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BIRATIONAL SUPERRIGIDITY AND
SLOPE STABILITY OF FANO MANIFOLDS

YUJI ODAKA AND TAKUZO OKADA

Abstract. We show a relation between the birational superrigid-
ity of Fano manifold and its slope stability in the sense of Ross-
Thomas [RT07].
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1. Introduction

The birational (super)rigidity of Fano manifold (or of Mori fiber
space, in general) is introduced to extend the work of Iskovskih-Manin
[IM71] for quartic threefolds. The concept emerged in the study of
rationality problem with a focus on the study of rational maps among
them.
The purpose of this paper is to show a relation between the birational

(super)rigidity and GIT stability, which seems to have been unexpected
from their different natures of origins. More precisely, in this paper, we
study the slope stability of polarized varieties, which was introduced by
Ross-Thomas (cf. [RT07]) as an analogue of the Mumford-Takemoto’s
slope stability of vector bundles. It is also a weaker version of K-
stability, which was firstly formulated by Tian in [Tia97] and later
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2 YUJI ODAKA AND TAKUZO OKADA

reformulated and generalized by Donaldson [Don02], of which Ross-
Thomas [RT07] followed the definition.
Our main result is the following.

Theorem 1.1. Let X be a birationally superrigid Fano manifold of
index 1. If | −KX | is base point free, (X,OX(−KX)) is slope stable.

We remark that the two assumptions in Theorem 1.1 on the index and
the base point freeness of the anticanonical linear system |−KX | seems
to be weak. As far as the authors know, every Fano manifold which
has been known to be birationally superrigid satisfies both assumptions
(see section 2.1 for examples of birationally superrigid Fano manifolds).
Actually we prove the following more general but technical result

from which Theorem 1.1 follows.

Theorem 1.2. Let X be a Fano manifold of index 1 which is log max-
imal singularity free (see section 2.1 for the definition). If | −KX | is
base point free, (X,OX(−KX)) is slope stable.

Recall that the motivation for introducing K-stability is to formu-
late the following conjectural relation with the existence of Kähler
metrics. From the recent progress on the relation (in particular,
[Tia97], [Don05], [CT08], [Stp08], [Mab08] and [Mab09]), the following
is known.

Fact 1.3. If a Fano manifold X with discrete automorphism group
Aut(X) admits a Kähler-Einstein metric, then (X,−KX) is K-stable.
In particular, it is slope stable.

Note that every birationally superrigid Fano manifold has discrete au-
tomorphism group indeed, as it should not be (birationally) ruled.
We remark that the following example shows that our result can not

be a direct consequence of the main result of [OS10].

Example 1.4. Let X be a smooth projective hypersurface of dimension
n and degree n + 1 in Pn+1. Due to [P98], a general X is birationally
superrigid for n ≥ 4 and this is conjectured to hold for every nonsingu-
lar X . In fact, every smooth X is proved to be birationally superrigid
for n = 3 by [IM71] and for 4 ≤ n ≤ 12 by [dFEM03]. On the other
hand, it is known that the global log canonical threshold lct(X) is n

n+1

if X contains some generalized Eckardt points (or equivalently, hyper-
plane sections of cone type) so that strict stability does not directly
follow from [OS10]. We are grateful to Professor Constantin Shramov
for pointing out this to us.

Our proof of Theorem 1.1 is similar to that of [OS10]. Recall that
the two fundamental observations in [OS10] are that:
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• Certain explicit upper bounds of the Seshadri constants imply
K-stability of Q-Fano variety (= [OS10, Corollary 4.4]).

• Mildness of singularities of pluri-anticanonical divisors gives
upper bounds of the Seshadri constants.

We combine these observations to prove Theorem 1.1 which is possible
since the birational superrigidity asserts certain mildness of singulari-
ties of pluri-anticanonical divisors as we will review in subsection 2.4.
In the next section, we will prepare some basic definitions and review

the background. In section 3, we prove the stability along divisors and
in section 4, we prove the stability along higher codimensional sublocus.
The last section proposes a more general conjecture about stability of
Fano manifolds.
We work over the field of complex numbers C throughout this paper.

Acknowledgments. We are grateful to Professors Shigefumi Mori and
Constantin Shramov for their helpful comments and Professor Ivan
Cheltsov for his interests. Y.O is partially supported by the Grant-in-
Aid for Scientific Research (KAKENHI No. 21-3748) and the Grant-
in-Aid for JSPS fellows (DC1). T.O is also partially supported by the
Grand-in-Aid for Scientific Research (KAKENHI No. 23-2053) and the
Grand-in-Aid for JSPS fellows (PD).

2. Preliminary

2.1. Birational (super)rigidity. In this subsection, we recall the def-
inition of birational (super)rigidity and its basic property.

Definition 2.1. Let π : V → S be a projective surjective morphism
between normal projective varieties with connected fibers. We say that
π : V → S is a Mori fiber space if

(i) V is Q-factorial and has at most terminal singularities,
(ii) −KV is π-ample,
(iii) dimS < dimV , and
(iv) the relative Picard number ρ(V/S) is 1.

Throughout this subsection, let X be a Q-factorial Q-Fano variety
with Picard number 1 and with at worst terminal singularities. Note
that X , together with the structure morphism (to a point), can be
seen as a Mori fiber space. Although birational (super)rigidity can be
defined for any Mori fiber space, we only give the definition for Q-Fano
varieties with Picard number one.

Definition 2.2. We say thatX is birationally rigid if for any birational
map ϕ : X 99K X ′ to a Mori fiber space there is a birational self-
map τ : X 99K X such that ϕ ◦ τ : X 99K X ′ can be extended to an
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isomorphism. We say that X is birationally superrigid if in the above
definition of birational rigidity one can always take τ = idX .

It is easy to see that X is birationally superrigid if and only if X is
birationally rigid and Bir(X) = Aut(X). Let H be a movable linear
system on X , that is, a linear system without fixed components. We
define µ = µ(X,H) to be the rational number for which µKX +H ≡ 0,
where ≡ denotes the numerical equivalence. Let λ be a nonnegative ra-
tional number. We say that a pair (X, λH) is terminal (resp., canonical,
resp., log canonical) if every rational number a(X, λH, E) determined
by

KV + λf−1
∗ H = f ∗(KX + λH) +

∑

a(X, λH, E)E,

is positive (resp., non-negative, resp., ≥ −1) for every birational mor-
phism f : V → X , where E runs over the f -exceptional prime divisors.
The canonical threshold (resp., log canonical threshold) of the pair

(X,H) is defined to be the number

ct(X,H) := sup{λ ∈ Q>0 | (X, λH) is canonical}

(resp., lct(X,H) := sup{λ ∈ Q>0 | (X, λH) is log canonical}).

Definition 2.3. We say that X has a maximal singularity (resp., log
maximal singularity) if there is a movable linear system H on X such
that (X, 1

µ
H) is not canonical (resp., log canonical). We say that X is

maximal singularity free (resp., log maximal singularity free) if X does
not have a maximal singularity (resp., log maximal singularity).

The Noether-Fano-Iskovskikh inequality ([Co95, Theorem 4.2])
shows that if X is maximal singularity free then it is birationally super-
rigid. We use the maximal singularity freeness to prove the stability in
the following sections. The following shows that the maximal singular-
ity freeness characterizes the birational superrigidity. This may be well
known to specialists but we give a proof for the reader’s convenience.

Proposition 2.4. X is birationally superrigid if and only if it is max-
imal singularity free.

Proof. The if part follows from the Noether-Fano-Iskovskikh inequality
as we have mentioned above. We shall prove the only if part. Assume
that X admits a maximal singularity, that is, there is a movable linear
systemH onX such that (X, 1

µ
H) is not canonical, where µ = µ(X,H).

Let V be the global sections which span the linear system H. Possibly
by replacing H with the linear system spanned by a symmetric power
Syml V for some sufficiently large l > 0, we may assume that µ ≥ 1.
We put c = 1/ ct(X,H), where ct(X,H) is the canonical threshold of
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the pair (X,H). By the assumption, we have c > µ. We prove the
following claim.

Claim 2.5. There exists a birational morphism f : Y → X such that
the pair (Y, 1

c
HY ) is terminal and KY + 1

c
HY = f ∗(KX + 1

c
H), where

HY is the birational transform of H.

proof of Claim 2.5. Let g : V → X be a log resolution of the pair
(X,H) and HV the birational transform of H on V . For a general
member HV ∈ HV , the pair (V, 1

c
HV ) is klt since c > µ ≥ 1. By

[BCHM10], we can run a (KV + 1
c
HV )-MMP, which is equivalent to a

(KV + 1
c
HV )-MMP, with a scaling. Thus we obtain a minimal model

(Y, 1
c
HY ) over X and we can easily check that (Y, 1

c
HY ) satisfies the

stated properties. This ends the proof of Claim 2.5. �

Now we see that KY + 1
c
HY is Q-linearly equivalent to −( 1

µ
− 1

c
)f ∗H

and it is not pseudoeffective. Again by [BCHM10], we can run a
(KY + 1

c
HY )-MMP (with a scaling) which gives a (KX′ + 1

c
H′)-negative

Mori fiber space X ′ → S ′, where H′ is the pushforward of H by the
induced birational map Y 99K X ′. In each step of the above MMP, we
are in the category of pairs (Zi,

1
c
Hi), where (Zi,

1
c
Hi) has only terminal

singularities andHi is movable. In particular, X ′ has only terminal sin-
gularities and X ′ → S ′ is a KX′-negative extremal contraction, that is,
X ′ → S ′ is a Mori fiber space. If the induced birational map X 99K X ′

is an isomorphism then the pair (X, 1
c
H) ∼= (X ′, 1

c
H′) is terminal. This

contradicts to the choice of c. This shows that X is not birationally
superrigid, which completes the proof of Proposition 2.4. �

Let us see some examples. The followings are Fano threefolds which
have been known to be birationally superrigid.

• A smooth quartic threefold ([IM71]).
• A sextic double solid, that is, a double cover X → P3 ramified
along a surface S ⊂ P3 of degree 6 ([I79]).

The followings are higher-dimensional examples.

• A general hypersurface Xn+1 ⊂ Pn+1 of degree n + 1, with
n ≥ 4 ([P98]).

• A general complete intersection Xd1,...,dk ⊂ Pn+k of hypersur-

faces of degree di with di ≥ 2,
∑k

i=1 di = n+k > 3k and n ≥ 4
([P01]).

• A smooth complete intersection X2,4 ⊂ P6 of quadric and quar-
tic which does not contain a plane ([C03]).

• A double cover X → Pn ramified along a hypersurface F ⊂ Pn

of degree 2n, with n ≥ 4 ([P97]).
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• A cyclic triple cover X → P2n ramified along a hypersurface
F ⊂ P2n of degree 3n with n ≥ 2 ([C04]).

• A general cyclic cover X → V ⊂ Pn of degree d ≥ 2 ramified
along a smooth divisor R ⊂ V such that V is a hypersurface of
degree m ≥ 2, m+ (d− 1)k = n, where k is a positive integer
such that OV (R) ∼= OV (dk), n ≥ 5 and either d = 2 or n ≥ 6
([P00], [P04]).

• A general weighted complete intersection in a weighted projec-
tive space

P(1l+1, a1, . . . , am) = Proj(C[x0, . . . , xl, y1, . . . , ym])

of m + k hypersurfaces y2i = gi(x0, . . . , xl), i = 1, . . . , m, and
fj(x0, . . . , xl) = 0, j = 1, . . . , k, of degree 2li and dj, respec-
tively, such that

m
∑

i=1

ai +
k

∑

i=1

di = l, l > 3k and l − k ≥ 4

It is an iterated double cover of general complete intersection
in projective space ([P03]).

In all the above examples, we assume the smoothness of the Fano
variety in concern. In some examples, we can allow some mild singu-
larities while keeping the property of birational superrigidity and we
can also drop the generality assumptions. We refer the readers to [C05]
for a detailed account of this subject. We see that every birationally
superrigid Fano manifold in the above examples has index 1 and has
an base point free anticanonical divisor.

2.2. Seshadri constants. Let I ⊂ OX be a coherent ideal on X . The
Seshadri constant of I with respect to an ample Q-line bundle L is
defined by

Sesh(J ; (X,L)) := sup{c > 0 | π∗L(−cE) is ample},

where π : BlI(X) → X is the blow up of X along I and E is the asso-
ciated exceptional Cartier divisor, i.e., O(−E) = π−1I. This invariant
plays a key role in this paper as in [HKLP11], [OS10], [F11] and [F].

2.3. Slope stability. Consult [Don02, Chapter 2, especially 2.3],
[RT07, especially Section 3] or [Od09, Definition 2.4] for more gen-
eral background. We remark that our formulation below are formally
different from the original presentation by Ross-Thomas [RT07], but
they are equivalent as they proved in [RT07, Theorem 4.18]. See be-
low for the more detailed explanation. Let (X,L) be a n-dimensional
polarized variety.
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A test configuration (resp. a semi test configuration) for (X,L) is
a polarize scheme (X ,M) with a Gm-action on (X ,M) and a proper
flat morphism Π: X → A1 such that (i) Π is Gm-equivariant for the
multiplicative action of Gm on A1, (ii) M is relatively ample (resp.
relatively semi-ample), and (iii) (X ,M) |Π−1(A1\{0}) is Gm-equivariantly
isomorphic to (X,L⊗r) × (A1 \ {0}) for some positive integer r. If
X ≃ X×A1, it is called (X ,M) a product test configuration. Moreover,
if Gm acts trivially, we call it a trivial test configuration.
The slope stability treats certain special semi test configurations,

called deformation to the normal cone. The definition is as follows.
Take a coherent ideal I ⊂ OX and set J := I + (t) ⊂ OX×A1 .
Then, for r ∈ Z>0 with r > (resp. ≥) 1

Sesh(I;(X,−KX))
, we set f : B :=

BlJ (X × A1) → X × A1, L := f ∗(L× A1) and OB(−E) = f−1J with
the effective exceptional Cartier divisor E. We note that (B,L(−E))
naturally becomes a test configuration (resp. semi test configuration,
if L(−E) is semiample). We call them the deformation to the normal
cone as in [RT07].
First, let us recall the general definition of the Donaldson-Futaki in-

variants of a test configuration (X ,M). Let P (k) := dimH0(X,L⊗k),
which is a polynomial in k of degree n due to the Riemann-Roch theo-
rem. Since the Gm-action preserves the central fibre X0 of X , Gm acts
also on H0(X0,M

⊗K |X0
), where K ∈ Z>0. Let w(Kr) be the weight of

the induced action on the highest exterior power of H0(X0,M
⊗K |X0

),
which is a polynomial of K of degree n+1 due to the Mumford’s droll
Lemma (cf. [Mum77, Lemma 2.14] and [Od09, Lemma 3.3]) and the
Riemann-Roch theorem. Here, the total weight of an action of Gm on
some finite-dimensional vector space is defined as the sum of all weights,
where the weights mean the exponents of eigenvalues which should be
powers of t ∈ A1. Let us take rP (r)-th power and SL-normalize the
action of Gm on (Π∗M)|{0}, then the corresponding normalized weight
on (Π∗M

⊗K)|{0} is w̃r,Kr := w(k)rP (r)− w(r)kP (k), where k := Kr.

It is a polynomial of form
∑n+1

i=0 ei(r)k
i of degree n+ 1 in k for k ≫ 0,

with coefficients which are also polynomial of degree n + 1 in r for
r ≫ 0 : ei(r) =

∑n+1
j=0 ei,jr

j for r ≫ 0. Since the weight is normalized,
en+1,n+1 = 0. The coefficient en+1,n is called the Donaldson-Futaki in-
variant of the test configuration, which we denote by DF(X ,M). For
an arbitrary semi test configuration (X ,M) of order r, we can also
define the Donaldson-Futaki invariant as well by setting w(Kr) as the
total weight of the induced action on H0(X ,M⊗K)/tH0(X ,M⊗K) (cf.
[RT07]). Now we can define the stability notions in concern.
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Definition 2.6. We say that (X,L) is slope stable (resp. slope
semistable) if and only if the Donaldson-Futaki invariants is positive
(resp., non-negative) for any non-trivial deformation to the normal
cone.

Definition 2.7. We say that (X,L) is K-stable (resp. K-semistable)
if and only if the Donaldson-Futaki invariants is positive (resp., non-
negative) for any non-trivial test configuration.

Let us recall that the original definition of the slope stability by
Ross-Thomas [RT07] is of the following form;

Definition 2.8 (Ross-Thomas [RT07, Definition 4.17]). (X,L) is slope
stable (resp. slope semistable) if and only if

µc(I, L) < (resp., ≤ ) µ(X)

for all c ∈ (0, Sesh(I; (X,L))) and also for c = Sesh(I; (X,L)) if
Sesh(I; (X,L)) ∈ Q and the global sections of L⊗k ⊗ ISesh(I;(X,L))k sat-
urate for suffieciently divisible positive integer k.

Note that the slope “µ” s, which we refer to [RT07] for the precise
definitions, are defined in terms of intersection numbers on X and
B := BlI(X). Our definition 2.6 above is proved in [RT07, proof of
Theorem 4.18] to be equivalent to Ross-Thomas’ definition. Of course,
there are no essential differences but we will follow our formulation 2.6
just because we are more accustomed to treat the stability in such
a way. We end this subsection with a small remark on an exten-
sion of the framework above. If we take a test configuration (resp.
semi test configuration) (X ,M), we can think of a new test configu-
ration (resp. semi test configuration) (X ,M⊗a) with a ∈ Z>0. From
the definition of Donaldson-Futaki invariant above, we easily see that
DF((X ,M⊗a)) = an DF((X ,M)). Therefore, we can define K-stability
(also K-polystability and K-semistability) of a pair (X,L) of a projec-
tive scheme X and an ample Q-line bundle L.
A key for our study is the following formula, proved in [Od09], to es-

timate the Donaldson-Futaki invariant for a deformation to the normal
cone (B,L(−E)) derived from the (flag) ideal J := I + (t) ⊂ OX×A1 .

Theorem 2.9 (cf. [Od09, Theorem 3.2]). Let X,L, I ⊂ OX and the
corresponding notions as above. Assume X is a Fano n-fold and L =
OX(−rKX) with some r ∈ Z>0. Moreover, we assume that (B,L(−E))
is semi test configuration (a deformation to the normal cone) and let
(B := BlJ (X × P1), L̄(−E)) be its natural compactification. Let pi
(i = 1, 2) be the i-th projection from X×P1 to the i-th factor. Suppose
that L(−E) on B is semi-ample. Let us denote the normalization of B
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as B̃ and use the same symbols for the pullbacks to B̃ of the original
polarization L̄ and the Cartier divisor E. Then, the corresponding
Donaldson-Futaki invariant has a following lower bound.

2(n!)((n+ 1)!) DF(B,L(−E))

≥ −
(

(L− E)n.L+ nE
)

+ (n+ 1)r
(

(L − E)n.KB̃/X×A1

)

= −
(

(L −E)n.L
)

+
(

(L− E)n.((n+ 1)rKB̃/X×A1 − nE)
)

.(1)

The right hand side is just the Donaldson-Futaki invariant of
(B̃,L(−E)) by [Od09, Theorem3.2] so that the inequality follows from
[RT07, Proposition 5.1, Remark 5.2]. See [RT07] and [Od09] for more
general statements.
We note that 1

r
≤ Sesh(I, (X,−KX)) from the assumption of the

semiampleness of L(−E) on B.
Recall that

Proposition 2.10 ([OS10, Proposition4.3]). −
(

(L − E)n.L
)

≥
0 for any ideal I ⊂ OX . The equality holds if and only if
dim(Supp(OX/I)) = 0.

Therefore, to show that DF(B,L(−E)) > 0, it suffices to show the
following claim.

Claim 2.11. (n+ 1)KB̃/X×A1 − n Sesh(I; (X,−KX))E is effective. In
other word, the coefficient of each exceptional prime divisor Ei of the
divisor above is non-negative, i.e.,

Sesh(I; (X,−KX)) ≤

(

n+ 1

n

)

min
i

{

ai
ci

}

,

where

KB̃/X×A1 =
∑

i

aiEi,

(

Π̃∗(X × {0}) = Π̃−1
∗ (X × {0}) +

∑

i

biEi,

)

Π̃−1J = OB̃(−
∑

i

ciEi),

with exceptional prime divisors Ei (as in [OS10]). Moreover, if
dimSupp(OX×A1/J ) = 0, the divisor is nonzero and effective, i.e.,

Sesh(I; (X,−KX)) <
(n+ 1)ai

nci
for some i.
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Before proving Claim 2.11, we deform I slightly as follows. Let
I = OX(−F )I ′ where F ∈ | −mKX | with some m ∈ Z>0, and I ′ is an
ideal with codim(Supp(O/I ′)) ≥ 2. Then, take a deformation of F in
| −mKX | so that we obtain the following property of (new) I.

Condition 2.12. For the blow up of J := I + (t), Π: B → X × A1,
if codim(Π(Ei) ⊂ X × {0}) ≥ 2 for Π-exceptional divisor Ei, Π(Ei) *
Supp(F ).

This is possible since |−mKX | is base point free by our assumption.
Note that the Seshadri constant Sesh(I; (X,−KX)) does not change by
this deformation. Thus, we can take the corresponding semi test con-
figuration B := BlI+(t)(X × A1) for that perturbed I. It has the same
Donaldson-Futaki invariant, which follows e.g., from the description
via slope ([RT07]).
Thus, we can assume the above Condition 2.12 for I from now on,

to estimate the Donaldson-Futaki invariants.

3. Exceptional divisors with divisorial center

In this section, under the assumptions on X as in Theorem 1.2, we
will prove Claim 2.11 for Ei in the case where Π(Ei) is a divisor in
X × {0}, in this section. Let us recall that we denoted J = I + (t).
As in the previous section, write I = I ′O(−F ) with coherent ideals
I ′ ⊂ OX satisfying codim(Supp(O/I ′)) ≥ 2 and divisor F =

∑

i diDi,
where each Di are prime divisors.
Firstly, we have

Sesh(I, (X,−KX)) ≤
index(X)

di
.

The last inequality can be easily seen if we take into account that
H0((X \ Supp(O/I ′)), (IO(−KX))

m) = H0(X,OX(−mF )), due to the
normality of X and codim((Supp(O/I ′)) ≥ 2.
Secondly, since (X × A1, Di × A1) is canonical around the generic

point of Di × {0}, it follows that
(

index(X)

di
=

)

1

di
≤

ai
ci

<
(n + 1)ai

nci

(The inequality can also be proved by using birational geometry of sur-
faces, by iterating cutting by hypersurface sections. ) As a conclusion,
we proved Claim 2.11 for the case with dim(Π(Ei)) = n − 1 follows.
We note that the conditions ρ = index(X) = 1 were sufficient for the
above arguments in this section.
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4. Exceptional divisors with higher codimensional center

In this section, under the same assumptions on X , we will prove
Claim 2.11 for Ei in the case where codim(Π(Ei) ⊂ X × {0}) ≥ 2.
Recall that we have Condition 2.12 for I.
Take a positive rational number (0 <)c < Sesh(I, (X,−KX)).

For sufficiently divisible positive interger l, set the linear system

Σ
(c)
I′,l ⊂ | − lKX | which corresponds to H0(X, IclOX(−lKX)) ⊂

H0(X,OX(−lKX)). By the assumption of the log maximal singularity

freeness, we have lct(X,Σ
(c)
I′,l) ≥

1
l
. Since this holds for any such c, as

in the argument of [OS10, proof of Proposition 3.1, in particular (10)],
we have

(2) Sesh(I ′, (X,−KX)) ≤ min
Ei⊂Exc(Π)

{

ai
c′i

}

,

where c′i := valEi
(I ′), the algebraic valuation of I ′ with respect to Ei,

and Exc(Π) is the exceptional locus of Π. If F ≡ −mKX withm ∈ Z>0,
the inequality (2) is equivalent to say that

(3) Sesh(I, (X,−KX)) ≤
min{ai

c′
i

}

1 +m ·min{ai
c′
i

}
.

From Condition 2.12, which was obtained by perturbation of the ideal,
we have ci = valEi

(J ) ≤ valEi
(I) = valEi

(I ′) =: c′i.
Summarizing up,

(4) Sesh(I, (X,−KX)) ≤
min{ai

c′
i

}

1 +m ·min{ai
c′
i

}
≤

ai
c′i

≤
ai
ci

<
(n+ 1)ai

nci
.

We note that the idea of the perturbation of divisorial part of J (which
made use of the assumption of base point freeness of | −KX |) realizes
the last inequality. This (4) completes the proof of Claim 2.11. Hence,
the proof of Theorem 1.2 is also completed. �

Remark 4.1. A diffuculty would rise up if we try to strengthen Theorem
1.1, 1.2 to state K-stability, rather than slope stability. The problem is
it is in general hard to deform“flag” ideal J = I0+ I1+ · · · IN−1t

N−1+
(tN) of length N > 1, which should have monotonicity of each pieces
Ii to obtain similar condition as Condition 2.12.

5. A conjecture

Recall that we treated in this paper special class of Fano manifolds
of Picard rank 1 (i.e., Pic(X) ∼= Z). More generally, we expect the
following.
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Conjecture 5.1. For an arbitrary Fano manifold X of Picard rank 1,
(X,−KX) is K-semistable.

We note some supporting evidences here. First, it is proved that
(X,−KX) is slope stable with respect to divisors ([F]). We proved a
stronger statement in section 3 under the additional assumption of in-
dex 1. Moreover, in the results by Hwang, Kim, Lee, Park and Fujita’s
results ([HKLP11, Theorem1.3], [F11, Theorem 1.1]), it is shown to be
slope semistable along smooth curves too.
We also remark that we can not expect the strict (poly)stability as

Tian proved in [Tia97] that small deformations of the Mukai-Umemura
3-fold are not K-polystable but K-semistable.
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