
ar
X

iv
:1

10
6.

47
10

v1
  [

q-
fi

n.
G

N
] 

 2
3 

Ju
n 

20
11

Proportionate vs disproportionate distribution of wealth

of two individuals in a tempered Paretian ensemble

G. Oshanina, Yu. Holovatchb, G. Schehrc
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Abstract

We study the distribution P (ω) of the random variable ω = x1/(x1 + x2),
where x1 and x2 are the wealths of two individuals selected at random
from the same tempered Paretian ensemble characterized by the distribution
Ψ(x) ∼ φ(x)/x1+α, where α > 0 is the Pareto index and φ(x) is the cut-
off function. We consider two forms of φ(x): a bounded function φ(x) = 1
for L ≤ x ≤ H , and zero otherwise, and a smooth exponential function
φ(x) = exp(−L/x − x/H). In both cases Ψ(x) has moments of arbitrary
order. We show that, for α > 1, P (ω) always has a unimodal form and is
peaked at ω = 1/2, so that most probably x1 ≈ x2. For 0 < α < 1 we observe
a more complicated behavior which depends on the value of δ = L/H . In par-
ticular, for δ < δc - a certain threshold value - P (ω) has a three-modal (for a
bounded φ(x)) and a bimodal M-shape (for an exponential φ(x)) form which
signifies that in such ensembles the wealths x1 and x2 are disproportionately
different.

Keywords: Pareto law, Paretian ensemble, Truncated wealth distribution,
Fluctuations

1. Introduction

At the close of the nineteenth century the Italian economist Vilfredo
Pareto, while studying the statistics of human income and wealth, discovered
that the distribution Ψ(x) of both has a remarkable power-law form, Ψ(x) ∼
A/x1+α [1], where α > 0 is a parameter which is now called the Pareto
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index. Thereafter, Pareto’s law was verified for various countries, both for
the wealth of individuals and for their income, and was also observed in
empirical data for diverse scientific fields (see, e.g., Refs. [2, 3, 4, 5, 6] and
references therein). It was realized that the Pareto index measured from
the income distribution is typically larger than the index α deduced from
the distribution of wealth. This is, of course, consistent with the general
observation that in market economies wealth is more unequally distributed
than income [7]. For the wealth distribution, the observed Pareto index α is
as high as 2.3− 2.5 for developed countries, but may be as low as 0.81 for a
developing economy like India [8].

As a matter of fact, only very few real-world distributions may follow a
power law over their entire range. As a distribution of wealth, which is large
but nonetheless finite, the Pareto distribution (PD) is not an exception. In
the analysis of data, one uses different forms of truncated PDs, such as, e.g.,
the bounded distribution

Ψ(x) =
αLα

1− δα

{

1/x1+α , for L ≤ x ≤ H ,

0 , otherwise ,
(1)

where L and H are lower and upper cut-offs, respectively, and δ = L/H < 1.
On the other hand, some real-world examples are not that abrupt so that
one seeks to fit the data using a smoother truncation procedure, e.g.,

Ψ(x) =
1

2

(LH)α/2

Kα(2
√
δ)

1

x1+α
exp

(

−L

x
− x

H

)

, (2)

where Kα(x) is the modified Bessel function. In both Eqs. (1) and (2) a
power-law emerges as an intermediate behavior, so that Ψ(x) has moments
of arbitrary order.

Before we proceed, it might be useful to remark that the exponentially-
truncated distribution in Eq. (2) is rather ubiquitous and appears in many
areas in physics. To name but a few we mention the distribution of the first
passage times for random motion with a bias [9], the distribution of times
between action potentials (or the ISI distribution) in the integrate-and-fire
model of neuron dynamics [10], the distribution of the stopping distances for
the sliding motion of a solid block on an inclined heterogeneous plane [11], the
avalanche life-time distribution in the mean-field version of the Bak-Sneppen
model [12], probability current distribution in disordered systems [13] and
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the distribution of the number of times a particle diffusing in a sphere hits
its boundary [14]. Thus our subsequent analysis applies to these systems as
well.

In this paper we seek an answer to the following question: Suppose in
a given tempered Paretian ensemble one selects at random two individuals
with wealths x1 and x2, respectively. How different are x1 and x2? In quest
for the answer, we introduce a random variable,

ω =
x1

x1 + x2

, (3)

which defines the contribution of one of two individuals to the total wealth
x1 + x2 of two of them, and calculate its distribution function P (ω).

Note that the random variables in Eq. (3) have apparently first been
studied in Ref. [15] within a general context of heavy-tailed, non-truncated
distributions not having a second, nor even a first, moment. It was realized
that for α < 1 the distribution P (ω) has a characteristic U -shape form
with a minimum at ω = 1/2. In our language, this means that for such
unbounded distributions x1 = x2 is the least probable event, and the wealth
distribution is highly disproportionate. Note that recently the distribution of
more general variables of the form x1/(x1+x2+. . .+xN ) have been studied in
Ref. [16] for different heavy-tailed and tempered parental distributions Ψ(x).

In our case, all moments of Ψ(x) exist. Moreover, since 〈xn
1 〉 ≡ 〈xn

2 〉
for arbitrary n, one may generally expect that P (ω) will be a unimodal
distribution peaked at ω = 1/2. We set out to show instead that this is
not always the case but that surprisingly, the distribution P (ω) exhibits
a rather rich, sometimes counterintuitive behavior. In particular, we will
demonstrate that for tempered distributions with 0 < α < 1 the distribution
P (ω) undergoes a transition from a bell-shaped form (so that x1 = x2 is
the most probable event) to an M-shaped (for smoothly truncated Ψ(x))
and a three-modal (for bounded Ψ(x)) forms when δ = L/H becomes less
than some threshold value δc. This furnishes another striking example that
random variables with tempered heavy tails can be similar, in important
respects, to random variables with non-truncated heavy tails [17].

2. The distribution P (ω): A general result

Let Φ(λ) denote the moment generating function of ω:

Φ(λ) =

∫

∞

0

∫

∞

0

dx1dx2Ψ(x1)Ψ(x2) exp

(

−λ
x1

x1 + x2

)

. (4)
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Performing the integration over dx1, we formally change the integration vari-
able x1 → ω, so that

Φ(λ) =

∫ 1

0

dω

(1− w)2
exp (−λω)

×
∫

∞

0

x2 dx2 Ψ

(

ω

1− ω
x2

)

Ψ(x2), (5)

from which we can read off the desired distribution:

P (ω) =
1

(1− ω)2

∫

∞

0

x dxΨ(
ω

1− ω
x) Ψ(x). (6)

One may readily verify that P (ω) is normalized, i.e.,
∫ 1

0
dωP (ω) ≡ 1, once

Ψ(x) is normalized. Note, as well, that for arbitrary Ψ(x) one finds from

Eq. (6) that 〈ω〉 ≡
∫

1

0
ω dωP (ω) = 1/2, which can be readily seen from the

following simple argument:

1 =
〈x1 + x2

x1 + x2

〉

=
〈 x1

x1 + x2

〉

+
〈 x2

x1 + x2

〉

= 2
〈 x1

x1 + x2

〉

. (7)

We will show in what follows that the average behavior is not representative,
and under certain conditions does not coincide with typical or most probable
behavior.

3. The distribution P (ω) for a bounded Pareto law

Consider first the bounded PD in Eq. (1). Note that for such a distri-
bution, the choice of a random variable as in Eq. (3) will automatically lead
to a symmetric distribution function that depends on L and H only via the
ratio δ = L/H , and has a support not on [0, 1] but on a smaller interval
[ωc, 1− ωc] where, for L ≤ x ≤ H , ωc = δ/(1 + δ). Substituting Eq. (1) into
Eq. (6) we find

P (ω) =
α

2(1− δα)2
1

ω1+α(1− ω)1+α

×
{

M−2α(ω)− δ2αm−2α(ω) , for ωc ≤ ω ≤ 1− ωc ,

0 , for ω < ωc or ω > 1− ωc ,
(8)
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with

m(ω) = min

(

1

ω
,

1

1− ω

)

,

M(ω) = max

(

1

ω
,

1

1− ω

)

. (9)

A straightforward analysis shows that for α ≥ 1, regardless of the value of
δ, P (ω) is unimodal with a maximum at ω = 1/2. This signifies that in this
case most probably x1 = x2, and hence, both individuals in such a Paretian
ensemble contribute to the total wealth proportionally.

The distribution P (ω) for α ≥ 1 is depicted in Figs. 1 and 2. It has a
cusp-like maximum at ω = 1/2; P (ω) becomes narrower and the height of
the maximum, P (ω = 1/2), increases as the Pareto index α increases. On
the other hand, P (ω) broadens as δ → 0 and P (ω = 1/2) decreases. This
is, of course, quite a plausible behavior which one may expect on intuitive
grounds.

When α < 1 the situation appears to be more interesting and complicated.
As in the previous case, here P (ω) always has a cusp-like maximum at ω =
1/2. However, there exists a critical value δc of the parameter δ at which
two inflection points emerge symmetrically in the regions ω < 1/2 and ω >
1/2. For δ < δc each of these inflection points splits into a minimum and
a maximum so that P (ω) attains a three-modal, W -shaped form. When δ
becomes yet smaller than some other critical δcc, one observes that the value
of P (ω) at these local maxima becomes greater than P (ω = 1/2). This
signifies that in such a Paretian ensemble most probably the two individuals,
selected at random, have disproportionate wealth since x1 ≫ x2 or x1 ≪ x2.

Let us discuss this case more precisely, focussing on α = 1/2, for which
the loci of the extrema can be found explicitly. The distribution P (ω) for
this particular case is depicted in Fig. 3. One finds that the critical value of
δ at which two inflection points emerge is

δc =
(

17 + 12
√
2
)

−1

≈ 0.0294. (10)

For δ < δc, each extremum splits into a minimum and a maximum at locations

ωmax,1 = 1− ωmax,2 =
1 + 7δ −

√
1− 34δ + δ2

8(1 + δ)
,

ωmin,1 = 1− ωmin,2 =
1 + 7δ +

√
1− 34δ + δ2

8(1 + δ)
. (11)
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Further on, at δ = δcc, which is given by

δcc =
1

11

(

259 + 144
√
3− 12

√

897 + 518
√
3

)

≈ 0.0108, (12)

all three maxima become equally high, i.e., P (ω = 1/2) = P (ωmax,1) =
P (ωmax,2) (see the bold black line in Fig. 3). For yet smaller values of δ,
the maximum at ω = 1/2 becomes smaller than the ones at ω = ωmax,1 and
ω = ωmax,2. Hence, in the latter case it is most probable that x1 and x2

are disproportionately different and either of them, with equal probability,
dominates the total wealth.

4. The distribution P (ω) for an exponentially-tempered Pareto law

Consider next the exponentially-truncated Ψ(x) in Eq. (2). Substituting
Ψ(x) in Eq. (2) into Eq. (6), we get

P (ω) =
(LH)α

4K2
α(2

√
δ)

1

ω1+α(1− ω)1−α

∫

∞

0

dx

x1+2α
exp

(

− L

ωx
− x

(1− ω)H

)

=
1

2K2
α(2

√
δ)

K2α

(

2
√

δ/ω(1− ω)
)

ω(1− ω)
. (13)

Note that P (ω) vanishes at the edges ω = 0 and ω = 1 exponentially fast
and is symmetric around ω = 1/2. Furthermore, one may readily check that
the first derivative of P (ω) at ω = 1/2 vanishes so that P (ω) is smooth at
ω = 1/2, as compared to the cusp-like behavior observed in case of a bounded
PD. The question now is whether ω = 1/2 is always a maximum.

Expanding P (ω) in Eq. (13) in a Taylor series around ω = 1/2, we get,
omitting insignificant numerical factors,

P (ω) ∼ 1 + g

(

ω − 1

2

)2

+O
(

(ω − 1

2
)4
)

, (14)

where the constant before the quadratic term reads

g ∼ 1− α− 2
√
δ
K2α−1(4

√
δ)

K2α(4
√
δ)

. (15)

Observe that g is always negative for any α ≥ 1. This means that P (ω)
is always a bell-shaped function with a maximum at ω = 1/2. Hence, as
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in the case of a bounded PD, in this case it is most likely that the wealths
x1 and x2 of two randomly selected individuals will be the same. Typical
profiles of P (ω) for α = 2 are depicted in Fig. 4 and show that the form of
the distribution is not very sensitive to the value of δ.

Note next that the case α = 1 appears to be somewhat special since g → 0
when δ → 0. This means that for sufficiently small values of δ the distribution
P (ω) will become nearly uniform (apart of an exponential truncation in the
vicinity of the edges). This trend is clearly seen in Fig. 5 and signifies that
for such Paretian ensembles the contribution of each of the individuals to the
total wealth can have any value (inside the edges of the distribution) with
equal probability.

We finally turn to the case 0 < α < 1. One can readily see that here, as
in the case of a bounded PD, there exists a critical value δc, defined implicitly
by the following transcendental equation,

1− α = 2
√

δc
K2α−1(4

√
δc)

K2α(4
√
δc)

. (16)

For δ > δc, P (ω) is always a bell-shaped function with a maximum at ω =
1/2. For δ = δc, P (ω) ≈ 1 except for narrow regions at the edges, where it
vanishes exponentially. Lastly, for δ < δc, P (ω) has a bimodal M-like shape,
with maxima close to ω = 0 and ω = 1, ω = 1/2 being the least probable
value, which is different from the three-modal W -shaped form observed for a
bounded PD. This signifies again that for δ < δc and α < 1 the least probable
event is that x1 = x2 and most likely either of two contributions completely
dominate the total wealth, i.e., the distribution of wealth is disproportionate.
In Fig. 6 we depict different possible forms of P (ω) for the particular case
α = 1/2. Note that for an exponentially-truncated distribution the critical
value of δ is somewhat larger, δc ≈ 0.12, than the corresponding value δc ≈
0.0294 found for the bounded PD.

5. Conclusions

To conclude, we have studied here the distribution P (ω) of the random
variable ω = x1/(x1+x2), where x1 and x2 are the wealths of two individuals
selected at random from the same tempered Paretian ensemble characterized
by truncated Pareto distributions in Eqs. (1) or (2). We have shown that,
for α > 1, P (ω) always has a unimodal form and is peaked at ω = 1/2,
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so that most probably x1 ≈ x2. For 0 < α < 1 (which may be observed
for developing economies, such as, e.g., India [8]) we have encountered a
more complicated behavior which depends on the value of δ = L/H . In
particular, we have realized that for δ < δc - a certain threshold value -
P (ω) has a three-modal (for a bounded φ(x)) and a bimodal M-shape (for
an exponential φ(x)) form which signifies that in such ensembles the wealths
x1 and x2 are disproportionately different. Such a behavior appears to be
quite surprising in view of the fact that the parental distributions Ψ(x) have
moments of arbitrary order. Our findings are summarized in the ”phase-
diagrams” presented in Figs. (7) and (8).

We finally remark that a similar shape reversal of the distribution func-
tion has been observed for melting kinetics of a heteropolymer [18] and for
the Black-Scholes model of the stock options evolution in mathematical fi-
nance [19]. Both works dealt with the parental distribution Ψ(x) of the
x-variables which, in addition to a power-law intermediate tail, has a log-
normal truncation for large values of x, rather than an exponential one, and
an exponential one for small values of x. This, of course, yields quantitatively
different values of the critical parameters but qualitatively the effect is the
same. We believe that the effect that we have found here is quite universal
for the tempered Paretian ensembles, and also quite robust. In particular,
we expect, as it was shown in Ref. [19] for different cut-off functions, that it
withstands correlations between x1 and x2, as long as the correlation length
does not exceed a certain critical value.
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Figure 1: P (ω) in Eq. (8) for δ = 0.001 and different α.
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Figure 2: P (ω) in Eq. (8) for α = 1 and different values of δ.
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Figure 3: P (ω) in Eq. (8) for α = 1/2 and different δ.
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Figure 4: P (ω) in Eq. (13) for α = 2 and different δ.
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Figure 5: P (ω) in Eq. (13) for α = 1 and different δ.
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Figure 6: P (ω) in Eq. (13) for α = 1/2 and different δ.
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ln(H/L)

1 α

δ

δln(1/  cc)

ln(1/  c)

Unimodal

Unimodal

Three−modal

0

Three−modal

Figure 7: A ”phase-diagram” for the bounded Pareto law. A vertical line α = 1 separates
the domains in which P (ω) is always unimodal (α > 1) or may have a different shape
depending on the value of δ. A horizontal line ln(δc) separates the domain in which P (ω)
is unimodal and the domain in which P (ω) attains a three-modal, W -like shape with the
maximum at ω = 1/2 being higher than two local maxima near the edges. Above the
horizontal line ln(δcc) one observes a three-modal distribution P (ω) in which two maxima
near the edges are higher than the one at ω = 1/2.
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Figure 8: A ”phase-diagram” for an exponentially-tempered Pareto law. A vertical line
α = 1 separates the regimes in which P (ω) is always unimodal (α > 1) or may have a
different shape depending on the value of δ. A horizontal line ln(δc) separates the domain
in which P (ω) is unimodal and the domain in which P (ω) attains a bimodal, M -like shape
with a minimum at ω = 1/2 and two maxima close to the edges.
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