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LOCAL EQUIVALENCE PROBLEM FOR

SUB-RIEMANNIAN STRUCTURES.

VLADIMIR KROUGLOV.

Abstract. We solve the local equivalence problem for sub-Riemannian
structures on (2n + 1)-dimensional manifolds. We show that two sub-
Riemannian structures are locally equivalent iff their corresponding canon-
ical linear connections are equivalent. When n = 1, these connections
coincide with the generalized Tanaka-Webster connection of the corre-
sponding contact metric structure. We show that in dimension > 5,
there may not be any contact metric manifolds associated with a given
sub-Riemannian structure.

1. Introduction.

A sub-Riemannian structure is a contact structure D on M2n+1 together
with a fiberwise scalar product g onD. Sub-Riemannian structures naturally
occur in different brunches of mathematics: in the study of constrained
systems in classical mechanics, in optimal control, geometric measure theory
and differential geometry (see [4] and the references therein).

From the Darboux theorem we know that contact manifolds alone do
not have local invariants (i.e. every two contact manifolds of the same
dimension are locally equivalent). Sub-Riemannian structures already have
local invariants. As has been shown by K. Hughen in [2], when n = 1
there are functions K (the Webster curvature) and λ (the eigenvalue of the
torsion matrix) which do not change under the local automorphisms of a sub-
Riemannian structure. Essentially the same invariants for sub-Riemannian
structures on 3-manifolds were defined by A. Agrachev in [1]. In the papers
[8] and [6], similar invariants were considered in the context of CR-geometry
and further generalized to the case of contact metric manifolds by S. Tanno
in [7]. Note, that all these invariants coincide when the dimension of a
manifold is three.

The main result of the present paper is a generalization of the results of
K. Hughen in [2] to higher dimensions. We prove the following

Theorem 1.1. Two sub-Riemannian structures are locally equivalent if and
only if their corresponding canonical connections are locally equivalent.

The paper is organized as follows. In Section 2 we recall basic notions
and constructions from the Cartan’s method of equivalence. In Section 3 we
define sub-Riemannian structures as the G-structures. Section 4 is devoted
to the solution of the local equivalence problem. In Section 5 we show
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some relations between the sub-Riemannian geometry and contact metric
geometry.

2. G-structures on manifolds.

In the present section we will introduce some notions and results from the
theory of G-structures. We refer the reader to the book [5] for additional
details.

2.1. G-structures. Let M be a smooth n-dimensional manifold and let
F∗(M) denote the coframe bundle of M . It is a principal GL(n,R)-bundle
over M , where GL(n,R) action is given by the ‘change of basis’ matrices.
Let G be a subgroup of GL(n,R).

Definition 2.1. G-structure on M is a principal G-subbundle of the coframe
bundle of M .

Let φ be a diffeomorphism between manifolds M1 and M2. The map φ∗

induces an isomorphism of the coframe bundles F∗(M1) and F∗(M2).

Definition 2.2. Let B1 and B2 be two G-structures on M1 and M2 re-
spectively. A diffeomorphism φ is called an isomorphism of G-structures if
φ∗(B2) = B1. We will say that two G-structures are isomorphic if there is
an isomorphism between them.

Definition 2.3. Two G-structures B1 and B2 are called locally equivalent
at (x, y) where x ∈ M1 and y ∈ M2 if there are neighborhoods U(x) and V (y)
and a diffeomorphism φ : U(x) → V (y) such that φ∗(B2|V (y)) = B1|U(x).

Consider an n-dimensional vector space V with a fixed basis (e1, e2, . . . , en).
Every point p ∈ F∗(M) is a coframe in the tangent space Tx(M) where
x = π(p).

Definition 2.4. A tautological 1-form on F∗(M) is a V -valued differential
1-form Θ on F∗(M) defined in the following way. Let p ∈ F∗(M) and let
X ∈ Tp(F

∗(M)).
Θ(X) = p̃(dπ(X))

where p̃ : TxM → V is an evaluation map p̃(X) =
∑

i pi(X)ei.
If B is a G-structure on M then the pullback of Θ induced by inclusion

B ⊂ F∗(M) is called a tautological form Θ on B.

2.2. The structure function. For every p in B, denote by Gp the fiber of
B at p. We will call Gp a vertical subspace. Let Hp be some complement
to Gp ( i.e. a subspace such that TpB = Hp ⊕ Gp). A tautological 1-form
defines an isomorphism

Θp : Hp → V

Consider the function cH ∈ Hom(V ∧ V, V ) defined by

cH(u ∧ v) = dΘ(X,Y )

where Θ(X) = u and Θ(Y ) = v.
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The Lie algebra of G is a subalgebra in gl(n,R) and therefore acts on V by
matrix multiplication. In particular, there is an embedding g ⊂ Hom(V, V ).
Consider the map A : Hom(V, g) → Hom(V ∧ V, V ) defined by

A(S)(u ∧ v) = S(u)v − S(v)u

The following construction is central to the theory of G-structures. Consider

E =
Hom(V ∧ V, V )

A(Hom(V, g))

and the projection ρ : Hom(V ∧ V, V ) → E. We call E the orbit space.

Proposition 2.5. [5] For every G-structure B there is a well-defined map
called the structure function of B

c : B → E

such that c(p) = ρ ◦ cHp
for every complement Hp to the vertical subspace

Gp.

Theorem 2.6. [5] Let B1 and B2 be two G-structures with the structure
functions c1 and c2 respectively. If they are locally equivalent by the diffeo-
morphism φ, then c1 ◦ φ

∗ = c2.

An important feature of the structure function is that it is an equivariant
map from B to E. More precisely, let σ be a linear representation of G in
Hom(V ∧ V, V ) defined by

σ(g)S(u ∧ v) = g−1S(gu ∧ gv)

One may show that A(Hom(V, g)) is a σ-invariant subspace, therefore σ
descends to a representation on E.

Proposition 2.7. [5] For any p ∈ B and g ∈ G the following identity holds:

c(p · g) = σ(g)−1c(p)

3. Sub-Riemannian structures.

Assume that M is a (2n + 1)-dimensional manifold and D is a contact
structure on M .

Definition 3.1. A triple S = (M,D, g) where g is a fiberwise inner product
on D is called a sub-Riemannian structure on M .

Each sub-Riemannian structure defines a natural G-structure consisting
of adapted coframes.

Definition 3.2. We say that a coframe (η1, η2, . . . , η2n+1) of covectors in
TpM is adapted to S if

(1) Ker(η2n+1) = D.

(2) g =
∑2n

i=1 ηi ⊗ ηi.
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We may now consider the set B of all coframes adapted to S. Obviously,
it is a principal G-bundle with a group

G =

{ (

A b
0 c

)

| A ∈ O(2n,R), b ∈ R
2n and c ∈ R\{0}

}

Every sub-Riemannian structure S defines aG-structureB of adapted coframes,
and conversely – every G-structure B with G as above gives rise to a sub-
Riemannian structure S.

4. Local equivalence of the sub-Riemannian structures.

We are now going to solve the local equivalence problem by applying the
Cartan’s method of equivalence to the G-structures of adapted coframes.
Our argument is based on the corresponding theorem in [2].

4.1. First Reduction. Let V be a (2n+ 1)-dimensional vector space. Fix
some basis (e1, e2, . . . , e2n, v) in V . We want to calculate the A-image of
Hom(V, g) in Hom(V ∧ V, V ) and to find the orbit space

E =
Hom(V ∧ V, V )

A(Hom(V, g))

Proposition 4.1. The space E may be identified with Hom(V ′ ∧ V ′, V/V )
where V ′ is a subspace in V generated by {e1, e2, . . . , e2n}.

Proof: The Lie algebra of G is a set of matrices

g =

{ (

A b
0 c

)

| A ∈ o(2n,R), b ∈ R
2n and c ∈ R\{0}

}

Consider the following basis for g:

Ipq = e∗p ⊗ eq − e∗q ⊗ ep, p, q ∈ 1, 2n

IIk = v∗ ⊗ ek, k ∈ 1, 2n.

III = v∗ ⊗ v

The spaceHom(V, g) is generated by vectors e∗s⊗Ipq, e
∗
s⊗IIk and e∗s⊗III,

where es is in {e1, e2, . . . , e2n, v}. Calculate the A-image of Hom(V, g) in
Hom(V ∧ V, V ).

A(e∗s⊗IIk)(ei, ej) = e∗s(ei)IIk(ej)−e∗s(ej)IIk(ei) = e∗s(ei)v
∗(ej)ek−e∗s(ej)v(ei)ek

Therefore, the image of e∗s ⊗ IIk in Hom(V ∧V, V ) is a vector (e∗s ∧ v∗)⊗ ek.
Analogously, A(e∗s ⊗ III) = (e∗s ∧ v∗)⊗ v. These vectors are zero in E.

A(e∗s⊗Ipq)(ei, ej) = e∗s(ei)Ipq(ej)−e∗s(ej)Ipq(ei) = e∗s(ei)(e
∗
p(ej)eq−e∗q(ej)ep)

−e∗s(ej)(e
∗
p(ei)eq − e∗q(ei)ep)

This vector corresponds to (e∗s ∧ e∗p)⊗ eq − (e∗s ∧ e∗q)⊗ ep in Hom(V ∧ V, V ).
Therefore, in E we have that (e∗s ∧ e∗p) ⊗ eq = (e∗s ∧ e∗q) ⊗ ep. We want to
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show that for any indices i, j, k ∈ 1, 2n the image of e∗j ∧ e∗k ⊗ ei is equal to
zero in E. But we may write

ei∧ej⊗ek = ei∧ek⊗ej = −ek∧ei⊗ej = −ek∧ej⊗ei = ej∧ek⊗ei = ej∧ei⊗ek

which finishes the proof of the proposition.
The group GL(2n,R) acts on the space E by

A(ω ⊗ [v])(x, y) = ω(A−1x,A−1y)[v]

where x and y are in V ′ and [v] is an image of v in V/V ′.

Proposition 4.2. Assume that S = (M,D, g) is a sub-Riemannian struc-
ture on M . The structure function of S takes values in the open GL(2n,R)-
orbit in E. This orbit is a trivial fibration by the orbits of the G-action. The
stabilizer of each point is conjugate to

G1 =

{ (

A b
0 1

)

| A ∈ U(n), b ∈ R
2n

}

in G.

Proof: By the Proposition 4.1 the space E is identified with the space
V/V ′-valued 2-forms in V ′. Consider the set of all nondegenerate 2-forms
in E. It is an open GL(2n,R)-orbit in E. We need to show that if D is a
contact structure the structure function of B takes values in this set.

Take some point p in B. We need to prove that for every nonzero x ∈ V ′

there exists some y ∈ V ′ such that

c(p)(x, y) 6= 0

Take some complement Hp to the vertical subspace at p and consider the

vector X̃ in Hp such that Θ(X̃) = x. For every Ỹ ,

cH(p)(x, y) = dΘ(X̃, Ỹ ) =
2n
∑

i=1

dΘi(X̃, Ỹ )ei + dΘ2n+1(X̃, Ỹ )v

Consider the projection ρ : Hom(V ∧ V, V ) → E. The structure function
may be written as

c(p)(x, y) = ρ ◦ cH(p)(x, y) = dΘ2n+1(X̃, Ỹ )v

But

dΘ2n+1(X̃, Ỹ )v = [X̃Θ2n+1(Ỹ )− ỸΘ2n+1(X̃)−Θ2n+1([X̃, Ỹ ])]v

If Θ(Ỹ ) is in V ′, the first two summands are zero. Finally, as follows

from contact condition, there exists some Ỹ such that dΘ2n+1(X̃, Ỹ ) =

−Θ2n+1([X̃, Ỹ ]) 6= 0.
The group G acts on E by

(

A b
0 c

)

ω ⊗ [v] = cA−1ω ⊗ [v]
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On E this action coincides with the action of the conformal orthogonal
group CO(2n,R) induced by the action of GL(2n,R). In particular, the
G-stabilizer of each point is a preimage of the stabilizer by the CO(2n,R)
action under the homomorphism

(

A b
0 c

)

→ cA.

The stabilizer of a GL(2n,R)-action is isomorphic to Sp(2n,R) and therefore
the stabilizer of a CO(2n,R)-action at the point ω ⊗ v is an intersection
CO(2n,R)∩Sp(ω), where Sp(ω) is a group of all linear isomorphisms which
preserve the symplectic form ω.

Since the determinant of a symplectic matrix is equal to one, the inter-
section CO(2n,R) ∩ Sp(ω) = O(2n,R) ∩ Sp(ω) = U(ω) – the group of all
matrices that respect the standard inner product in V ′ (with respect to a
chosen basis) and the symplectic form ω.

Lets now look at the action of a group O(2n,R) on the GL(2n,R)-orbit.
It is well known (see for example [3]) that the embedding of the O(2n,R)-
orbit O(2n,R)/U(n) →֒ GL(2n,R)/Sp(2n,R) is a homotopy equivalence.
Consider the long exact sequence of homotopy groups:

. . . → πn(O(2n,R)/U(n)) → πn(GL(2n,R)/Sp(2n,R)) → πn(B) →

→ πn−1(O(2n,R)/U(n)) → . . . → π0(GL(2n,R)/Sp(2n,R)) → π0(B) → 0.

Since π0(O(2n,R)/U(n)) = π0(GL(2n,R)/Sp(2n,R)) we may see that the
base B of fibration by the O(2n,R) action is contractible and hence the
fibration by the O(2n,R)-orbits is trivial. We want to show that fibration
by the G-orbits is also trivial. For this consider the following commutative
diagram induced by the identity map

O(2n,R)/U(n) −−−−→ GL(2n,R)/Sp(2n,R) −−−−→ B

i





y
id





y

j





y

CO(2n,R)/U(n) −−−−→ GL(2n,R)/Sp(2n,R) −−−−→ B′

It is easy to see that the map i is a homotopy equivalence, hence as follows
from the ‘five lemma’ applied to the induced commutative diagram of the
long exact sequences, the map j is a homotopy equivalence which shows that
B′ is also contractible and the fibration by the CO(2n,R)-orbits is trivial.
Finally, the orbits of the CO(2n,R)-action coincide with the orbits of the
G-action hence the fibration by the G-orbits is trivial.

Consequently, there is a G-equivariant diffeomorphism

CO(2n,R)/U(n)× B′ → GL(2n,R)/Sp(2n,R).

For every x ∈ CO(2n,R)/U(n), the image of {x}×B′ is some section s with
the property that each of its point has exactly the same stabilizer (i.e. a
slice). The stabilizer of a slice s = [id]× B′ is exactly G1. This finishes the
proof of the proposition.
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Consider the set S1 = c−1(s). One may show that S1 is a G1-structure
(see [5] for further details). We are going to call S1 the first reduction of S.

Lemma 4.3. Two sub-Riemannian structures are locally equivalent if and
only if their corresponding first reductions are locally equivalent.

Proof: If the reduced structures are locally equivalent, then extending
the structure groups to G would give the equivalence of the original sub-
Riemannian structures. Conversely, assume that S is locally equivalent to
S ′. Denote by φ the equivalence an let c1 and c2 be the structure functions
of S1 and S2. Since

c1 ◦ φ
∗ = c2

we have that c1 ◦ φ
∗(c−1

2 (s)) = c2(c
−1
2 (s)) = s.

4.2. Second reduction.

Proposition 4.4. The orbit space E1 of the G1-structure S1 may be identi-
fied with the space A⊕Hom(V ′∧V ′, V/V ′)⊕Hom(V ′∧V/V ′, V/V ′), where
A is some subspace in Hom(V ′ ∧ V ′, V ′).

Proof: The Lie algebra g1 has the following basis:

IIk = v∗ ⊗ ek, k = 1, 2n

Apq = Ipq − J0Ipq − Iqp + J0Iqp, p, q = 1, 2n

where J0 is a standard complex structure of R2n.
Using the same arguments as in Proposition 4.1, we may prove that the

A-images of vectors e∗s ⊗ IIk would be zero in E1. These vectors would
span the space Hom(V ′ ∧ V/V ′, V ′). The space Hom(V ∧ V, V ) may be
decomposed as a direct sum

Hom(V ∧ V, V ) = Hom(V ′ ∧ V ′, V/V ′)⊕Hom(V ′ ∧ V/V ′, V ′)

⊕Hom(V ′ ∧ V ′, V ′)⊕Hom(V ′ ∧ V/V ′, V/V ′)

and the claim follows.

Remark 4.5. Unless n = 1 the subspace in Hom(V ∧ V, V ) generated by
the vectors A(Apq) would not coincide with Hom(V ′ ∧ V ′, V ′) and A would
not be zero-dimensional.

In order to make the second reduction we are going to use only the part
of the structure function.

Denote by χ the projection

E1 → E2 = Hom(V ′ ∧ V ′, V/V ′)⊕Hom(V ′ ∧ V/V ′, V/V ′)

and consider the function χ ◦ c. For every point p in S1 its image has the
form

(χ ◦ c)(p) = ω(p)⊗ v + η(p) ∧ v∗ ⊗ v

where ω(p)⊗ [v] ∈ s ⊂ E is an U(n)-invariant V/V ′-valued 2-form.
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The image of this vector under the G1-action is
(

A b
0 1

)

(ω ⊗ v + η ∧ v∗ ⊗ v) = ω ⊗ v +A−1η ∧ v∗ ⊗ v + ibω ∧ v∗ ⊗ v

where ibω is a interior product of b and ω (i.e. ibω(u) = ω(b, u)). Since ω is
nondegenerate, for every V/V ′-valued 1-from ζ, there is a unique solution b
of the system of linear equations ibω + A−1η = ζ. In particular, all vectors
of the form

ω ⊗ v + ζ ∧ v∗ ⊗ v

lie on the same G1-orbit. Therefore, every orbit of the G1-action is an affine
subspace (ω ⊗ v) ⊕Hom(V ′ ∧ V/V ′, V/V ′) and the stabilizer of each point
is conjugate to R

2n.
Take a section of E2 of the form s1 = {ω⊗v+0 ·η∧v∗⊗v}. The stabilizer

of each point in s1 would be

G2 =

{ (

A 0
0 1

)

, where A ∈ U(n)

}

Consider the set S2 = (χ ◦ c)−1(s1). It will be a G2-structure and using the
same argument as in Lemma 4.3, two sub-Riemannian structures are locally
equivalent if and only if their second reductions are locally equivalent.

4.3. Prolongation. In previous sections we studied the equivalence prob-
lem for sub-Riemannian structures via the first order structure function c.
Following the approach of Hughen we will now use the prolongation proce-
dure to the reduced G2-structure.

Let BG be a G-structure. Fix a complement C to A(Hom(V, g)) in
Hom(V ∧V, V ). Then for each point of BG we have a distinguished class of
horizontal subspaces Hp = {H : cH ∈ C}. Now, any horisontal subspace at
a point p ∈ BG2

induces a g-valued 1-form ω such that
{

ωH(A) = A, if A ∈ Gp

ωH(A) = 0, if A ∈ Hp

For every H ∈ Hp the pair (Θp, ωH) is a coframe in TpBG2
. In particular,

by this identification the set H defines a subset in F∗(BG2
).

One may show that if H1 and H2 both satisfy cHi
∈ C, then SH1,H2

∈

g(1) = Ker(A).

Definition 4.6. We call G(1) the group of all linear transformations of the
form aT , T ∈ g(1) where

aT (Θ) = Θ

aT (ωH) = ωH + TωH

It can be shown that H defines a G(1)-structure in F∗(BG). It is called a
first prolongation of BG.
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Theorem 4.7. [5] A choice of complement C picks out a G(1)-structure on
each G-structure BG. Two G-structures are locally equivalent if an only if
their first prolongations are locally equivalent (as G(1)-structures).

Lets now look at the prolongation of the G2-structure obtained by the
second reduction.

Proposition 4.8. There exists a complement C to A(Hom(V, g)) in Hom(V ∧
V, V ) such that the first prolongation of a G2-structure is a {e}-structure in-
duced by some G2-connection on S2.

Proof: First observe that every first prolongation of the G2-structure is
a {e}-structure. The result follows either directly from the calculation of

Ker(A) or from the fact that G2 ⊂ O(2n + 1,R) and o(N,R)(1) = 0 for
every N . It follows that the set H defines a distribution which is transverse
to a vertical subspace. For it to be a G2-connection it is sufficient to find C
which would be invariant under the action of G2 on Hom(V ∧ V, V ), since

cdRg(H)(p · g) = σ−1(g)cH (p) ∈ C.

We can easily find such C, taking for example the orthogonal complement to
A(Hom(V, g)) with respect to someG2-invariant scalar product onHom(V ∧
V, V ).

Definition 4.9. We say that a G2-connection on S2 is canonical if it may
be obtained from some G2-invariant C by the above procedure.

We may now state our main theorem:

Theorem 4.10. Two sub-Riemannian structures are locally equivalent if
and only if their canonical connections which correspond to some C are
locally equivalent as linear connections.

Remark 4.11. The situation described above differs significantly with the
situation in Riemannian and CR-geometry, where there exists a unique
canonical connection - the Levi-Civita and Webster connection correspond-
ingly. Unless n = 1, apriori there may exist a lot of different canonical
connections associated with a given sub-Riemannian structure.

5. Sub-Riemannian structures and contact Riemannian

geometry.

Let (M,D) be a (2n+1)-dimensional contact manifold and let η be some
fixed contact 1-form for D. There is a unique vector field ξ (called the Reeb
vector field of η) such that

η(ξ) = 1, iξdη = 0.

If g is a Riemannian metric on M and φ is a (1, 1)-tensor field such that

g(ξ,X) = η(X), g(X,φY ) = dη(X,Y ), φφX = −X + η(X)ξ
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the metric is called the metric associated with η and the tuple (M,η, ξ, g, φ)
- a contact Riemannian manifold.

To every second reduction of the structure group G we may canonically
associate a Riemannian metric on M . For this, consider the pullback by
inclusion of the form Θ2n+1 to BG2

. This form is G2-invariant and therefore
defines some 1-form η on M . It is clear that η is a contact form, since for
every X ∈ D

η(X) = Θ2n+1(X̃) = p̃2n+1(dπ(X̃)) = η2n+1(X) = 0

where X̃ is a lift of X at any point p = (η1, . . . , η2n, η2n+1).
Denote by ξ the Reeb vector field of η and define a Riemannian metric g̃

on M by






g̃(X,Y ) = g(X,Y ), for all X,Y ∈ D
g̃(ξ, ξ) = 1
g̃(ξ,X) = 0, for all X ∈ D

A 2-form dη uniquely defines the operator φ on D by

g̃(X,φY ) = dη(X,Y ), for every X,Y ∈ TM.

We extend it to the whole tangent space by setting φξ = 0.

Proposition 5.1. If dim(M) = 3 then for every sub-Riemannian structure
S on M there is a canonical Riemannian metric associated with g.

Proof: Let (D, g) be a sub-Riemannian structure on M . Fix a basis

(e1, e2, v) in V . The space E = Hom(V ∧V,V )
A(Hom(V,g)) is 1-dimensional and is generated

by the vector e∗1 ∧ e∗2 ⊗ v and the group G acts on E by
(

A b
0 c

)

k · e∗1 ∧ e∗2 ⊗ v = ck det(A) · e∗1 ∧ e∗2 ⊗ v

In particular, the action of G has two orbits: 0 and O = E r 0 and when D
is a contact structure the structure function of S takes values in O. If we
consider the point ω = e∗1 ∧ e∗2 ⊗ v ∈ E, the first reduction of the structure
group traces out a unique 1-form η such that Ker(η) = D. It is easy to see
that the second reduction defines an SO(2)-structure of coframes (η, η1, η2)
that satisfy

{

dη = η1 ∧ η2
g = η21 + η22

Obviously, the operator φ that corresponds to dη is an almost complex struc-
ture on D and the metric g̃ is associated with η.

As the following example shows, when n ≥ 5 there might be no metrics
associated with a sub-Riemannian structure.

Example 5.2 (Sub-Riemannian structure with no associated metric.).

Consider the space R
5 and a sub-Riemannian structure (D, g)

D = Ker(dz + x1dy1 + x2dy2)
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g = p dx21 + q dy21 + r dx22 + s dy22 .

Denote by α = dz+x1dy1+x2dy2. Every conact 1-form η such thatKer(η) =
D has a form fα for some function f .

Therefore, the differential

dη = df ∧ α+ f(dx1 ∧ dy1 + dx2 ∧ dy2)

when restricted to D is simply f(dx1 ∧ dy1 + dx2 ∧ dy2).
Consider the following local frame in D:















e1 = ∂/∂x1
e2 = ∂/∂x2
e3 = x1∂/∂z − ∂/∂y1
e4 = x2∂/∂z − ∂/∂y2

With respect to this basis the operator that is adjoint to dη acts as follows:














φe1 =
f
r
e3

φe2 =
f
s
e4

φe3 = −f/pe1
φe4 = −f/qe2

and one may always find real numbers p, q, r, s such that g̃ is not associated
with η for any f .

References

[1] A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures,
J.Dynamical Systems and Control, 2(3): 321–358, 1996

[2] K. Hughen, The geometry of sub-Riemannian three-manifolds, PhD Thesis., Duke
University, 1996

[3] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University
Press, 1998, 512 p.

[4] R. Montgomery, A tour of sub-Riemannian geometries – their geodesics and appli-
cations, Math. Surveys and Monographs, AMS, Providence, RI, 2002

[5] S. Sternberg Lectures on Differential Geometry, Prentice Hall Publishers, 1964,
400p.

[6] N. Tanaka, A differential-geometric study of strongly pseudoconvex manifolds, Lec-
tures in Math., vol.9, Kyoto University, 1975

[7] S. Tanno, Variational problems on contact Riemannian manifolds, Transactions of
the AMS, v.314, 1, 1989, p. 349–379

[8] S. Webster Pseudohermitian structures on a real hypersurface, J.Diff.Geom.
13(1978), p.25–31


	1. Introduction.
	2. G-structures on manifolds.
	2.1. G-structures.
	2.2. The structure function.

	3. Sub-Riemannian structures.
	4. Local equivalence of the sub-Riemannian structures.
	4.1. First Reduction.
	4.2. Second reduction.
	4.3. Prolongation.

	5. Sub-Riemannian structures and contact Riemannian geometry.
	References

