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Abstract. We consider two independent random variables with the given tail asymptotic (e.g. power or

exponential). We find tail asymptotics for their sum and product. This is done by some cumbersome but purely

technical computations and requires the use of the Laplace method for asymptotic of integrals. We also recall the

results for asymptotic of P{supt≥0
(X(t) − ctβ) > u} as u → ∞, where X = (X(t), t ≥ 0) is a self-similar locally

stationary centered Gaussian process; and we find the asymptotic for the same probability after replacing the

constant c by a random variable η, independent of X . We also find the asymptotic of P{supt≥0
(X(t)−ctβ−ζ) > u}

as u → ∞, where ζ is a random variable, X, η, ζ are independent.

Section 1. Tail Asymptotics of Sum
and Product of Random Variables

1. Introduction.

All random variables and processes in this article are real-valued. Recall some well-known basic
definitions.

Definition 1. The distribution function FX of a random variable X is a function FX : R → R,
FX(u) := P{X ≤ u}. The tail or the survival function FX of a random variable X is a function
FX : R → R, FX(u) := 1− FX(u) = P{X > u}.

Definition 2. The essential supremum of X (denoted by ess supX) is a real number or +∞
defined as ess supX = min{C ∈ R | X ≤ C a.s.}, if the set of these C is nonempty, +∞, if it
is empty. Sometimes it is denoted by vraimaxX . Similarly, the essential infimum of X is a real
number or −∞, defined as ess infX := max{C ∈ R | X ≥ C a.s.}.

What is the asymptotic of the tail FX(u) as u ↑ ess supX (we call it just tail asymptotics of

X)? This is the classical problem in Probability Theory.
In Section 1, we consider two independent random variables X and Y with the given tail

asymptotic. What is the tail asymptotic for X + Y and XY ? Our main tool is the Laplace
method used to find the asymptotic of integral

b
∫

a

f(x)eλS(x)dx, λ → +∞.

In Section 2, we apply these results to find asymptotics of the excursion probability of a given
level by a conditionally Gaussian process. The main idea in this section to use the self-similarity
(which is imposed as an additional condition).
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We consider all random variables and processes on some fixed probability space (Ω,F ,P). All
asymptotic and limit relations hold true as u → ∞, unless otherwise stated. In this article, Γ(α)

for α > 0 denotes the Euler gamma function Γ(α) =
∫ +∞

0
xα−1e−xdx. As usual, R+ := [0,∞).

2. Tail asymptotic of X + Y for ess supX = ∞, ess supY = σ ∈ R

Let us first consider the case ess supX = ∞, ess sup Y = σ ∈ R. Suppose the tail asymptotic
of X and Y is given:

FX(u) ∽ hX(u) := CXu
γ exp (−KXu

α) ,

and
F Y (u) ∽ hY (u) := CY (σ − u)µ, u ↑ σ.

Here CX , CY , KX , α, µ > 0, γ ∈ R are constants. Recall X and Y are independent, hence
ess sup(X + Y ) = ∞.

Theorem 1. Suppose α > 1. Then

FX+Y (u) ∽ hX+Y (u) := CX+Y u
µ+γ−αµ exp (−KX(u− σ)α) ,

where for the sake of brevity

CX+Y := CXCY (KXα)
−µΓ(µ+ 1).

Proof of Theorem 1. For the sake of simplicity, let σ = 0. The general case is easily reduced to
this particular one. For u ∈ R

FX+Y (u) = P{X + Y > u} = P{X > u− Y } = EFX(u− Y ),

since X and Y are independent. Choose δ > 0 (later we shall define the particular value of δ).
We have:

EFX(u− Y ) = EFX(u− Y )I{Y <−δ} + EFX(u− Y )I{−δ≤Y≤0}.

But 0 ≤ EFX(u−Y )I{Y <−δ} ≤ EFX(u+ δ)I{Y<−δ}, since for Y < −δ we have u−Y ≥ u+ δ, and

FX is nonincreasing. And EFX(u + δ)I{Y <−δ} ≤ FX(u + δ) ∽ hX(u + δ) = o(hX+Y (u)). (This

last relation is straightforward to check.) Therefore, EFX(u− Y )I{Y <−δ} = o(hX+Y (u)).

It suffices to prove that EFX(u− Y )I{−δ≤Y≤0} ∽ hX+Y (u).

We have: u− y → ∞ and FX(u− y) ∽ hX(u− y) uniformly for y ∈ [−δ, 0]. Using Lemma 11,
we obtain:

EFX(u− Y )I{−δ≤Y ≤0} ∽ EhX(u− Y )I{−δ≤Y≤0}.

Let us rewrite EhX(u− Y )I{−δ≤Y ≤0} as a Stieltjes integral:

EhX(u− Y )I{−δ≤Y≤0} =

0
∫

−δ

hX(u− y)dFY (y) = −
0

∫

−δ

hX(u− y)dF Y (y).

(We use the fact that F Y ≡ 1− FY .) Integrating by parts, we obtain:

EhX(u− Y )I{−δ≤Y ≤0} = −
[

hX(u− y)F Y (y)

∣

∣

∣

∣

y=0

y=−δ

−
0

∫

−δ

F Y (y)dhX(u− y)

]

.
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Note that boundary terms do not contribute to the asymptotic. Indeed, F Y (0) = 0, since
ess supY = 0. And hX(u+ δ)F Y (−δ) = o(hX+Y (u)). Thus,

EhX(u− Y )I{−δ≤Y≤0} =

0
∫

−δ

F Y (y)dhX(u− y) + o(hX+Y (u)).

Take arbitrarily small ε > 0 and find δ > 0 such that for y ∈ [−δ, 0] we have

(1− ε)CY (−y)µ ≤ F Y (y) ≤ (1 + ε)CY (−y)µ.

Indeed, F Y (y) ∽ CY (−y)µ as y ↑ σ = 0. The function hX strictly increases for u ∈ [u0,+∞),
where u0 := (γ/KXα)

1/α, since h′
X(u) = −CXu

γ−1(KXαu
α − γ) exp (−KXu

α) < 0 for u > u0.
Therefore, the function y 7→ hX(u − y) strictly increases on [−δ, 0] if u > u0 + δ. Hence for
u > u0 + δ

(1− ε)CY

0
∫

−δ

(−y)µdhX(u− y) ≤
0

∫

−δ

F Y (y)dhX(u− y) ≤ (1 + ε)CY

0
∫

−δ

(−y)µdhX(u− y).

So we have eliminated the functions FX , F Y . We have proved: for any ε > 0, there exists δ > 0
such that for u > u0 + δ we have

(1− ε)K(u) + o(hX+Y (u)) ≤ (1 + o(1))FX+Y (u) ≤ (1 + ε)K(u) + o(hX+Y (u)), (1)

where

K(u) := CY

0
∫

−δ

(−y)µdhX(u− y).

Let us find the asymptotic of this integral. For any u > u0 + δ, the function y 7→ hX(u − y) is
continuously differentiable on [−δ, 0], and

∂hX(u− y)

∂y
= CX(u− y)γ−1(KXα(u− y)α − γ) exp (−KX(u− y)α) .

Hence we can write this Riemann-Stieltjes integral as an ordinary Riemann integral:

K(u) = CY

0
∫

−δ

(−y)µ
∂hX(u− y)

∂y
dy = CXCYKXαI(u;α, α+ γ − 1, µ)− CXCY γI(u;α, γ − 1, µ),

where for α > 0, β ∈ R, µ > 0, u > 0 we denote

I(u;α, β, µ) :=

0
∫

−δ

(−y)µ(u− y)β exp (−KX(u− y)α) dy =

δ
∫

0

zµ(u+ z)β exp (−KX(u+ z)α) dz.

It suffices to find asymptotics of I(u;α, β, µ). Denote K := KX for the sake of brevity.

Lemma 1.

I(u;α, β, µ) ∽ g(u) := (Kα)−µ−1Γ(µ+ 1)uβ−(α−1)(µ+1) exp (−Kuα) .

3



Proof of Lemma 1. One cannot directly apply the Laplace method (see [2]), since the exponent
does not contain u as a multiplier, it depends on u in a more complex way. Let us get rid of the
multiplier (u+z)β in the integrand. Notice that (u+z)β ∽ uβ uniformly for z ∈ [0, δ]. By Lemma
11

I(u;α, β, µ) ∽ uβI(u;α, µ),

where
I(u;α, µ) := I(u;α, 0, µ).

Change the variable in I(u;α, µ) to eliminate the cumbersome exponent, but to ”preserve the
scale” of its dependence on u.

w = ((u+ z)α − uα) /(αuα−1), z = (αuα−1w + uα)1/α − u.

Then dz = uα−1(αuα−1w + uα)1/α−1dw. In particular, dz|z=0 = dw|w=0. (This is what we call
”preserving the scale”.) The integration segment [0, δ] maps into [0, δ̄(u)], δ̄(u) := ((u + δ)α −
uα)/(αuα−1) → δ. Therefore, we have:

I(u;α, µ) =

δ̄(u)
∫

0

[

(

αuα−1w + uα
)1/α − u

]µ

uα−1 exp
(

−Kαuα−1w −Kuα
) (

αuα−1w + uα
)1/α−1

dw =

= uα−1 exp (−Kuα)

δ̄(u)
∫

0

[

(

αuα−1w + uα
)1/α − u

]µ

exp
(

−Kαuα−1w
) (

αuα−1w + uα
)1/α−1

dw =

= uα−1 exp (−Kuα)uµ(α−1)/αu(α−1)(1/α−1)

δ̄(u)
∫

0

[

(αw + u)1/α − u1/α
]

exp
(

−Kαuα−1w
)

(αw+u)1/α−1dw =

= exp (−Kuα) u(α−1)(µ+1)/αα−1

αδ̄(u)
∫

0

[

(v + u)1/α − u1/α
]µ

exp
(

−Kuα−1v
)

(v + u)1/α−1dv.

(We have changed variables again: v = αw.) (v + u)1/α−1
∽ u1/α−1 uniformly for v ≥ 0. Hence

by Lemma 11 we can substitute (v + u)1/α−1 by u1/α−1 in the integrand, and this will not change
the asymptotic. Thus

I(u;α, µ) ∽ α−1 exp (−Kuα) u(α−1)µ/αJαδ̄(u)(u;α, µ).

Here for δ′ > 0

Jδ′(u;α, µ) :=

δ′
∫

0

[

(v + u)1/α − u1/α
]µ

exp
(

−Kuα−1v
)

dv.

Let us find the asymptotic of this integral. We shall show that it is the same for all δ′ > 0. But
δ̄(u) → δ, hence for sufficiently large u αδ/2 < αδ̄(u) < 2αδ, and

Jαδ/2(u) ≤ Jαδ̄(u)(u) ≤ J2αδ(u),

and Jαδ̄(u)(u) has the same asymptotic as Jδ′(u), δ′ > 0.
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By Lemma 11, we can replace
[

(v + u)1/α − u1/α
]µ

by (α−1u1/α−1v)µ in the integrand of Jδ′(u;α, µ),
since

[(v + u)1/α − u1/α]µ ∽ [α−1u1/α−1v]µ

uniformly for v ∈ [0, δ′]. Let us prove this asymptotic relation. Use the Taylor expansion for the
function u 7→ u1/α

(v + u)1/α − u1/α = α−1u1/α−1v + α−1(α−1 − 1)(u+ θv)1/α−2v2,

where θ ∈ [0, 1] depends on u, v. Since α > 1, we have 1/α − 2 < 0 and (u + θv)1/α−2 ≤ u1/α−2.
Therefore,

|(u+ θv)1/α−2v2| ≤ u1/α−2δ′v = o
(

α−1u1/α−1v
)

uniformly for v ∈ [0, δ′]. Hence (v + u)1/α − u1/α
∽ α−1u1/α−1v.

Therefore,

Jδ′(u;α, µ) ∽ α−µu(1/α−1)µ

δ′
∫

0

vµ exp
(

−Kuα−1v
)

dv.

We have uα−1 → ∞ for α > 1. By Watson’s lemma (see [2])

δ′
∫

0

vµ exp (−uv) dv ∽ u−µ−1Γ(µ+ 1).

Thus

Jδ′(u;α, µ) ∽ α−µΓ(µ+ 1)u(1/α−1)µ(Kuα−1)−µ−1 = α−µK−µ−1Γ(µ+ 1)u(1/α−1)µ−(α−1)(µ+1).

Recall that Jαδ̄(u)(u) has the same asymptotic. After easy technical calculations we obtain:

I(u;α, µ) ∽ (Kα)−µ−1Γ(µ+ 1)u−(α−1)(µ+1) exp (−Kuα) ,

and
I(u;α, β, µ) ∽ (Kα)−µ−1Γ(µ+ 1)uβ−(α−1)(µ+1) exp (−Kuα) . �

Proof of Theorem 1. From Lemma 1, we immediately obtain: I(u;α, γ − 1, µ) = o(I(u;α, α+
γ − 1, µ)). Hence

K(u) ∽ CXCYKXαI(u;α, α+ γ − 1, µ) ∽

∽ CXCYKXα(KXα)
−µ−1Γ(µ+ 1)uα+γ−1−(α−1)(µ+1) exp (−Kuα) = hX+Y (u).

Dividing (1) by hX+Y (u), we get:

1− ε ≤ lim
u→∞

FX+Y (u)

hX+Y (u)
≤ lim

u→∞

FX+Y (u)

hX+Y (u)
≤ 1 + ε.

Since ε > 0 is arbitrary,

lim
u→∞

FX+Y (u)

hX+Y (u)
= 1.

The case σ = 0 is proved. The general case is reduced to this one by the obvious change of
variables: Ỹ := Y − σ, ũ := u− σ. ũ → ∞ as u → ∞, hence

FX+Y (u) = P{X + Y > u} = P{X + Ỹ > ũ} ∽ hX+Ỹ (ũ),
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because ess sup Ỹ = 0. It can be easily shown that

hX+Ỹ (ũ) ∽ hX+Y (u),

since ũµ+γ−αµ = (u− σ)µ+γ−αµ
∽ uµ+γ−αµ. The proof is complete. �

3. Tail asymtotic of X + Y for ess supX = ess sup Y = ∞
Let ess supX = ess sup Y = ∞. We do not need to specify any particlular type of asymptotic

for X , Y ; the results of this subsection are valid for a fairly broad class of asymptotic. Let us
introduce some additional conditions.

Definition 3. Denote by M the class of all functions f : R+ → R+ with the two following
properties:

1. there exists u0 > 0 such that f is nonincreasing on [u0,∞);
2. f(u) → 0.

Remark 1. The survival function of any random variable is in M.

Definition 4. Suppose f, g ∈ M. Then:
- the ordered pair (f, g) satisfies the (A) condition if there exists a function ϕ : R+ → R+ such

that ϕ(u) → ∞, ϕ(u)/u → 0, f(ϕ(u)) = o(g(u)) and g(u) = g(u− ϕ(u)).
- the ordered pair (f, g) satisfies the (B) condition if there exists a function ϕ : R+ → R+ such

that ϕ(u) → ∞, ϕ(u)/u → 0, f(ϕ(u)) = o(g(u)) and g(u− ϕ(u)) = g(u+ ϕ(u)).

Remark 2. If f1, f2, g1, g2 ∈ M and f1 ∽ f2, g1 ∽ g2, then (f1, g1) and (f2, g2) either both
satisfy or both do not satisfy the (A) condition, and either both satisfy or both do not satisfy the
(B) condition

Remark 3. Each of these conditions implies f(u) = o(g(u)), since for u large enough ϕ(u) < u,
and f is nonincreasing on [u0,∞) for sufficiently large u0.

Remark 4. Suppose f1, f2, g ∈ M, f1 = o(f2). If (f2, g) satisfies any of the conditions (A),
(B), then (f1, g) satisfies it.

Theorem 2. Suppose one of the following conditions holds:
1. The pair (F̃X , F Y ) satisfies (B), where F̃X : R+ → R is defined as follows: F̃X(u) :=

FX(u) + FX(−u).
2. X ≥ 0 a.s., and the pair (FX , F Y ) satisfies (A).
Then

FX+Y (u) ∽ F Y (u).

Proof of Theorem 2. Let us prove that the second condition is sufficient. Since X and Y
are independent,

FX+Y (u) = P{X + Y > u} = P{Y > u−X} = EF Y (u−X).

But
EF Y (u−X) = EF Y (u−X)I{0≤X≤ϕ(u)} + EF Y (u−X)I{X>ϕ(u)}.

The second summand is between 0 and EI{X>ϕ(u)}, because 0 ≤ F Y (y) ≤ 1 for y ∈ R. Since

EI{X>ϕ(u)} = FX(ϕ(u)) = o(F Y (u)), the second summand is also o(F Y (u)). And the first sum-

mand is between F Y (u − ϕ(u)) and F Y (u) since F Y is nonincreasing. It suffices to note that
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F Y (u−ϕ(u)) ∽ F Y (u). This completes the proof of the second statement. The first one is proved
similarly, we need to decompose

EF Y (u−X) = EF Y (u−X)I{|X|≤ϕ(u)} + EF Y (u−X)I{|X|>ϕ(u)}. �

How to apply this theorem? Which functions f, g satisfy these conditions?

Lemma 2. 1. Let f(u) := C1u
−α1, g(u) := C2u

−α2, where C1, C2, α1, α2 > 0 are constants.
Then ((f, g) satisfies (A)) ⇔ ((f, g) satisfies (B)) ⇔ α1 > α2.

2. Suppose f(u) := C1u
γ exp (−Kuα) , g(u) := C2u

−µ, where C1, C2, K, α, µ > 0, γ ∈ R are
constants. Then (f, g) satisfies (A) and (B).

Proof of Lemma 2. The second statement immediately follows from the first (see Remark
3). But if α1 ≤ α2 then f(u) 6= o(g(u)) and neither (A) nor (B) holds true (see Remark 2). For
α1 > α2, take ϕ(u) := u(α1+α2)/(2α1). �

4. Tail asymptotic of XY for ess supX = ∞, ess sup Y = σ, X, Y > 0

For the sake of simplicity suppose X, Y > 0 a.s. Suppose ess supX = ∞, ess supY = σ, as in
subsection 2. Naturally, σ > 0. Suppose we are given tail asymptotic of X and Y , the same as in
subsection 2:

FX(u) ∽ hX(u) := CXu
γ exp (−KXu

α) ,

and
F Y (u) ∽ hY (u) := CY (σ − u)µ, u ↑ σ

Here CX , CY , KX , α, µ > 0, γ ∈ R are constants. Recall X and Y are independent. Therefore,
ess sup(XY ) = ∞. We need not impose the condition α > 1.

Theorem 3. Under these conditions,

FXY (u) ∽ hXY (u) := CXY u
γ−αµ exp

(

−KXσ
−αuα

)

.

Here
CXY := CXCY Γ(µ+ 1)σαµ+µ−γ(KXα)

−µ.

Proof of Theorem 3. The proof is simpler than in subsection 2. Everywhere in this proof
u > 0. We have

FXY (u) = P{XY > u} = P{X > u/Y } = EFX(u/Y ),

since X , Y are independent. Fix δ ∈ (0, σ) (we shall determine its exact value later). We have:

EFX(u/Y ) = EFX(u/Y )I{σ−δ≤Y ≤σ} + EFX(u/Y )I{Y <σ−δ}.

The function FX is nonincreasing, and y 7→ FX(u/y) is nondecreasing for y > 0. Therefore,

0 ≤ EFX(u/Y )I{Y <σ−δ} ≤ EFX(u/(σ−δ))I{Y <σ−δ} ≤ FX(u/(σ−δ)) ∽ hX(u/(σ−δ)) = o(hXY (u)).

(It is easy to verify the last relation.) Hence EFX(u/Y )I{Y <σ−δ} = o(hXY (u)). It suffices to

prove: EFX(u/Y )I{σ−δ≤Y ≤σ} ∽ hXY (u). We have: u/y → ∞, FX(u/y) ∽ hX(u/y) uniformly for
y ∈ [σ − δ, σ]. By Lemma 11,

EFX(u/Y )I{σ−δ≤Y ≤σ} ∽ EhX(u/Y )I{σ−δ≤Y ≤σ}.
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Rewrite this as a Stieltjes integral:

EhX(u/Y )I{σ−δ≤Y ≤σ} =

σ
∫

σ−δ

hX(u/y)dFY (y) = −
σ

∫

σ−δ

hX(u/y)dFY (y) =

= −



hX(u/y)FY (y)

∣

∣

∣

∣

y=σ

y=σ−δ

−
σ

∫

σ−δ

F Y (y)dhX(u/y)



 .

(We integrated this Stieltjes integral by parts.) The boundary terms do not contribute to the
asymptotic, since they are o(hXY (u)). Indeed, ess supY = σ, F Y (σ) = 0; and 0 ≤ hX(u/(σ −
δ))F Y (σ − δ) ≤ hX(u/(σ − δ)) = o(hXY (u)).

Hence

FXY (u) = o(hXY (u)) +

σ
∫

σ−δ

F Y (y)dhX(u/y).

But hX ∈ C1(0,+∞), hX is nonincreasing on [u0,∞), u0 := (γ/KXα)
1/α. (Recall the proof of

Theorem 1.) Hence the function y 7→ hX(u/y) is nondecreasing on [σ − δ, σ] if u > u0σ. Now let
us define δ. Take an arbitrary ε > 0 and find δ > 0 such that y ∈ [σ − δ, σ]

(1− ε)CY (σ − y)µ ≤ F Y (y) ≤ (1 + ε)CY (σ − y)µ.

Then for u > u0σ

(1− ε)I(u) ≤
σ

∫

σ−δ

F Y (y)dhX(u/y) ≤ (1 + ε)I(u),

where

I(u) := CY

σ
∫

σ−δ

(σ − y)µdhX(u/y).

Thus: for u > u0σ

(1− ε)I(u) + o(hXY (u)) ≤ (1 + o(1))FXY (u) ≤ (1 + ε)I(u) + o(hXY (u)). (2)

It suffices to find the asymptotic of I(u). We calculated h′
X(u) = −CXu

γ−1(KXαu
α−γ) exp (−KXu

α)
during the proof of Theorem 1. Hence the function y 7→ hX(u/y) is continuously differentiable on
[σ − δ, σ] and

∂hX(u/y)

∂y
= −(u/y2) h′

X(x)|x=u/y = CX(u/y
2)(u/y)γ−1(KXα(u/y)

α − γ) exp
(

−KXy
−αuα

)

.

The Riemann-Stieltjes integral can be rewritten as a Riemann integral:

I(u) := CXCY

σ
∫

σ−δ

uγy−γ−1(σ − y)µ
(

KXαy
−αuα − γ

)

exp
(

−KXy
−αuα

)

dy =

= CXCYKXαu
α+γI(uα;α,−γ − α− 1, µ)− CXCY γu

γI(uα;α,−γ − 1, µ), (3)
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where for α > 0, β ∈ R, µ > 0, u > 0 we denote

I(u;α, β, µ) :=

σ
∫

σ−δ

yβ(σ − y)µ exp
(

−KXy
−αu

)

dy =

δ
∫

0

(σ − z)βzµ exp
(

−KX(σ − z)−αu
)

dz.

(We changed variables z := σ − y.) Applying Lemma 10, one can easily find the asymptotic of
this integral:

I(u;α, β, µ) ∽ σβ+(α+1)(µ+1)(KXα)
−µ−1Γ(µ+ 1)u−µ−1 exp

(

−KXσ
−αu

)

.

Indeed, the function S(z) := KX(σ − z)−α is strictly increasing on [0, δ], and S ′(0) = KXασ
−α−1;

and it suffices to apply Lemma 10 for this S and f(z) := (σ − z)β , µ := µ + 1. The asymp-
totic of I(u;α, β, µ) depends on β only by the coefficient. Hence the second summand in (3) is
infinitesimally small with respect to the first summand.

I(u) ∽ CXCYKXαu
α+γσ−γ−α−1+(α+1)(µ+1)(KXα)

−µ−1Γ(µ+1)(uα)−µ−1 exp
(

−KXσ
−αuα

)

= hXY (u).

Divide (2) by hXY (u) and obtain:

1− ε ≤ lim
u→∞

FXY (u)

hXY (u)
≤ lim

u→∞

FXY (u)

hXY (u)
≤ 1 + ε.

It suffices to note that ε > 0 is arbitrary. The proof is complete. �

5. Tail asymptotic of XY for ess supX = ess supY = ∞, X, Y > 0

Again, suppose X, Y are a.s. strictly positive. Here we need a power tail asymptotic of one of
these variables, e.g. Y :

F Y (u) ∽ CY u
−α,

where CY , α > 0 are constants. Also, let EXα < ∞. Suppose FX satisfies the following condition
(Cα):

Definition 5. Let α > 0. A function f ∈ M satisfies the (Cα) condition if there exists a
function ϕ : R+ → R+ such that ϕ(u) → 0, ϕ(u)/u → 0, f(ϕ(u)) = o(u−α).

Remark 5. f ∈ M satisfies (Cα) iff the ordered pair (f(u), u−α) satisfies (A).

We also need the condition EXα < ∞. Since we operate with survival functions, let us rewrite
this condition in terms of FX .

Definition 6. Suppose α > 0. The function f ∈ M satisfies the (Dα) condition if f(u) =
o(u−α) and

∞
∫

0

f(u)uα−1du < ∞.

Lemma 4. Suppose X is a nonnegative random variable. Then EXα < ∞ iff the function FX

satisfies (Dα).

Proof of Lemma 4. It is well-known from classical probability theory, nevertheless we expose
it in detail. Suppose EXα < ∞. First, let us prove that FX(u) = o(u−α). For u > 0

uαFX(u) = uαP{X > u} = EuαI{X>u} ≤ EXαI{X>u} → 0

9



by the Lebesgue dominated convergence theorem, since EXα < ∞. Rewrite this expectation as a
Riemann-Stieltjes integral:

∞
∫

0

uαdFX(u) = −
∞
∫

0

uαdFX(u)

and integrate by parts:

−uαFX(u)

∣

∣

∣

∣

u=∞

u=0

+

∞
∫

0

FX(u)du
α.

Boundary terms are zero, since uαFX(u) |u=∞ = 0 (we just proved this). Hence:

∞
∫

0

FX(u)u
α−1du = α−1

∞
∫

0

FX(u)du
α < ∞.

Hence EXα < ∞ implies that the survival function FX satisfies (Dα). The proof of the converse
statement is similar. �

Remark 6. (Analogous to Remark 2.) If f, g ∈ M, f ∽ g, then these functions either both
satisfy or both do not satisfy the condition (Cα), and they both satisfy or do not satisfy the
condition (Dα).

Remark 7. (Analogous to Remark 3.) The condition (Cα) implies f(u) = o(u−α).

Remark 8. (Analogous to Remark 4.) For f, g ∈ M, f(u) = o(g(u)), if g satisfies (Cα), then
f also satisfies this condition; if g satisfies (Dα), then f also satisfies this condition.

Theorem 4. Suppose F Y (u) ∽ CY u
−α, and FX satisfies the conditions (Cα) and (Dα). Then

FXY (u) ∽ CYEX
αu−α.

Proof of Theorem 4. In this proof, u > 0. As before, FXY (u) = EF Y (u/X) for u > 0, since X ,
Y are independent. We obviously have:

EF Y (u/X) = EF Y (u/X)I{0<X≤ϕ(u)} + EF Y (u/X)I{X>ϕ(u)}.

Since 0 ≤ F Y (u) ≤ 1 for all u, we have

0 ≤ EF Y (u/X)I{X>ϕ(u)} ≤ P{X > ϕ(u)} = FX(ϕ(u)) = o(u−α)

(according to the (Cα) condition). Hence EF Y (u/X)I{X>ϕ(u)} = o(u−α). Applying Lemma 11 and

noting that u/x → ∞ uniformly for x ∈ (0, ϕ(u)] (since u/ϕ(u) → ∞), F Y (u/X) ∽ CY (u/X)−α,
we get:

EF Y (u/X)I{0<X≤ϕ(u)} ∽ ECY (u/X)−αI{0<X≤ϕ(u)}.

Thus,
EF Y (u/X)I{0<X≤ϕ(u)} ∽ CY u

−αEXαI{0<X≤ϕ(u)}.

But ϕ(u) → ∞, EXα < ∞, hence EXαI{0<X≤ϕ(u)} → EXα by the Lebesgue dominated conver-

gence theorem. Thus, EF Y (u/X)I{0<X≤ϕ(u)} ∽ CYEX
αu−α, and the proof is complete. �
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What examples of functions f ∈ M satisfying the conditions (Cα) and (Dα) are there?

Lemma 4. 1. The function f(u) := Cfu
−β, where Cf , β > 0 are constants, satisfies the

conditions (Cα) and (Dα) for β > α and does not satisfy them for β ≤ α.
2. The function f(u) := Cfu

γ exp
(

−Kuβ
)

, where Cf , K, β > 0, γ ∈ R are constants, satisfies
the conditions (Cα) (Dα).

Proof of Lemma 4. Remark 7 shows that the second statement follows from the first one. Let
us prove the first statement. Speaking about the condition (Cα), it suffices to use Lemma 2 and
Remark 5. The condition (Dα) is not satisfied for β ≤ α can can be straightforwardly checked for
β > α. �

Section 2. Tail asymptotics of extrema
of conditionally Gaussian processes

6. Introduction.

We shall apply this theory to find asymptotic of

P{sup
t≥0

(X(t)− ηtβ) > u}, P{sup
t≥0

(X(t)− ηtβ − ζ) > u},

where X = (X(t), t ≥ 0) is a Gaussian centered self-similar locally stationary process (we shall
clarify the conditions imposed on X later), η > 0, ζ - independent random variables, (η, ζ) is
independent of X .

What is the history of this problem?
Classical asymptotical theory of extrema of Gaussian processes and fields was developed (by,

e.g., Piterbarg and Pickands, see monograph [3]) for centered processes and fields. But afterwards,
non-centered process (i.e. processes with a trend) were considered. They have the form (X(t) +
m(t)), where X is a centered Gaussian processes, and m is a nonzero deterministic function, which
is called a trend. See, e.g., a well-known article [1], where m(t) = −ctβ , t ≥ 0, c, β are constants
(power trend).

The problem was then generalized to the case of conditionally Gaussian processes Y . They
depend on random variables η1, . . . , ηn and on a Gaussian process X , where (η1, . . . , ηn) is in-
dependent of X . Y is called so because the conditional distribution of Y for fixed η1, . . . , ηn is
Gaussian.

For example, the following model is considered in [4]: Y = (Y (t), t ≥ 0), Y (t) = X(t)(η− ζtα),
where (η, ζ) is independent of X , the random variables η, ζ are positive, bounded and ess inf η > ε.

We shall consider a process Y = (Y (t), t ≥ 0), Y (t) = X(t) − ηtβ, where (X(t), t ≥ 0) is a
Gaussian centered process, η > 0 is independent of X , but the conditions imposed on η are not
as strict as the conditions on η, ζ in [4]. This model is similar to the one from [1], and we shall
intensively use the results from [1]. But there is a significant difference: instead of the deterministic
trend −ctβ , we have a random process (−ηtβ , t ≥ 0). Let us call it a random trend.

Also, we shall find the asymptotics of

sup
t≥0

(X(t)− ηtβ − ζ),

where ζ is a random variable, X, η, ζ are independent.

11



7. Basic definitions.

Definition 7. A square-integrable process X = (X(t), t > 0) with EX(t) = 0, EX2(t) = 1 is
called locally stationary at the point s > 0 with the local stationarity index α ∈ (0, 2] and the limit

constant D(s) > 0 if

lim
t,t′→s

E(X(t)−X(t′))2

|t− t′|α = D(s).

Definition 8. A random process X = (X(t), t ≥ 0) is called self-similar with self-similarity

(Hurst) parameter H ∈ (0; 1] if for any a > 0

(X(at), t ≥ 0)
d
= (aHX(t), t ≥ 0).

Remark 9. A Gaussian process X = (X(t), t ≥ 0) with EX(t) = 0 is self-similar with Hurst
parameter H iff R(t, t′) := EX(t)X(t′) is homogeneous of order 2H , i.e. for all t, t′ ≥ 0, a > 0
R(at, at′) = a2HR(t, t′). In particular, its variation is EX2(t) = ct2H , where c = EX2(1) is
independent of t.

Remark 10. If a process X = (X(t), t ≥ 0) EX(t) = 0,EX2(t) = t2H is self-similar with
Hurst parameter H , and the standardized process Y = (Y (t), t > 0), Y (t) = t−HX(t) is locally
stationary with index α and limit constant D(s0) at the point s0 then it is straightforward to
prove: Y is locally stationary at every point s > 0 with the same self-similarity index α, but with
the limit constant D(s) = (s0/s)

αD(s0).

Remark 11. For the process from the previous remark, H and α are not related. Changing
X by (X(ta), t ≥ 0), we get a different H , but the same α.

Definition 9. SupposeH ∈ (0, 1]. Fractional Brownian motion with parameterH is a Gaussian
process BH = (BH(t), t ≥ 0) with a.s. continuous trajectories and the following properties:
EBH(t) = 0, EBH(t)BH(t

′) = (t2H + t′2H − |t− t′|2H)/2 for every t, t′ ≥ 0.

Remark 12. This is a classic example of a self-similar process with Hurst parameter H . It is
shown in [1] that the process Y = (Y (t), t > 0), Y (t) = t−HBH(t) (note that EB

2
H(t) = t2H , t ≥ 0)

is locally stationary at every point s > 0 with self-similarity index α = 2H and D(s) = s−2H .
(The reader can easily check this fact himself.)

Remark 13. B1/2 is a standard Brownian motion.

8. Results for a deterministic trend.

Let us expose the core results from the article [1] in detail, since we shall need them. Let
H ∈ (0, 1), c > 0, α ∈ (0, 2], β > H be constants. Suppose a stochastic process X = (X(t), t ≥ 0)
satisfies the following conditions:

(i) it is Gaussian;
(ii) EX(t) = 0, EX2(t) = t2H for t ≥ 0;
(iii) X is self-similar with Hurst parameter H ∈ (0, 1);

12



(iv) the standardized process Y = (Y (t), t > 0), Y (t) := t−HX(t) is locally stationary at the
point s0 with local stationarity index α and limit constant D(s0), where

s0 :=

(

H

c(β −H)

)1/β

.

Then, as u → ∞, we have

p(u, c) := P{sup
t≥0

(X(t)− ctβ) > u} ∽ f(u, c), (1)

where for α < 2

f(u, c) :=
Hα

√
π(D(s0))

1/α

√
B21/α−1/2

A2/α−1/2u(1−H/β)(2/α−1)Ψ
(

Au1−H/β
)

,

and for α = 2

f(u, c) := 2

√

AD +B

B
Ψ
(

Au1−H/β
)

.

Ψ(x) is the tail of the standard normal distribution:

Ψ(x) :=
1√
2π

+∞
∫

x

e−y2/2dy.

Hα is a positive constant, called a Pickands constant:

Hα := lim
T→∞

1

T
E exp max

0≤t≤T
(
√
2Bα/2(t)− tα).

(See [3], section D, for the proof that this constant is indeed well-defined and Hα > 0.) Finally,
A and B are positive constants:

A :=

(

H

c(β −H)

)−H/β
β

β −H
, B :=

(

H

c(β −H)

)−(H+2)/β

Hβ.

We shall rewrite this result in a more convenient way. If ϕ(x) := (2π)−1/2e−x2/2 is a standard
Gaussian density, then it is easy to verify by L’Hospital’s rule that Ψ(x) ∽ ϕ(x)/x as x →
∞. (See also, e.g. [8], Section 7.1, Lemma 2.) But Au1−H/β → ∞, hence Ψ(Au1−H/β) ∽

ϕ(Au1−H/β)/(Au1−H/β). Thus, f(u, c) ∽ g(u, c), where for α ∈ (0, 2) we have

g(u, c) := Cu(1−H/β)(2/α−2)ϕ
(

Au1−H/β
)

, C :=
Hα

√
π(D(s0))

1/α

√
B21/α−1/2

A2/α−3/2

and for α = 2 we have

g(u, c) := CuH/β−1ϕ
(

Au1−H/β
)

, C := 2

√

AD +B

B
A−1.

To find how g depends on c, denote

Ks :=

(

H

β −H

)1/β

, KA :=

(

H

β −H

)−H/β
β

β −H
, KB :=

(

H

β −H

)−(H+2)/β

Hβ.
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Then we get
s0 = Ksc

−1/β , A = KAc
H/β , B = KBc

(H+2)/β .

The process Y is locally stationary at every point s > 0 with the same local stationarity index α but
with limit constant D(s) = (s0/s)

αD(s0). (See Remark 10.) Hence D(s0) = D(Ks)(c
−1/β)−α =

KDc
α/β , where KD := D(Ks). Thus

C = KcH/β(2/α−2),

where for α ∈ (0, 2)

K :=
Hα

√
πK

1/α
D

K
1/2
B 21/α−1/2

K
2/α−3/2
A ,

and for α = 2

K :=
2

KA

√

KAKD +KB

KB
.

Finally, we obtain:

g(u, c) = KcH/β(2/α−2)u(1−H/β)(2/α−2)ϕ
(

KAc
H/βu1−H/β

)

. (2)

9. Asymptotic of P{sup
t≥0

(X(t)− ηtβ) > u}.

Let S0 := sup
t≥0

(X(t) − ηtβ). Let us find the tail asymptotic of S0. We need to impose an

additional restriction (v) on the process X :
(v) a.s. there exists an s ≥ 0 such that X(s) > 0.
It could possibly be implied by the other conditions (i) - (iv), but we could not prove this. The

standard Brownian motion and the fractional Brownian motion obviously satisfies (v). (See, e.g.,
[7], where the law of iterated logarithm for the fractional Brownian motion is proved as Theorem
3.3; this law immediately implies the condition (v).)

Theorem 5. Suppose a stochastic process X satisfies the conditions (i) - (v). Let η > 0 be a
random variable independent of X , δ = ess inf η. Suppose P{η < u} ∽ Cη(u− δ)µ as u ↓ δ, where
Cη, µ > 0 are constants. Then we have:

1. for δ > 0:
F S0

(u) ∽ K0u
νϕ(KAδ

H/βu1−H/β),

where for the sake of brevity

K0 :=
CηKΓ(µ+ 1)βµ

K2µ
A Hµ

δH/β(2/α−2)−µ(2H/β−1), ν :=

(

1− H

β

)(

2

α
− 2− 2µ

)

;

2. for δ = 0:
F S0

(u) ∽ CηEHµ/β,βu
−βµ/H ,

where for α, β > 0 Eα,β = Eα,β(X) is a positive constant:

Eα,β(X) := E

(

sup
t≥0

X(t)

1 + tβ

)α

.
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Proof of Theorem 5. We follow the proof of the similar theorem in [1]. Let for s ≥ 0, c > 0

Zc(s) :=
X(s)

1 + csβ
, Z̃c(s) := cH/βZc((2/D)1/αs).

Lemma 5. For all u > 0,

p(u, c) = P{sup
s≥0

Zc(s) > u1−H/β}.

Proof of Lemma 5. This is a consequence of self-similarity of X with Hurst parameter H . We
have:

(X(u−1/βt), t ≥ 0)
d
= (u−H/βX(t), t ≥ 0).

Thus
P{sup

s≥0
Zc(s) > u1−H/β} = P{∃s ≥ 0 : X(s) > u1−H/β + csβu1−H/β} =

= P{∃s ≥ 0 : X(u−1/βs) > u1−H/β + c(u−1/βs)βu1−H/β} =

= P{∃s ≥ 0 : u−H/βX(s) > u1−H/β + csβu−H/β} = P{∃s ≥ 0 : X(s) > u+ csβ} = p(u, c).�

Lemma 6. The distribution of the process Z̃c = (Z̃c(s), s ≥ 0) does not depend on c > 0.

Proof of Lemma 6. Z̃c is a Gaussian process, hence its distribution is uniquely determined by
its mean and covariance functions. For all c > 0, t ≥ 0 we have EZ̃c(t) = 0 hence EX(t) = 0.
Hence it suffices to prove that for all t, t′ ≥ 0, EZ̃c(t)Z̃c(t

′) does not depend on c > 0.

EZ̃c(t)Z̃c(t
′) =

c2H/βEX((2/D)1/αt)X((2/D)1/αt′)

(1 + c((2/D)1/αt)β)(1 + c((2/D)1/αt′)β)
.

But D = KDc
α/β (see subsection 8), c((2/D)1/α)β = 2β/αcD−β/α = (2/KD)

β/α is independent of c.
Hence the denominator is independent of c. And the numerator is equal to c2/β2(2/D)2/αEX(t)X(t′)
since X is self-similar (see Remark 9). But c2/β(2/D)2/α = (2/KD)

α/β is also independent of c. �

Proof of Theorem 5. Denote Z̃c just as Z̃. (Only its distribution is important.) It is clear that

sup
s≥0

Zc(s) = c−H/β sup
s≥0

Z̃(s).

Condition (v) yields that a.s.
sup
s≥0

Z1(s) > 0, sup
s≥0

Z̃(s) > 0.

Since X and η are independent,

F S0
(u) = Ep(u, η) = P{η−H/β sup

s≥0
Z̃(s) > u1−H/β}.

But η−H/β > 0, sup
s≥0

Z̃(s) > 0. It suffices to use Theorems 3, 4. We have:

P{sup
t≥0

Z̃(t) > u1−H/β} = p(u, 1) ∽ g(u, 1) = Ku(1−H/β)(2/α−2)ϕ
(

KAu
1−H/β

)

.
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Therefore,
P{sup

t≥0
Z̃(t) > u} ∽ Ku2/α−2ϕ(KAu),

and
ess sup(sup

t≥0
Z̃(t)) = ∞.

The random variable supt≥0 Z̃(t) plays the role of X from Theorems 3 and 4. And the random

variable η−H/β plays the role of Y . Consider the cases δ > 0 and δ = 0.

Suppose δ > 0. Then ess sup η−H/β = δ−H/β , and u−β/H ↓ δ as u ↑ δ−H/β,

F η−H/β(u) = P{η−H/β > u} = P{η < u−β/H} ∽ Cη(δ−u−β/H)µ ∽ Cη(βH
−1δβ/H+1)µ(δ−H/β −u)µ,

since the derivative of the function u 7→ u−β/H at the point u = δ−H/β equals−βH−1(δ−H/β)−β/H−1 =
−βH−1δ1+H/β , and δ − u−β/H

∽ βH−1δ1+H/β(δ−H/β − u) as u ↓ δ−H/β .
In the notation of Theorem 3

σ = δ−H/β , CY = Cη(βH
−1δβ/H+1)µ, CX := (2π)−1/2K, γ = 2/α− 2, KX := K2

A/2, α = 2.

It suffices to apply this theorem and simplify the answer.

Suppose δ = 0. Then ess sup η−H/β = ∞, and

F η−H/β(u) = P{η−H/β > u} = P{η < u−β/H} ∽ Cη(u
−β/H)µ = Cηu

−βµ/H .

Since (see above)

F supt≥0 Z̃(t)(u) ∽ Ku2/α−2ϕ(KAu) =
K√
2π

u2/α−2 exp

(

−K2
A

2
u2

)

,

this function satisfies the conditions (Cβµ/H) and (Dβµ/H) (see Lemma 4). Hence we can apply
Theorem 4. The constant

E

(

sup
t≥0

Z̃(t)

)βµ/H

= E

(

sup
t≥0

Z1(t)

)βµ/H

= E

(

sup
t≥0

X(t)

1 + tβ

)βµ/H

is denoted by Eβµ/H,β(X). The proof is complete. �

10. Asymptotic of P{sup
t≥0

(X(t)− ηtβ − ζ) > u}.

Now we shall consider
S := sup

t≥0
(X(t)− ηtβ − ζ) = S0 − ζ,

where ζ is a random variable, X, η, ζ are independent. Then S0, ζ are independent. We know
the tail asymptotic of S0 under certain conditions (see the previous subsection). And for a given
asymptotic P{ζ < u} as u ↓ ess inf ζ , we know the tail asymptotic of −ζ , and it suffices to apply
Theorems 1, 2.

Theorem 6. Suppose the process X satisfies (i) - (v). Let ess inf ζ =: δ0.
1. Suppose δ0 = −∞ and P{ζ < −u} ∽ Cζu

−γ, where Cζ > 0, γ > 0. If one of the following
conditions holds:
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(a) δ > 0;
(b) δ = 0 and βµ/H > γ,
then

F S(u) ∽ Cζu
−γ.

If we have
(c) δ = 0, βµ/H < γ,
then

F S(u) ∽ F S0
(u) ∽ CηEβµ/H,β(X)u−βH/µ.

2. Suppose δ0 ∈ R and P{ζ < u} ∽ Cζ(u − δ0)
γ, where Cζ, γ > 0 are constants. Suppose also

that δ > 0, 2H < β. Then

F S(u) ∽ CSu
νϕ

(

KAδ
H/β(u+ δ0)

1−H/β
)

,

where for the sake of brevity

CS := CζK0K
−2γ
A δ−2Hγ/β(1−H/β)−γΓ(1 + γ),

ν := (2/α− 2− 2µ)(1−H/β) + γ − 2(1−H/β)γ.

Proof of Theorem 6. Apply directly Theorem 1 for the second case, and Theorem 2 for the first
case. In the first case, in (a) and (b) S0 plays the role of X , −ζ plays the role of Y . And in (c),
their roles are reversed: S0 plays the role of Y , −ζ plays the role of X .

In the second case, S0 plays the role of X , −ζ plays the role of Y . The condition 2H < β is
necessary to establish the condition α > 1 in Theorem 1. �

11. Conclusion.

The most interesting case is when neither asymptotic of X nor asymptotic of η dominate.
This is probably the toughest case. It is unlikely that two asymptotical expressions can be easily
combined. Probably the Pickands method of double sums should be applied (see monograph [3],
section D or chapter 2).

How to calculate Eα,β? We can only do this numerically. It is unlikely that one can find an
exact form for this constant. We know the exact form only if X is a Brownian motion, β = 1:

Lemma 7. If X = B is a standard Brownian motion, β = 1, then

Eα,β = 2−α/2Γ
(α

2
+ 1

)

.

Proof of Lemma 7. Let

X := max
s≥0

B(s)

1 + s
.

Using Lemma 5, we obtain: for all u > 0

P{X > u1/2} = P{max
s≥0

(B(s)− s) > u}

We used Remark 13: for a Brownian motion H = 1/2, 1−H/β = 1/2.

P{max
s≥0

(−B(s)− s) > u} = P{max
s≥0

(B(s)− s) > u} = P{∃s ≥ 0 : B(s)− s = u} = e−2u.
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The last equality uses the result for a hitting time of a Brownian motion with a drift from [5]
(chapter 3, section 3.5.C, (5.13)). We also use the continuity of Brownian paths: if max

s≥0
(B(s)−s) >

u, then for some s ≥ 0 B(s)− s = u. Hence max
s≥0

(B(s)− s) has an exponential distribution, and

P{max
s≥0

(B(s)− s) > u} = P{max
s≥0

(B(s)− s) ≥ u} = e−2u.

For u > 0 P{X > u} = e−2u2

. Of course, for u ≤ 0 we have P{X > u} = 0. Hence X has the
Weibull distribution with parameters (2, 2). Thus (see [6], chapter 21, section 2; of course one can
verify it by a simple calculation) Eα,1 = EX α = 2−α/2Γ

(

α
2
+ 1

)

. �

Appendix

12. Other forms of asymptotic conditions on X, Y , η, ζ.

We used the survival functions of X , Y , η, ζ to impose restrictions on them. But many
distributions are defined in terms of density (with respect to the Lebesgue measure). Can we
rewrite these conditions in terms of density?

Yes, we can. The asymptotic conditions on the survival function are more general than the
ones on the density. Hence we can apply any of these Theorems 1-6 if the asymptotic of denstiy
is given.

Lemma 8. Suppose X is a random variable, M := ess supX . Suppose on a certain left
neighborhood U ⊆ R of M the distribution of X has a density fX (with respect to the Lebesgue
measure). This means that for any Borel subset B ⊆ U we have:

P{X ∈ B} =

∫

B

fX(u)du.

1. If M = +∞ and fX(u) ∽ CXαu
−α−1, where CX , α > 0 are constants, then FX(u) ∽ CXu

−α.
2. If M = +∞ and fX(u) ∽ CXu

β exp (−KXu
α), where CX , α,KX > 0, β ∈ R are constants,

then FX(u) ∽ CXα
−1K−1

X uβ+1−α exp (−KXu
α).

3. If M ∈ R and fX(u) ∽ CXα(M − u)α−1, where CX , α > 0 are constants, then FX(u) ∽

CX(M − u)α.

Proof of Lemma 8. If f, g : [a, b) → R are Lebesgue integrable on [a, b) ⊂ R, where b ∈ (a,+∞],
and f(x) ∽ g(x), x ↑ b, then by L’Hospital’s rule

b
∫

x

f(t)dt ∽

b
∫

x

g(t)dt, x ↑ b.

For u ≤ M sufficiently close to M we have

FX(u) =

M
∫

u

fX(t)dt,
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Hence statements 1 and 3 are obvious. Statement 2: it suffices to prove that

I(u) :=

∞
∫

u

CXt
β exp (−KXt

α) dt ∽ CXα
−1K−1

X uβ+1−α exp (−KXu
α) . (4)

After the change of variables s := KXt
α, t = K

−1/α
X s1/α, dt = K

−1/α
X α−1s1/α−1ds the integral I(u)

changes to

CX

∞
∫

KXuα

K
−β/α
X sβ/αK

−1/α
X α−1s1/α−1e−sds = CXK

−(β+1)/α
X α−1

∞
∫

KXuα

s(β+1−α)/αe−sds.

But for µ ∈ R we have
∞
∫

u

sµe−sds ∽ uµe−u.

This is easily deduced from L’Hospital’s rule:

(uµe−u)′ = −uµe−u + µuµ−1e−u
∽ −uµe−u =

d

du

∞
∫

u

sµe−sds.

Hence we easily obtain (4). The proof is complete. �

Also, one can replace P{ζ < −u} by P{ζ ≤ −u}, and similarly for η. The asymptotic will
remain the same.

Lemma 9. Suppose X is a random variable, m := ess infX . Suppose CX , α > 0 are constants.
1. If m = −∞, then

FX(−u) = P{X ≤ −u} ∽ CX(−u)−α ⇔ P{X < −u} ∽ CX(−u)−α.

2. If m ∈ R, then, as u ↓ m, we have:

FX(u) = P{X ≤ u} ∽ CX(u−m)α ⇔ P{X < u} ∽ CX(u−m)α.

Proof of Lemma 9. Let us prove the first statement. For all u

P{X ≤ −u − 1} ≤ P{X < −u} ≤ P{X ≤ −u} ≤ P{X < −u+ 1}.

If P{X ≤ −u} ∽ CX(−u)−α, then P{X ≤ −u − 1} ∽ CX(−u − 1)−α
∽ CX(−u)−α, and

P{X < −u} ∽ CX(−u)−α. Similarly, if P{X < −u} ∽ CX(−u)−α, then P{X < −u + 1} ∽

CX(−u+ 1)−α
∽ CX(−u)−α, and P{X ≤ −u} ∽ CX(−u)−α.

The proof of the second statement is similar; it is necessary to consider the inequalities

P{X ≤ u− u2} ≤ P{X < u} ≤ P{X ≤ u} ≤ P{X < u+ u2}.

(We assume w.l.o.g. that m = 0.) �

13. Auxillary lemmas.
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Lemma 10. Suppose a > 0, µ > 0, f, S : [0, a] → R are continuous on [0, a], f(0) 6= 0, min
[0,a]

S

is attained only at the point 0. Suppose S ∈ C1[0, δ0] for some δ0 ∈ (0, a], S ′(0) > 0. Then

F(u) :=

a
∫

0

xµ−1f(x)e−uS(x)dx ∽ G(u) := Γ(u)f(0)S ′(0)−µλ−µe−uS(0).

Proof of Lemma 10. W.l.o.g. suppose f(0) 6= 0. One can find δ1 ∈ (0, δ0] such that S ′(x) > 0 for
all x ∈ [0, δ1]. Take an arbitrarily small ε > 0 and find δ ∈ (0, δ1] such that |f(x)− f(0)| < εf(0)
for all x ∈ (0, δ]. Then we have

F(u) =





δ
∫

0

+

a
∫

δ



 xµ−1f(x)e−uS(x)dx.

The integral on [δ, a] is O
(

e−Mu
)

, where M := min[δ,a] S > S(0) (Lemma 1.1, chapter 2, [3]),
hence it is o(G(u)). And the integral on [0, δ] is estimated in this way:

(1− ε)I(u) ≤
a

∫

δ

xµ−1f(x)e−uS(x)dx ≤ (1 + ε)I(u), I(u) := f(0)

δ
∫

0

xµ−1e−uS(x)dx.

Change variables in I(u): S(x) − S(0) = S ′(0)t, x = x̂(t), x̂ ∈ C1. It maps [0, δ] into [0, δ′] for
some δ′. Hence we obtain:

I(u) = f(0)

δ′
∫

0

x̂µ−1(t)e−u(S′(0)t+S(0))x̂′(t)dt.

But x̂′(t) = S ′(0)/S ′(x̂(t)), x̂′(0) = 1, hence the function g(t) := x̂µ−1(t)t−µ+1x̂′(t), g(0) := 1 is
continuous on [0, δ′]. By Watson’s lemma (see [2])

I(u) = f(0)e−uS(0)

δ′
∫

0

g(t)tµ−1e−uS′(0)tdt ∽ f(0)(S ′(0))−µΓ(µ)u−µe−uS(0) = G(u).

Thus:

1− ε ≤ lim
u→∞

F(u)

G(u) ≤ lim
u→∞

F(u)

G(u) ≤ 1 + ε.

Since ε > 0 is arbitrary, the proof is complete. �

Lemma 11. 1. Suppose (X,M) is a measurable space with σ-finite measure µ on M. Let
f = f(u, x), g = g(u, x) : [a,∞) × X → R be measurable with respect to x ∈ M and Lebesgue
integrable on a set A ∈ M for every u ∈ [a,∞). If f(x, u) ∽ g(x, u) uniformly for x ∈ A, then

∫

X

f(x, u)IA(x)dµ(x) ∽

∫

X

g(x, u)IA(x)dµ(x).

2. Suppose (Ω,F ,P) is a probability space, ξ1 = (ξ1(u), u ≥ a), ξ2 = (ξ2(u), u ≥ a) are random
processes, and for the given event A ∈ F ξ1(u)IA, ξ2(u)IA are integrable for all u ∈ [a,∞). If
ξ1(u) ∽ ξ2(u) uniformly for ω ∈ A, then

Eξ1(u)IA ∽ Eξ2(u)IA.
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3. Suppose I ⊆ R is an interval, f, g : [a,∞)× I → R are functions such that for any u ≥ a they
are Lebesgue-integrable on I (and measurable by t ∈ I). If t ∈ I f(t, u) ∽ g(t, u) uniformly for
t ∈ I, then

∫

I

f(t, u)dt ∽

∫

I

g(u, t)dt.

Proof of Lemma 11. Left to the reader. �
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