T a tangle of M of order θ . Let

ρ : 2E(M)→ N be defined by

ρ(X ) :=

¨

min{λM (Y ) : X ⊆ Y ∈ T } if X ⊆ Y ∈ T

θ otherwise.

Then ρ is the rank function of a matroid.

We will denote this matroid by M(T ), and write rkT , clT , . . . as short-

hand for rkM(T ), clM(T ), . . . . We will often work with independent sets in

the tangle matroid.
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Lemma 2.29. Let M be a matroid, T a tangle of M of order θ , and X a

set that is independent in M(T ). Then X is both independent and coinde-

pendent in M.

Proof. Suppose X is not independent in M . Then λM (X ) ≤ rkM (X ) <

|X | ≤ θ . It follows that E(M)− X ∈ T . But from repeated application of

Lemma 2.27, starting from the singleton subsets of X , we conclude that

X ∈ T , a contradiction. The result now follows by duality.

If N is a minor of M then we can derive a tangle of N from a tangle

of M , as follows.

Lemma 2.30. Let M be a matroid, and N a minor of M such that E(M)−

E(N) = S. Let T be a tangle of M of order θ . Define

T ′ := {X − S : X ∈ T ,λN (X )< θ − |S|}.

Then T ′ is a tangle of N of order θ − |S|.

Proof. We give the proof if S = {e}. The result then follows by induction.

The result is trivial if θ ≤ 1, since that implies T ′ = ;. Hence we may

assume θ ≥ 2.

Note that 2.24(i) follows immediately from our definition. For 2.24(ii),

if (X , Y ) is a k-separation of N with k < θ , then Lemma 2.4(iv) implies

that (X ∪ e, Y ) and (X , Y ∪ e) are (k + 1)-separations of M , and hence

either X ∈ T or Y ∈ T (using Lemma 2.27). We may assume the for-

mer. Then it follows immediately that X ∈ T ′. For 2.24(iii), note that

λM (X ∪ e) ≤ λM (X ) + 1 < θ , so (X ∪ e) ∪ Y ∪ Z does not cover E(M).

Hence X ∪ Y ∪ Z cannot cover E(N). Finally, suppose E(N)− { f } ∈ T ′

for some f ∈ E(N). Then we must have E(M)− {e, f } ∈ T . But we also

have {e}, { f } ∈ T , contradicting 2.24(iii).

We say T ′ is the tangle inherited from T . We note some elementary

properties of the corresponding tangle matroid:

Lemma 2.31. Let M be a matroid, T a tangle of M of order θ , and N a

minor of M with E(M)− E(N) = {e}. Let T ′ be the tangle of N inherited

from T , and let Z ⊆ E(N).

(i) rkT (Z)− 1≤ rkT ′(Z)≤ rkT (Z);

(ii) If e 6∈ clT (Z) and rkT (Z)< θ then rkT ′(Z) = rkT (Z).

Proof. Let M ,T , N , e,T ′, Z be as stated. The first claim is a straight-

forward consequence of 2.4(iv). Suppose the second claim is false. Let

Z ′ ⊇ Z be such that Z ′ ∈ T ′ and k = λN (Z
′) < rkT (Z). By dualizing M

and N if necessary we may assume N = M/e. Since λM (Z
′)> k, we must

have e ∈ clM (Z
′) ∩ clM (E(M)− (Z

′ ∪ e)). But then λM (Z
′ ∪ e) = k + 1,

and therefore rkT (Z ∪ e) ≤ k+ 1 ≤ rkT (Z). But this implies e ∈ clT (Z),

a contradiction.
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An easy corollary is the following.

Lemma 2.32. Let M be a matroid, let T be a tangle of M, let X be a T -

independent subset of E(M), and let e ∈ X . Then X − e is T ′-independent

in M\e, where T ′ is the tangle of M\e inherited from T .

Proof. Let M ,T , X , e,T ′ be as stated, and assume the result is false.

Then there is a set Z ⊇ X − e with Z ∈ T ′ and λM\e(Z) < |X − e|. By

definition of T ′, either Z ∈ T or Z ∪ e ∈ T . By Lemma 2.4(iv) we have

that λM (Z ∪ e) ≤ λM\e(Z) + 1 < |X |. It follows that Z ∪ e ∈ T , because

otherwise its complement together with Z and {e} would cover E(M).

But X ⊆ Z , a contradiction to X being T -independent.

Lemma 2.33. Let M be a matroid, let T be a tangle of M, and let X ⊆

E(M) be T -independent. Let Y := clT (X ). If e ∈ Y −X then e ∈ clM (Y−e)

or e ∈ cl∗M (Y − e).

Proof. Let M ,T , X , Y, e be as stated, and assume rkT (X ) = t. Then

λM (Y ) = t, and λM (Y − e) ≥ t, since X ⊆ Y − e. Suppose e is neither in

the closure nor in the coclosure of Y − e. Then

λM (Y ) = rkM (Y ) + rk∗M (Y )− |Y |

= rkM (Y − e) + 1+ rk∗M (Y − e) + 1− (|Y − e|+ 1)

= λM (Y − e) + 1> t,

a contradiction.

Lemma 2.34. Let M be a 3-connected matroid, T a tangle of M, and

X , X ′ long lines of M(T ) such that rkT (X ∪ X ′) = 4. Let e ∈ X and

M ′ ∈ {M \e, M/e} be such that M ′ is 3-connected. Let T ′ be the tangle of

M ′ inherited from T . Then X ′ is closed in M(T ′).

Proof. Let M ,T , X , X ′, e, M ′ be as stated. Since T is a tangle of M∗

we may dualize as necessary and assume M ′ = M/e. Suppose there is

a Z ∈ T ′ with X ′ ( Z , and rkT ′(Z) = 2. Define Y := E(M)− Z . Then

(Z , Y ∪e) and (Z∪e, Y ) are 4-separations of M , with e ∈ clM (Z)∩clM (Y ),

by Lemma 2.9. Since e 6∈ clM (E(M) − X ) by Lemma 2.10, Z ∩ X and

Y ∩ X are both nonempty. Let e′ ∈ Z ∩ X . Then rkT (X
′ ∪ {e, e′}) ≤ 3,

since Z ∪ e is 4-separating. But clT ({e, e′}) = X , so 3≥ rkT (X ∪{e, e′}) =

rkT (X ∪ X ′) = 4, a contradiction.

3 Finding elements to remove

As a first step towards our result we show that, if the branch width is high

enough, we can remove a single element and preserve 3-connectivity and

N as minor.
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Theorem 3.1. Let M be a 3-connected matroid, let N be a minor of M

without loops or coloops, let T be a tangle of M of order at least 3, let X

be a long line in M(T ), and let f ∈ X . If (X − f ) ∩ E(N) = ;, then there

exists an e ∈ X − f such that either M \e or M/e is 3-connected with N as

minor.

Proof. Let M , N ,T , X , f be as stated. If X contains a fan of length 4 or

more then the result follows from Lemma 2.23. Therefore we can assume

that X contains no fans of length at least 4.

Next, assume that there is an element e ∈ X such that both M \ e

and M/e have N as minor. By Lemma 2.18, either si(M/e) or co(M \e)

is 3-connected. By duality we may assume the former. If M/e is simple

then the result follows, so e is on a triangle, say with elements g and

h. Assume g 6= f . Lemma 2.19 implies that at least two of {e, g,h} can

be deleted keeping 3-connectivity. If e is one of them the result follows.

Otherwise, since {g,h} is a parallel pair in M/e, it follows that M/e\g has

N as minor. But then M\g has N as minor and is 3-connected. Hence we

may assume that for all e ∈ X − f , exactly one of M\e and M/e has N as

minor.

Claim 3.1.1. There is an element e ∈ X − f such that M\e is cosimple with

N as minor, or M/e is simple with N as minor.

Proof. Pick, possibly after dualizing, an element e ∈ X − f such that

M/e has N as minor. If M/e were simple, we would be done, so we

can assume that e is in a triangle {e, g,h} of M . Assume g 6= f . Since

{g,h} is a parallel pair, it follows as before that M \ g has N as minor,

and is simple.

Now let e be an element such that M/e is simple and has N as minor.

Clearly M/e is also cosimple. If M/e is 3-connected, then the result fol-

lows. Otherwise Corollary 2.15 and Lemma 2.17 imply the existence of

an element e′ such that both M/e′ and M\e′ have N as minor, a case we

already dealt with. Duality now completes the proof.

Next, we find a set of deletions and contractions:

Theorem 3.2. Let s be an integer, let M be a 3-connected matroid, let T

be a tangle of M of order θ ≥ 6, let N be a minor of M with no loops and

coloops, and let t := rkT (E(N)). If θ ≥ 2s+ t + 1, then there are disjoint

sets C , D ⊆ E(M)−E(N) such that M/C\D is 3-connected with N as minor,

such that rkT (E(N)∪ C ∪ D) = t + |C ∪ D|, and such that |C ∪ D| ≥ s.

To achieve this we use the following lemma:

Lemma 3.3. Let M be a 3-connected matroid, let T be a tangle of M

of order θ ≥ 3, let N be a minor of M with no loops and coloops, let

12



t := rkT (E(N)), and let H be a closed set of M(T ) containing E(N). If

θ > rkT (H) then there is an element e ∈ E(M)− H such that one of M \e

and M/e is 3-connected with N as minor.

Proof. Let M ,T ,θ , N , and H be as stated. Suppose there is an element

e ∈ E(M)− H such that e is on no long line of M(T ). Then both M/e

and M \e are 3-connected. One of these has N as minor, and the result

follows.

Now pick e ∈ E(M)− H, and let X be a long line containing e. Note

that X intersects H, and therefore E(N), in at most one element. The

result now follows from Theorem 3.1.

With this in hand the proof of Theorem 3.2 is no longer difficult.

Proof of Theorem 3.2. Let s, M ,T ,θ , N , t be as stated, and let C , D ⊆

E(M) − E(N) be disjoint, such that M/C \D is 3-connected with N as

minor, such that rkT (E(N)∪ C ∪ D) = t + |C ∪ D|, and such that |C ∪ D|

is maximal. Suppose |C ∪ D| < s. Define H := clT (E(N)∪ C ∪ D).

Let M ′ := M/C\D, let θ ′ := θ − |C ∪ D|, let T ′ be the tangle of M ′ of

order θ ′ inherited from T , and let H ′ := clT ′(H). Then

θ ′ = θ − |C ∪ D|

≥ 2s+ t + 1− (s− 1)

= s+ t + 2

≥ (rkT ′(H
′)+ 1) + 2.

Clearly θ ′ ≥ 3. But then Lemma 3.3 implies we can find an element

e ∈ E(M ′)− H ′ such that one of M ′ \e, M ′/e is 3-connected with N as

minor. Since e 6∈ clT ′(H
′), certainly e 6∈ clT (H), contradicting maximality

of |C ∪ D|.

The final lemma of this section deals with a rather specific case in

which elements need to be removed simultaneously.

Lemma 3.4. Let M be a 3-connected matroid, let T be a tangle of M,

let N be a minor of M, and let X1, . . . , X r be long lines of M(T ) with

rkT (X1 ∪ · · · ∪ X r) = 2r. Suppose the following properties hold for all

i ∈ {1, . . . , r}:

(i) X i ∩ E(N) = ;;

(ii) X i contains a maximal fan Fi of length at least four;

(iii) there is an element ei ∈ Fi such that M \ei is 3-connected with N as

minor.

Then M\{e1, . . . , er} is 3-connected with N as minor.
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Proof. We prove the result by induction on r, the case r = 1 being

trivial. Let r > 1, and assume the result holds for all r ′ < r. Let

M ,T , N , X1, . . . , X r , F1, . . . , Fr , and e1, . . . , er be as stated. Consider M ′ :=

M \ er , and let T ′ be the tangle of M ′ inherited from T . Pick any

i ∈ {1, . . . , r − 1}. By Lemma 2.34 we have that clT ′(X i) = X i. More-

over, since er is not in the coclosure of X i, the fan Fi is still maximal in

M ′. Clearly ei is one of the ends of Fi , and then Lemma 2.23 implies that

M ′\ei is 3-connected with N as minor.

It follows that M ′,T ′, N , X1, . . . , X r−1 satisfy all conditions of the lemma,

and hence M ′\{e1, . . . , er−1} is 3-connected with N as minor, by induc-

tion. But that matroid equals M\{e1, . . . , er}, and the result follows.

4 The restoration graph

We know now that we can find sets C and D such that |C∪D| is large, but

for our main result we require that either all elements are deleted or all

elements are contracted. In the remainder of the paper we will achieve

this by studying subsets of C ∪ D.

Lemma 4.1. Let M be a matroid, T a tangle of M, and {c, d} a T -

independent subset of E(M) such that M/c \d is 3-connected but M/c is

not. If d is not in a parallel pair in M then M is 3-connected. Moreover,

either M \d is 3-connected or c and d are internal elements of a fan with

size at least 4.

Proof. Let M ,T , c, d be as stated, and suppose that M is not 3-connected.

Let (A, B) be a 2-separation of M , with |A− {c, d}| ≤ |B − {c, d}|. Then

|A− {c, d}| ≤ 1, because otherwise (A, B) would be a 2-separation of

M/c\d . It follows that A ∈ T . But then |A∩ {c, d}| ≤ 1, since λM (A) =

1< rkT ({c, d}). It follows that A is a series pair or a parallel pair.

Since M/c is not 3-connected, d has to be in parallel with some ele-

ment e in that matroid. In M we find no parallel pair containing d , so

{c, d , e} must be a triangle of M . The element c cannot be in any parallel

pair of M , so c must be in a series pair. But then {c, f } is a series pair

for some f ∈ {d , e}. Since d , e ∈ clM ({c, f }), it follows that {c, d , e} is

2-separating, contradicting the assumption that {c, d} is T -independent.

For the second statement, suppose that M\d is not 3-connected. Then

c must be in a series pair, say {c, f }. Since M is 3-connected, we must

have that {c, d , f } is a triad of M . This implies that e 6= f or M ∼= U2,4,

and the result follows.

Lemma 4.2. Let M be a 3-connected matroid, T a tangle of M, and C , D

disjoint subsets of E(M) such that C ∪ D is T -independent and M/C \D is
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3-connected. For each d ∈ D, either M/C \(D− d) is 3-connected or there

is an element c ∈ C such that M/(C − c)\(D− d) is 3-connected.

Proof. Let M , T , C , D be as stated, and pick d ∈ D such that M/C\(D−d)

is not 3-connected. Call the resulting matroid M ′. It follows from Lemma

2.32 that d is neither a loop nor a coloop of M ′. It is impossible for d to

be in a series pair, so d must be in a parallel pair, say with an element e.

The set {d , e} is not 2-separating in M , so there must be a circuit Y

with {d , e} ( Y ⊆ C ∪ {d , e}. Pick c ∈ Y ∩ C . In M/(C − c)\(D − d),

we must have that {c, d , e} is a triangle. Lemma 4.1 now implies the

result.

It is convenient to keep track of deletions and contractions using a

certain bipartite graph. Let us fix some notation. If G = (V, E) is a graph,

and S ⊆ V then G[S] is the induced subgraph on S. For a vertex v ∈ V

we denote the set of vertices adjacent to v but not equal to v by N(v).

Definition 4.3. Let M be a 3-connected matroid, and C , D disjoint sub-

sets of E(M) such that M/C \D is 3-connected. The restoration graph of

M with respect to C and D, denoted by R(M , C , D), is a bipartite graph

with vertex set C ∪ D and edge set

{cd : c ∈ C , d ∈ D, and M/(C − c)\(D− d) is 3-connected}.

Some more terminology: if N = M/C\D, and Z ⊆ C ∪D, then we say

that M/(C − Z)\(D − Z) was obtained from N by restoring Z . We say

that an element e ∈ C ∪ D is privileged if restoring e yields a 3-connected

matroid.

If the set of vertices of a restoration graph is T -independent for a

tangle T of M then it has many attractive properties. We list a few.

Lemma 4.4. Let M be a 3-connected matroid, let T be a tangle of M,

and let C , D be disjoint subsets of E(M) such that C ∪ D is T -independent

and M/C\D is 3-connected. Then the restoration graph R(M , C , D) has no

isolated non-privileged vertices.

Proof. This is an immediate consequence of Lemma 4.2.

Lemma 4.5. Let M be a 3-connected matroid, let T be a tangle of M, and

let C , D be disjoint subsets of E(M) such that C ∪ D is T -independent and

M/C \D is 3-connected. Let G = R(M , C , D). Let S ⊆ C ∪ D. Restoring

S yields a 3-connected matroid if and only if G[S] has no isolated non-

privileged vertices.

Proof. Let M , T , C , and D be as stated, define N := M/C\D, and define

G := R(M , C , D). Assume first that there is a set S such that G[S] has
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an isolated non-privileged vertex d , yet the matroid M ′ obtained from N

by restoring S is 3-connected. Using duality if necessary we may assume

d ∈ D. The matroid obtained from N by restoring d is not 3-connected, so

d must be in a parallel pair with some element e in that matroid. Clearly

{d , e} is not a parallel pair in M ′, so there must be a circuit containing

d , e, and at least one element c ∈ C ∩ S. But then c and d satisfy all

conditions of Lemma 4.1, and hence cd is an edge of G, a contradiction.

We will prove the converse by induction on the size of the set S to

be restored. The case S = ; is trivial, so we may assume |S| ≥ 1. Pick

d ∈ S such that d has minimum degree in the graph G[S]. If there is a

choice, pick d to be non-privileged, and consider G[S−d]. Using duality

if necessary we may assume d ∈ D. Let M ′ be the matroid obtained from

N by restoring S, and let T ′ be the tangle inherited from T .

First we assume that G[S−d] has no isolated non-privileged vertices.

By induction, restoring S − d yields a 3-connected matroid. If M ′ does

have a 2-separation, then d must be a loop or in parallel with another

element in E(M ′). The former cannot happen since S is T ′-independent.

Hence d must be in parallel with an element f of E(M ′). Note that

f 6∈ C ∪ D, because this again contradicts T ′-independence. Let c be

a neighbour of d in G[S], and let N ′ be the matroid obtained from N

by restoring {c, d}. Then N ′ is 3-connected. But d , f ∈ E(N ′) and N ′

is a minor of M ′, so rkN ′({d , f }) ≤ rkM ′({d , f }) = 1, a contradiction. It

follows that restoring S yields a 3-connected matroid.

Therefore G[S − d] has an isolated non-privileged vertex c ∈ C . In

G[S], there must be an edge cd , and both c and d have degree one. By

induction, then, restoring S−{c, d} yields a 3-connected graph. Suppose

that M ′ has a 2-separation (A, B). M ′/c\d is 3-connected, so we must have

|A− {c, d}| ≤ 1 or |B − {c, d}| ≤ 1. Assume, by relabelling if necessary,

the former. Obviously A∈ T . Therefore |A∩ S| ≤ 1. If M ′′ is the matroid

obtained from N by restoring {c, d}, then A⊆ E(M ′′), and M ′′ is a minor

of M ′. Hence λM ′′(A) ≤ 1, contradicting the definition of the restoration

graph.

5 The main result

Before proving the main theorem we find two structures in the restora-

tion graph that will lead to the desired result. The first such structure,

an unbalance between the sides, will be instrumental in our proof.

Lemma 5.1. Let M be a matroid, let T be a tangle of M, and let C , D ⊆

E(M) be such that C ∪ D is T -independent, M/C \D is 3-connected, and

|C | − |D| ≥ k. Then there is a subset C ′ ⊆ C such that |C ′| ≥ k and M/C ′

is 3-connected.
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Proof. Let M ,T , C , D be as stated, and let G := R(M , C , D). Let C ′′ ⊆ C

be a minimal set such that each non-privileged d ∈ D has a neighbour

in C ′′. Clearly |C ′′| ≤ |D|, and G[C ′′ ∪ D] has no isolated non-privileged

vertices. Define C ′ := C − C ′′. By Lemma 4.5, restoring C ′′ ∪ D yields

a 3-connected matroid. This matroid is M/C ′, and |C ′| = |C | − |C ′′| ≥

|C | − |D| ≥ k.

A matching of a graph is a subgraph in which each vertex has degree

1. We can use an induced matching in the restoration graph to increase

the unbalance between the sides, through the following lemma:

Lemma 5.2. Let k be an integer, let M be a matroid, let T be a tangle of M,

let N be a minor of M, let t := rkT (E(N)), and let C , D be disjoint subsets

of E(M) such that rkT (E(N)∪C∪D) = t+ |C ∪D|. If R(M , C , D) contains

an induced matching with at least 2k edges and no privileged vertices, then

at least one of the following holds:

(i) There is a set C ′ ⊆ E(M) such that rkT (E(N)∪ C ′) = t + |C ′|, such

that |C ′| ≥ k, and such that M/C ′ is 3-connected with N as minor;

(ii) There is a set D′ ⊆ E(M) such that rkT (E(N)∪ D′) = t + |D′|, such

that |D′| ≥ k, and such that M\D′ is 3-connected with N as minor.

Proof. Let k, M ,T , N , t, C , D be as stated, and define G := R(M , C , D).

By dualizing M and N , and swapping C and D if necessary, assume |D| ≤

|C |. If |C | − |D| ≥ k then the result follows from Lemma 5.1, so assume

|C |−|D|= r < k. Let H be a maximum-sized induced matching of G with

at least 2k edges and no privileged vertices, and let M ′ be the matroid

obtained from M by restoring V (H). By Lemma 4.5, M ′ is 3-connected,

M ′ \d is not 3-connected for each d ∈ D ∩ V (H), and M ′/c is not 3-

connected for each c ∈ C ∩ V (H). By Lemma 4.1, each pair {c, d} of

vertices connected by an edge in the graph H are internal elements of a

fan F of M ′ of length at least 4.

Let T ′ be the tangle of M ′ inherited from T , and for each edge

cd ∈ E(H), let X cd be the long line of M(T ′) containing c and d . Since

rankT ′(E(N) ∪ {c, d}) = t + 2, we have X cd ∩ E(N) = ;. Moreover,

rkT ′(
⋃

cd∈E(H) X cd) = 2|E(H)|. For each cd ∈ E(H), let Fcd be the max-

imal fan of M ′ containing c and d , and let xcd be an end of the fan. By

Lemma 2.23, one of M ′\xcd and M ′/xcd is 3-connected with N as minor.

Consider the set S := {xcd : cd ∈ E(H)}. Let S′ ⊆ S be such that M ′\s

is 3-connected for all s ∈ S′. Suppose |S′| ≥ k+ r. Define C ′ := C−V (H),

and D′ := (D − V (H)) ∪ S′. Then Lemma 3.4 implies that M/C ′\D′ is

3-connected with N as minor, and

|D′| − |C ′|= |S′|+ (|D| − |S′|)− (|C | − |S′|) = |S′| − r ≥ k,
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so the result follows from Lemma 5.1. Similarly, if S′ ⊆ S is such that

M/s is 3-connected for all s ∈ S′, then the result follows if |S′| ≥ k − r.

But since |S| ≥ 2k, one of these situations must hold, which completes

our proof.

Now we can state our main result. As mentioned in the introduction

it depends on the rank of E(N) in M(T ), rather than on the size of N .

Theorem 5.3. Let k be a nonnegative integer, let M be a 3-connected ma-

troid, let T be a tangle of M, let N be a minor of M with no loops and

coloops, and let t := rkT (E(N)). If the order of T is at least 20k+ t − 13,

then there is a set X ⊆ E(M) of size k such that rkT (E(N)∪ X ) = t + k,

and such that one of M\X and M/X is 3-connected with N as minor.

Proof. Let k, M ,T , N , and t be as stated. By applying Theorem 3.2 with

s = 10k−7 we can find sets C , D ⊆ E(M) such that rkT (E(N)∪C ∪D) =

t + |C ∪ D|, such that M/C \D is 3-connected with N as minor, and such

that |C ∪ D| ≥ 10k − 7. Let G := R(M , C , D) be the restoration graph,

and let |C | − |D| = r. We will call r the balance of the restoration

graph. If |r| ≥ k then we are done by Lemma 5.1, so we may assume

this is not the case. We partition the vertices of G into disjoint subsets

P1, P2,Q1,Q2, T1, T2, U1, U2, with sizes p1, p2,q1,q2, t1, t2,u1,u2 respec-

tively, as follows.

Let P1 be the set of privileged vertices in C , and let P2 be the set

of privileged vertices in D. Let Q1 be the vertices of C that only have

neighbours in P2, and let Q2 be the set of vertices of D that only have

neighbours in P1. Let C ′ := C− (P1∪Q1), let D′ := D− (P2∪Q2), and let

G′ := G[C ′ ∪ D′]. Let R be the vertex set of a maximal matching in G′.

Note that, by our choice of Q1 and Q2, no vertex of G′ is isolated, so all

vertices in V (G′)− R have a neighbour in R.

Let S1 ⊆ R∩C ′ be a minimal set such that the set of neighbours N(S1)

includes all vertices in D′−R. Clearly |S1| ≤ |D
′−R|, and |N(S1)∩R| ≥ |S1|

because R is a matching. Hence |N(S1)| ≥ 2|S1|. Now let S′1 be a maximal

set containing S1 such that |N(S′1)| ≥ 2|S′1|, and define U2 := N(S′1). Let

T2 := R− U2.

Symmetrically, let S2 ⊆ R ∩ D′ be a minimal set such that N(S2) in-

cludes all vertices in C ′ − R. Let S′2 be a maximal set containing S2 such

that |N(S′2)| ≥ 2|S′2|, and define U1 := N(S′2). Let T1 := R− U1. From

the definitions it follows immediately that P1,Q1, U1, T1 partition C , and

that P2,Q2, U2, T2 partition D. We will now bound the sizes of these sets.

If p1 ≥ k+ r then restoring P1 yields a 3-connected matroid having a

restoration graph with balance |C | − p1− |D| ≤ |C |− |D| − (k+ r) = −k,

and the result follows from Lemma 5.1. Similarly, if p2 ≥ k − r then

restoring P2 yields a restoration graph with balance k. It follows that we
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may assume

p1 + p2 ≤ 2k− 2. (2)

Let s1 := |S′1| and s2 := |S′2|. If s1 ≥ k− r then restoring S′1∪U2 yields

a restoration graph with balance

|C | − s1 − (|D| − u2) = r + u2 − s1 ≥ r + s1 ≥ r + k− r = k, (3)

and we can apply Lemma 5.1 again. Likewise, if s2 ≥ k+ r then we can

apply Lemma 5.1 to the restoration graph obtained by restoring S′2 ∪ U1.

It follows that we may assume

s1 + s2 ≤ 2k− 2. (4)

Finally, if u2−s1+q2−p1+p2 ≥ k− r then restoring U2∪S′1∪Q2∪P1∪P2

yields a restoration graph with balance

|C | − s1 − p1 − (|D| − u2 − q2 − p2) ≥ k, (5)

and we can apply Lemma 5.1 again. Likewise, if u1− s2+ q1− p2+ p1 ≥

k+ r then we can apply Lemma 5.1 to the restoration graph obtained by

restoring U1 ∪ S′2 ∪Q2 ∪ P2 ∪ P1. It follows that

u1 − s2 + q1+ u2 − s1 + q2 ≤ 2k− 2. (6)

Next we direct our attention to T1 and T2. Let H1 be the subgraph of

the matching R containing all edges that meet T1. Let H2 be the subgraph

of the matching R containing all edges that meet T2.

Claim 5.3.1. The matchings H1 and H2 are induced subgraphs of G.

Proof. If some vertex c ∈ V (H1)∩ C ′ has degree at least 2, then c can

be added to S′1, a contradiction. Hence all vertices in V (H1)∩ C ′ have

degree exactly 1, and necessarily all vertices in V (H1)∩D′ have degree

exactly 1. We omit the identical proof for H2.

If t1 ≥ 2k or t2 ≥ 2k then our result follows from Lemma 5.2. Hence we

may assume that

t1 + t2 ≤ 4k− 2. (7)

Adding (2), (4), (6), and (7) we find

|C |+ |D|= p1 + u1 + q1+ t1 + p2 + u2 + q2+ t2 ≤ 10k− 8. (8)

But |C |+ |D| ≥ 10k− 7 by assumption, a contradiction.

The theorem from the introduction is now easy to prove:
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Proof of Theorem 1.1. Let l be the number of elements of N that is either

a loop or coloop. By Lemma 2.11, M has a minor N ′ such that N ′ has

N as minor, N ′ has no loops and no coloops, and |E(N ′)| ≤ |E(N)|+ l.

Clearly

bw(N ′)≤ bw(N) + l ≤ 2|E(N)|. (9)

The result now follows from Theorem 5.3 applied to M and N ′.

As a possible direction for future research, one could hope for a bound

of a different nature, namely one that is a function of k and rkT (E(M)−

E(N)). Presumably such a bound would necessitate keeping only a minor

isomorphic to N . However, the ideas from this paper do not seem to be

suitable for proving such a result, and it is unclear if such a result has

applications.
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