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Abstract. In this paper we give two examples of sequences of embedded

minimal planar domains in R3 which converge to singular laminations of R3.
In contrast with the situation for embedded minimal disks, these examples

do not arise from complete embedded minimal planar domains and highlight

some of the subtleties inherent in understanding refined properties of embedded
minimal planar domains.

1. Introduction

In [5], T. H. Colding and W. P. Minicozzi prove a striking compactness result
for sequences of embedded minimal disks in R3. Specifically, they show that if Σi
is a sequence of embedded minimal disks with ∂Σi ⊂ ∂BRi and Ri → ∞ then, up
to passing to a subsequence, the Σi converge to a smooth minimal lamination L of
R3. A lamination is a foliation which need not fill space and is minimal when each
leaf is a minimal surface. The convergence is smooth away from a closed set S and
if S 6= ∅ then L consists of a foliation of R3 by parallel planes and and S is a single
Lipschitz curve transverse to the leaves of L. A consequence of the uniqueness of
the helicoid–see [13]–is that the leaves of L are either planes or helicoids and if
S 6= ∅ then it is a straight line orthogonal to the planes. If Ri → R < ∞, much
wilder laminations (of BR) may occur in the limit–see [4, 7, 15, 16, 11].

Colding and Minicozzi extended their compactness theory to sequences of em-
bedded minimal planar domains in [2]–recall a planar domain is a surface without
genus. Namely, if Σi is a sequence of embedded minimal planar domains with
∂Σi ⊂ ∂BRi and Ri →∞ then, up to passing to a subsequence, the Σi converge to
a minimal lamination L. Again the convergence is smooth away form a closed set
S. If S 6= ∅ then L consists of a lamination of R3 by parallel planes. In contrast
with the situation for disks, if S 6= ∅ then L need not foliate R3 and it is not
known whether the singular set, S, has any additional structure. Stronger results
are obtained in [2] if the Σi are assumed to be simply-connected on a uniform scale.

Let us illustrate some possible singular limit laminations–i.e. limits where S 6= ∅–
arising from complete embedded minimal planar domains. First of all, the homo-
thetic blow-down of a catenoid converges with multiplicity two to a single plane so
L is a single plane and S consists of a single point. Degenerations and homothetic
blow-downs of Riemann’s family of minimal surfaces gives rise to a variety of limits.
In all cases L consists of a foliation of R3 by parallel planes. However, depending
on the choices S may be one of the following: two distinct lines orthogonal to the
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leaves of L; a single line either making a positive angle with each leaf of L or con-
tained in a single leaf; a periodic set of equally spaced points along a line contained
in a single leaf of L; or a single point. It bears mentioning, that the case when
S consists of two distinct lines can be distinguished from the other examples by
the nature of the convergence of the sequence towards L. Specifically, in this case
near a point of S the convergence is modeled on the helicoid i.e. away from S the
Σi look like the union of two multi-valued graphs spiraling together–while in the
other examples the convergence near the singular set is modeled on the catenoid–
i.e. away from S the Σi look like the union of single-valued graphs. In this paper
we present two sequences of embedded minimal planar domains which converge
to singular laminations that do not arise from complete embedded surfaces. They
illustrate some of the difficulties one must overcome if one wishes to refine Colding
and Minicozzi’s work.

Theorem 1.1. There is a sequence of minimal planar domains Σi with ∂Σi ⊂ ∂BRi
where Ri →∞ so that

(1) Σi converges in C∞loc(R3\S) to a foliation L of R3 by planes parallel to the
x3-axis. Here S = S− ∪ S+ is the union of two distinct lines, S± each
parallel to the x3-axis and at distance 1 from it;

(2) For ε > 0, and i sufficiently large, Σi ∩BRi\Tε(S) consists of the union of
single valued graphs over the plane {x3 = 0};

(3) For R > 1, δ > 0 and points p±i ∈ Σi ∩BR with δ < |x3(p+
i )− x3(p−i )|, p−i

and p+
i lie in the same connected component of Σi∩B2R and distΣi(p−i , p

+
i )→

∞. That is the intrinsic distance between p−i and p+
i becomes unbounded.

The sequence given by Theorem 1.1, can be thought of heuristically as a family
of parallel planes joined together by necks that are distributed in a “zig-zag”. We
call the Σi a zig-zag sequence and refer to Figure 1. While the lamination, L and
singular set S of Item (1) matches one of the examples arising from Riemann’s
family, the convergence structure of Item (2) disagrees substantially–specifically,
near the singular set the surfaces Σi are modeled on the catenoid. Indeed, by
[12] one expects that there is no sequence of complete embedded planar domains
behaving like the zig-zag sequence. However, the zig-zag sequence appears to arise
as the limit of a sequence to be complete immersed planar domains. These examples
are discussed by F. J. López, M. Ritoré and F. Wei in [17] using the Weierstrass
representation and may be thought of as a “twisted” version of Riemann’s family.
We point out that Item (3), implies that the chord arc bounds of [6]–which give a
uniform relationship between intrinsic and extrinsic distance for embedded minimal
disks–cannot hold for embedded minimal planar domains.

A slight modification of the construction of the zig-zag sequence gives a sequence
of embedded minimal planar domains converging to a multiplicity three plane:

Theorem 1.2. There is a sequence of minimal planar domains Σi with ∂Σi ⊂ ∂BRi
where Ri →∞ so that

(1) Σi converges in C∞loc(R3\S) to a lamination L consisting of a single plane
{x3 = 0}. Here S consists of two distinct points in {x3 = 0};

(2) For ε > 0, and i sufficiently large, Σi\Tε(S) consists of the union of three
single-valued graphs over {x3 = 0}.

Roughly speaking, the sequence of Theorem 1.2 looks like a fundamental piece of
one of Riemann’s examples with catenoidal ends glued onto each neck. Work of F.
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S+ S−

Figure 1. A schematic picture of an element of the zig-zag sequence

J. López and A. Ros [18] implies that such a procedure cannot produce a complete
embedded surface. However, as with the zig-zag sequence, there is a family of
complete immersed planar domains that appear to degenerate to a lamination as in
Theorem 1.2. The Weierstrass data for this family was considered by D. Hoffman
and H. Karcher in Section 5 of [10].

While the sequences of Theorems 1.1 and 1.2 can presumably be constructed
from the families of [17] and [10] by rescalings and intersecting with large balls,
we take a more variational approach. In particular, we construct our surfaces by
using an existence result for unstable minimal annuli due to W. H. Meeks and B.
White [19] along with a reflection argument. The bulk of the argument is devoted to
controlling the position of the neck of the annulus, which we accomplish by adapting
an argument of M. Traizet [22]. We follow this approach for two reasons. First of
all, we are interested in embedded surfaces–a delicate condition to check using the
Weierstrass representation. More importantly, we believe that the techniques we
employ may help in forming a better understanding of the possible structures of
limit laminations and singular sets that arise from sequences of embedded minimal
planar domains.

2. Preliminaries

Let x1, x2 and x3 be the standard coordinates on R3 with e1, e2 and e3 the
associated orthonormal basis and `1, `2 and `3 the corresponding coordinate axes.
The euclidean distance between two sets A,B ⊂ R3 is denoted by dist(A,B). We
denote an open ball in R3 of radius r and centered at p by Br(p) and by Tr(A) the
tubular neighborhood of radius r of a set A ⊂ R3. We will always consider a surface
Σ ⊂ R3 to be an a smooth open surface so that Σ is a surface with boundary of
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class C2. Given such Σ we let A be the second fundamental form of Σ and distΣ

be the intrinsic distance function.
When Σ is an oriented minimal surface and γ an oriented closed curve in Σ we

let ν : γ → R3 be the unit conormal to γ and define the force vector F(γ) by

F(γ) :=

∫
γ

νds ∈ R3.

A consequence of Stokes’ theorem and the minimality of Σ is that this vector
depends only on [γ] ∈ H1(Σ). When Σ is an annulus we define the force of Σ, F,
to be F(γ) where [γ] generates H1(Σ).

We always take P = {x3 = 0} ⊂ R3 to be the x1-x2 plane and H = {x1 > 0}∩P
an open half-plane. Let Rθ denote the map given by rotation about `2 by θ

Rθ : R3 → R3

(x1, x2, x3) 7→ (x1 cos θ + x3 sin θ, x2,−x1 sin θ + x3 cos θ).

We write Hθ = Rθ(H) for the open half-plane obtained by rotating H around `2
by θ. More generally, for a set Ω ⊂ H denote by Ωθ = Rθ(Ω) ⊂ Hθ. For Ω ⊂ P a
domain and u : Ω→ R a continuous function the graph of u is defined as

Γu := {(p, u(p)) : p ∈ Ω} ⊂ R3.

For 0 < θ < π let W (θ) be the component of R3\H−θ ∪Hθ containing (1, 0, 0).
That is W (θ) is an open wedge of angle 2θ symmetric with respect to reflection
through P . Consider the map Π orthogonal projection onto P

Π : R3 → R3

(x1, x2, x3) 7→ (x1, x2, 0).

Proposition 2.1. Suppose that 0 < θ < π
2 then

(1) Π(Wθ) = H.
(2) For Ω ⊂ H one has Π(Ωθ) = Π(Ω−θ).
(3) For Ω,Ω′ ⊂ H, Ω ∩ Ω′ = ∅ if and only if Π(Ωθ) ∩Π(Ω′θ) = ∅.

Proof. For 0 < θ < π
2 , 0 < cos θ which gives item (1). Similarly, item (2) fol-

lows from cos θ = cos(−θ). Finally, if p ∈ Ω ∩ Ω′ and p = (x1, x2, 0) then
q = (x1 cos θ, x2, 0) ∈ Π(Ωθ) ∩Π(Ω′θ). Since cos θ 6= 0 this verifies Item (3). �

3. Unstable minimal annuli in wedges

In [19], Meeks and White use degree theory arguments and some special prop-
erties of the Gauss map to understand the space of minimal annuli spanning a pair
of convex planar curves. A consequence of their work is the following:

Theorem 3.1. Let σ−, σ+ ⊂ H be closed convex curves of class C2,α. If 0 < θ < π
2

then σ−−θ ∪ σ
+
θ bounds one of the following in W (θ):

(1) No minimal surface;
(2) Exactly one minimal surface, Σ, which is a marginally stable annulus;
(3) One strictly stable minimal annulus ΣS and one index one minimal annulus

ΣU and possibly other minimal surfaces.

Proof. The theorem follows from Theorem 0.2 of [19] provided we verify that σ−−θ
and σ+

θ are an extremal pair of curves. That is the union σ−−θ ∪ σ
+
θ lies in the

boundary of its convex hull. As W (θ) is a convex domain and σ−−θ ∪ σ
+
θ ⊂ ∂W (θ)

this is immediate. �
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We consider now the following analogue of a problem studied by Traizet in [22].
Let Ω−,Ω+ ⊂ H be convex domains with ∂Ω± = σ± ⊂ H of class C2,α and Ω−∩Ω+

non-empty. For θ sufficiently small the least area surface spanning σ−−θ ∪ σ
+
θ is an

annulus. Hence, by Theorem 3.1, there is a unique unstable minimal annulus Σθ
with ∂Σθ = σ−−θ ∪ σ

+
θ . We are interested in the behavior of Σθ as θ → 0. The

main result in this direction is modeled on an analogous result of Traizet [22] for
sequences of unstable annuli bounded by convex planar curves in parallel planes
collapsing towards each other. We note that Traizet considers also the behavior
sequences with uniformly bounded genus.

Theorem 3.2. Fix convex domains Ω−,Ω+ ⊂ H with ∂Ω± = σ± ⊂ H of class C2,α

and Ω− ∩ Ω+ non-empty. With θi > 0 we suppose that Σi is an unstable minimal
annulus with ∂Σi = σ−−θi ∪ σ

+
θi

. The sequence Σi has the following behavior (after

passing to a subsequence) as θi → 0:

(1) Σi converges to Ω− ∪ Ω+ in the Hausdorff sense.
(2) If νi is the Radon measure on R3 given by

νi(U) =

∫
Σi∩U

|A|2

then

νi → 8πδp

in the weak* sense. Here δp is the Dirac measure concentrated at a point

p ∈ Ω− ∩ Ω+ which satisfies dist(p, `2) = dist(Ω− ∩ Ω+, `2).

(3) For each ε > 0, Σ\Bε(p) consists of two components Σ±,εi that converge in

C2(R3\Bε(p)) to Ω
±\Bε(p).

(4) There exists a sequence αi → ∞ so that if Σ̂i = αi (Σi − p) + p then Σ̂i
converges in the sense of Items (1), (2) and (3) to the union of a half-plane

Ĥ and a convex region Ω̂ with D1(p) ⊂ Ĥ ∩ Ω̂ and dist(p, ∂Ĥ) = 1.

Remark 3.3. By interior elliptic estimates, the Σ±i → Ω±\Bε(p) in C∞loc.

The bulk of this article will consist in proving Theorem 3.2. We begin by not-
ing some useful properties of minimal annuli spanning curves σ±±θ. We refer to
Proposition 3 of [22] for corresponding results on minimal surfaces spanning a slab.

Proposition 3.4. Fix convex domains Ω−,Ω+ ⊂ H with ∂Ω± = σ± ⊂ H of class
C2,α. If 0 < θ < π

2 and Σ is a minimal annulus with ∂Σ = σ−−θ ∪ σ
+
θ then there is

a constant C = C(Ω−,Ω+) so the following holds:

(1)
∫

Σ
|A|2 ≤ 8π;

(2) Σ is embedded and for any ball Br(p) one has Area(Br(p) ∩ Σ) ≤ 2πr2;
(3) Ω− ∩ Ω+ 6= ∅;
(4) Σ ⊂W (θ) ∩ TCθ(Ω− ∪ Ω+);
(5) If Σ is not a stable annulus and Dr(p) ⊂ Ω− ∩ Ω+ for r ≥ Cθ then Σ ∩

Π−1(Dr(p)) 6= ∅.
(6) For generic p ∈ Ω−∩Ω+, Π−1(p)∩Σ consists of an even number of points.

Proof. In general |HΣ
∂Σ| ≤ |HR3

∂Σ| where HΣ
∂Σ is the geodesic curvature (with respect

to the outward normal) of ∂Σ as a curve in Σ while HR3

∂Σ is the geodesic curvature
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of ∂Σ as a curve in R3. As ∂Σ is a pair of planar convex curves |HR3

∂Σ| = HR3

∂Σ ≥ 0
and the Gauss-Bonnet formula and Gauss equation together imply∫

Σ

|A|2 = 2

∫
∂Σ

HΣ
∂Σ ≤ 2

∫
∂Σ

HR3

∂Σ = 8π.

This verifies Item (1). Item (2) follows immediately from [8].
We next show Item (3). Our argument is a variation on [20]. Suppose that

there were disjoint regions Ω−,Ω+ and a minimal annulus Σ with ∂Σ = σ−−θ ∪ σ
+
θ .

Since both domains are disjoint and convex it is possible to pick a line ` ⊂ P that
separates Ω− from Ω+. Let `(θ) be the line in P given by Π(Rθ(`)) and let P⊥ be
the plane orthogonal to P containing `(θ). We note that by Item (1) of Proposition
2.1 that `(θ) = `(−θ). Moreover, as Π(P⊥) = `(θ), Item (3) of Proposition 2.1
implies that Ω−−θ,Ω

+
θ and P⊥ are pair-wise disjoint.

Consider Σ̂ the reflection of Σ across the plane P . Thus, ∂Σ̂ = σ−θ ∪ σ
+
−θ ⊂

∂W (θ). In particular, ∂Σ ∩ ∂Σ̂ ⊂ P⊥ and, by the convex hull property, Σ ∩ P 6= ∅
and Σ ∩ P ⊂ Σ ∩ Σ̂ so Σ∩ Σ̂ 6= ∅. Now pick v a unit vector parallel to `(θ) so that

v · e1 ≤ 0. Set Σ̂t = Σ̂ + tv the translate of Σ̂. For t > 0, W (θ) ⊂ W (θ) + tv and

so ∂Σ̂t ∩W (θ) = ∅ for all t ≥ 0. Pick t0 > 0 so that Σ̂t0 is separated from Σ by a

plane normal to v. There is then a t1 with 0 < t1 ≤ t0 so for t > t1 Σ ∩ Σ̂t = ∅
while for t < t1 Σ ∩ Σ̂t 6= ∅. By the strict maximum principle Σ ∩ Σ̂t1 = ∅ and

∅ 6= ∂Σ ∩ ∂Σ̂t1 ⊂ P⊥. However, by the boundary maximum principle and the

compactness of ∂Σ ∩ ∂Σ̂t1 there is an ε > 0 so n(p) · n̂(p) > −1 + ε for every

p ∈ ∂Σ ∩ ∂Σ̂t1 , here n and n̂ are the outward normals of Σ and of Σ̂t1 . This

combined with the fact that for t < t1 ∂Σ ∩ ∂Σ̂t ⊂ P⊥ means that Σ and Σ̂ are
disjoint near ∂Σ∪∂Σ̂t for t near t1. Thus, the maximum principle implies Σ∩Σ̂t = ∅
for t near t1 a contradiction.

We next verify Item (4) taking

C = 4 sup
p∈Ω−∪Ω+

dist(p, `2).

As sin θ ≤ θ for θ ≥ 0,

Σ ⊂
{
|x3| ≤

C

4
sin θ

}
⊂
{
|x3| ≤

C

4
θ

}
.

In a similar vein, as 1−cos θ ≤ θ for θ ≥ 0, Π(Ω−−θ∪Ω+
θ ) ⊂ TC

4 θ
(Ω−∪Ω+) and hence

∂Σ ⊂ TC
2 θ

(Ω− ∪ Ω+). That is, if Cp is the circle of radius C
2 centered at a point

p ∈ P then for each p ∈ P\TCθ(Ω− ∪ Ω+) there is a unit vector w parallel to P so
that Cp+tw ∩TC

2 θ
(Ω−∪Ω+) = ∅ for t ≥ 0. There is a piece of a catenoid Catp with

∂Catp =
(
Cp + C

4 θe3

)
∪
(
Cp − C

4 θe3

)
. For p ∈ P\TCθ(Ω− ∪ Ω+) Catp ∩ ∂Σ = ∅

while for t large enough Catp+tw ∩ Σ = ∅. Thus, the maximum principal ensures
Σ ⊂ TCθ(Ω− ∪ Ω+).

Item (5) also holds with C as above. If Dr(q) ⊂ Ω− ∩ Ω+ with r ≥ C then
Catq ∩Σ = ∅ and ∂Catq ∩W (θ) = ∅. As Catq is disjoint from Σ there are distinct
components, U− and U+ of W (θ)\ (Σ ∪ Catq) so that Σ ⊂ ∂U±. Moreover, σ±±θ is

not contractible in either U− or U+. Hence, as each region is mean convex in the
sense of [14] there are embedded stable minimal annuli Σ± ⊂ U± with ∂Σ± = ∂Σ.
By Theorem 3.1 this occurs only if Σ = Σ− = Σ+.
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Item (6) follows for topological reasons. Let p be a point in Ω− ∩ Ω+ so that

Π−1(p) meets Σ transversally. Denote by γ̂ the component of Π−1(p) ∩W (θ) with

endpoints {p±} = H±θ ∩ γ̂. Connect p+ to p− in R3\W (θ) to obtain a closed curve
γ that is linked with both components of ∂Σ. The linking number of ∂Σ with γ is
zero and so γ meets Σ an even number of times. �

4. Neck placement

We wish to understand the position and size of the “neck” of an unstable minimal
annulus. In order to do so it will be convenient to know that certain minimal
surfaces that arise as rescalings of minimal annuli as in Proposition 3.4 are flat. As
the proof is somewhat technical, we defer it to the end of this section.

Proposition 4.1. Let H− and H+ be two open half-planes in P with V = H−∩H+

a non-empty cone in P . Set H+
t = H+ + te3 for t ∈ [1,∞]; here H+

∞ = ∅. Suppose
Σ is a minimal surface with ∂Σ = ∂H− ∪ ∂H+

t that satisfies, for C > 1,

(1)
∫

Σ
|A|2 ≤ 8π;

(2) Σ is embedded and Area(Br(p) ∩ Σ) ≤ 2πr2;
(3) Σ\

(
H− ∪H+

t

)
⊂ TCt(H− ∪H+) ∩ {0 < x3 < t};

(4) If p ∈ V and D+(p) = D2Ct(p) ∩ V then Π(Σ) ∩D+(p) 6= ∅;
(5) If t <∞ then Π−1(p) ∩ Σ is an even number of points for generic p ∈ V .

Then, up to a rotation of R3, Σ = H− ∪H+
t or Σ = H− ∪ (P + Te3) where T > 0.

We next introduce a definition allowing us to quantify the location and size of a
neck:

Definition 4.2. For a fixed C > 0 and surface Σ we say that (p, s) ∈ Σ× R+ is a
C blow-up pair provided

(1) BCs(p) ∩ ∂Σ = ∅
(2) supBCs(p)∩Σ |A|2 ≤ 4|A|2(p) = 4s−2.

Blow-up pairs can always be found when the curvature is large:

Lemma 4.3. Fix C > 0 and Suppose Σ is a compact surface in R3 so that

Br0(p) ∩ ∂Σ = ∅

and

sup
Br0/2(p)

|A|2 ≥ 16C2r−2
0 .

Then there is a point q and scale s > 0 so that Bs(q) ⊂ Br0(p) and (q, s) is a C
blow-up pair.

The larger the constant C, the better Σ is modeled near the blow-up pair on a
complete surface:

Proposition 4.4. Given 1 > ε > 0 there is a C = C(ε) > 100 such that if Σ is an
oriented minimal surface and (p, s) is a C blow-up pair in Σ then

(1)
∫
BCs(p)∩Σ

|A|2 ≥ 8π − ε.
(2) If, in addition, Σ is embedded and

∫
Σ
|A|2 ≤ 8π then

∫
∂B100s(p)∩Σ

|A| ≤ 1
10

and if U is a component of B100s(p)\Σ then V ol(U) ≥ s3.
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Proof. Let us prove Item (1). We proceed by contradiction and so fix an 1 > ε > 0.
Suppose that Σi was a sequence of counter-examples. By translating and scaling
we may assume that (0, 1) are Ci blow-up pairs in Σi with Ci → ∞ and so that∫
BCi∩Σ

|A|2 < 8π− ε. As Ci →∞, up to passing to a subsequence the Σi converge

smoothly on compact subsets of R3–possibly with multiplicity–to a complete proper
orientable minimal surface Σ with 0 ∈ Σ satisfying |A|(0) = 1 and

∫
Σ
|A|2 ≤ 8π− ε.

The total curvature bound implies that the Gauss map of Σ misses an open set of
S2 and so Σ is a plane, contradicting the curvature lower bound at 0.

Item (2) follows in a similar manner. One needs two facts: First, the only non-
flat embedded minimal surface of total curvature 8π is the catenoid. Second if Cat
is a vertical catenoid centered at 0 and normalized so that supCat |A| ≤ 4 then a
point p′ ∈ Cat with |A|(p′) = 1 satisfies p′ ∈ B10(0). Straightforward calculations
give

∫
∂B100(p′)∩Cat |A| ≤

1
10 and that any component U of B100s(p

′)\Cat satisfies

V ol(U) ≥ 1. �

When the angle is small enough there is always a blow-up pair:

Proposition 4.5. Fix C > 0 and convex domains Ω± ⊂ H so that ∂Ω± = σ± are
C2,α curves. There is a θ0 = θ0(C,Ω1,Ω2) such that any unstable minimal annulus
Σ with ∂Σ = σ1

−θ ∪ σ2
θ and 0 < θ < θ0 contains a C blow-up pair (p, s) in Σ.

Proof. We proceed by contradiction. Let θi → 0 and Σi unstable minimal annuli
with ∂Σi = σ1

−θi ∪σ
2
θi

and so that each Σi contains no C blow-up pair. By Lemma

4.3, this occurs only if supBr/2(p)∩Σi |Ai|
2 < 16C2r−2 when Br(p) ∩ ∂Σi = ∅. That

is,

(4.1) |Ai|2(p) < 16C2dist(p, ∂Σi)
−2.

Let pi ∈ Σi be a point of maximum curvature of Σi, i.e.

λi = sup
Σi

|Ai| = |Ai|(pi).

Such a point exists since ∂Σi is of class C2. Now consider the surface

Σ̂i = λi(Σi − pi)

so 0 ∈ Σ̂i, supΣ̂i
|Ai| ≤ 1 and |Ai|(0) = 1. By passing to a subsequence, the uniform

curvature estimate implies that Σ̂ converges smoothly to a surface Σ̂ which is a
smooth non-compact minimal surface with boundary. By (4.1), the boundary is

non-empty. Indeed, as ∂Σ̂i is obtained from fixed closed C1 curves by limits of
rigid motions and homothetic blow-ups, ∂Σ̂ is either one or two disjoint lines.

We claim this is impossible. Indeed, by Proposition 3.4, Σ̂ satisfies all of the
conditions of Proposition 4.1 and so is flat, contradicting the curvature lower bound
at 0. �

Away from a blow-up pair our annuli are graphs:

Proposition 4.6. There exists a C > 0 so: Suppose that Ω± ⊂ H are fixed
convex domains with ∂Ω± = σ± of class C2,α. If Σ is a minimal annulus with
∂Σ = σ−−θ ∪ σ

+
θ for 0 < θ < π

4 and (p, s) is a C blow-up pair in Σ then there are

functions u± ≥ 0 defined on Ω̂±±θ := Ω±±θ\BCs(p±θ) so that the following holds

(1) |∇u±| ≤ 1
10

(2) R±θ (Γ∓u±) = Σ± ⊂ Σ
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(3) s ≤ C0θ for some C0 = C0(Ω−,Ω+).

Here p±θ is the nearest point to p in H±θ.

Proof. Let ε > 0 be a small–as yet unspecified–constant and use it to choose C >
100 as in Proposition 4.4. Denote by Σ± the components of Σ\BCs(p) with σ±±θ ⊂
∂Σ±. Item (1) of Proposition 3.4 and Proposition 4.4 imply that

∫
Σ±
|A|2 < ε. It

follows from the estimate of Choi and Schoen [1] and boundary regularity estimates
that, provided ε is small enough, Σ± satisfies the point-wise curvature estimate
|A|2(q) ≤ C1εdist(q, p)−2. Combining this with Item (2) of Proposition 4.4, one
has

∫
∂Σ±
|A| ≤ 2

10 . In particular, by Proposition 1.3 of [3], both Σ± are graphical.
By shrinking ε and increasing C one can ensure Item (1) holds.

Item (3) follows by noting that one component of U of B100s(p)\Σ satisfiess U ⊂
{|x3| ≤ C2θ} where C2 = C2(Ω−,Ω+). In particular, V ol(U) ≤ 1002πs2C2θ Hence,
the estimate follows from Item (2) of Proposition 4.4 by taking C0 = 1002πC2. �

Proof. (of Proposition 4.1). We first note that there is an R > 0 so that (possibly
after a small rotation of R3) each component Σ1, . . . ,Σk of Σ\Π−1(DR) is a (multi-
valued) graph over V ′i \DR where V ′i ⊂ P\ {0} is an open cone. When t < ∞ this
follows directly from Item (1), the estimate of Choi and Schoen [1] and Item (3).
When t = ∞ one can’t use (3) to conclude the uniqueness of tangent cones at ∞
of Σ and instead must use Proposition 1.3 of [3]. The fact that Σ has boundary
does not cause issues as ∂Σ consists of a pair of lines so one may Schwarz reflect
and obtain the needed point-wise estimates up to ∂Σ. By Item (3), the rotation is
unnecessary if t <∞ or if one of the Σi has a plane as its tangent cone at infinity.

We claim that 1 ≤ k ≤ 2 and that we may label the components Σi so that Σ− is
a single-valued graph over H−\DR with ∂Σ− ⊂ ∂H−. Further, if t <∞ then k = 2
and Σ+ is a single-valued graph over H+\DR with ∂Σ+ ⊂ ∂H+

t while if t = ∞
and k = 2 then Σ+ is a single-valued graph over P\DR with ∂Σ+ ⊂ Π−1(∂DR).
Finally, the small rotation is only needed if k = 1; indeed if k = 2 then the tangent
cone at infinity to Σ is contained in P .

If t < ∞ then, Item (3) and the fact that V is a non-empty open cone implies

P\H− ∪H+ is a non-empty cone in P . Moreover, as no initial rotation was needed,
Σ ⊂ TCt(H−∪H+). In particular, each V ′i ⊂ TCt(H−∪H+) and so no Σi is multi-
valued. By Schwarz reflecting over the lines making up part of ∂Σi we see that
each Σi is a subset of either a single valued graph over P\DR or is part of the
middle sheet of a 3-valued graph over P\DR. In either case, each Σi has a unique
tangent plane at infinity–necessarily parallel to P . As a consequence, the area
upper bound on Σ given by Item (1) and Item (5) imply that k = 2 and that
V \DR ⊂ TCt(Π(Σ1) ∩ Π(Σ2)). The two components Σ1 and Σ2 are both single
valued graphs so our claim will be verified provided ∂H− cannot be connected to
∂H+

t in either Σ1 or Σ2. To that end let σir = Π−1(∂Dr) ∩ Σi for r ≥ R. For r
large enough, Π(σir) ∩ V 6= ∅ and Π(σir) ⊂ TCt(H

− ∪H+). Further, if σ1
r connects

H− to H+
t then σ+

r also connects H− to H+
t . Hence, there is a point p ∈ V

so that Π(σ1
r ∩ σ2

r) = p which contradicts Item (2). We label the components so
∂Σ− ⊂ ∂H− and ∂Σ+ ⊂ ∂H+

t .
When t = ∞, none of the Σi is multi-valued. Indeed, as ∂Σ ⊂ P and Σ is

embedded, any component Σi with Π(Σi) = P\DR would either be single-valued
or would spiral infinitely–the latter situation is ruled out by Item (2). Hence we
may label the Σi so that ∂Σ1 ⊂ ∂H− while ∂Σi ⊂ Π−1(∂DR) for i ≥ 2. If Σ1 is
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the only component then plane barriers imply that, after a rotation, Σ = H−. As
already noted, when k > 1 the initial small rotation is unnecessary. In particular,
by Item (3) P is the tangent cone at infinity of each of the Σi for i = 2, . . . , k. A
consequence of this, Item (3) and Item (4) is that H− is the tangent cone at infinity
of Σ1 when k > 1. Hence, by Item (2) k = 2 and there are two components which
we label Σ− and Σ+.

We may assume that Σ− and Σ+ are connected in Σ as otherwise using planes
as barriers implies that Σ− = H− and Σ+ = H+

t or Σ+ = P + Te3 and we would
be done. As ∂Σ− is a subset of a line, Schwarz reflection gives a single valued
graph Γ− = Γu− over P\DR. When t < ∞ one obtains in the same manner a
single valued graph Γ+ = Γu+ over P\DR. that contains Σ+. When t = ∞, Σ+

is already such a graph and we write Σ+ = Γv+ . As Σ− ⊂ {|x3| < T} for some
T < t we have Γ− ⊂ {|x3| < 2T}, and analogously, Γ+ ⊂ {|x3| ≤ 2t}. As each Γ±

contains line segments over H±\DR and the u± are asymptotically harmonic (see
[21]) the functions u± have the following asymptotic expansion,

(4.2) u±(x) = δ± ± λ±x · v±

|x|2
+Q±(x) +O(|x|−n−1)

where here δ− = 0 while δ+ = t, v± is the outward normal to H± in P , λ± ≥ 0
and Q± is a homogenous harmonic function of order n ≤ −2. Similarly, as Σ+ is
disjoint from P , v+ has the expansion

v+(x) = µ+ log |x|+O(1)

where µ+ ≥ 0. As Σ is connected λ− > 0. Indeed, if λ− = 0 then by Item (3)
Q− = 0 and so H− is one component of Σ.

We finish the proof by considering force balancing. For each r > R let σ−r be the
component of Π−1(∂Dr) ∩ Σ− so that ∂σ−r ⊂ ∂H−. Denote by L−r the bounded
component of ∂H−\∂σ−r and by σ̂−r = σ−r ∪L−r so [σ̂−r ] generates H1(Σ−). If ν− is
the conormal to σ̂−r then we compute using (4.2) that∫

σ−r

ν− = −2rv− +O(r−1).

On the other hand, ∫
L−r

ν− = 2rv− + α−v− − β−e3 +O(r−1)

where α−, β− > 0. This second computation uses (4.2) and the fact that the
conormal of Σ along ∂H− is normal to ∂H− and, by Item (3), must point out of
{x3 > 0}. The force of Σ− satisfies,

F− =

∫
σ̂−r

ν− = α−v− − β−e3 +O(r−1)

If t =∞ the force of Σ+ is µ+e3 which is orthogonal to v−. This is impossible as
α− > 0 and Σ is connected. If t <∞ the force F+ of Σ+ may be computed it the
same manner as for F− and balancing implies:

0 =

∫
σ̂+
r

ν+ +

∫
σ̂−r

ν− = α−v− + α+v+ + (β+ − β−)e3 +O(r−1).

As v± ·e3 = 0 and α± > 0 this can occur only when v+ = −v− which is inconsistent
with H− ∩H+ containing a non-empty cone. �
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5. Harmonic Rescaling

Following Traizet we consider the harmonic rescalings of minimal graphs. We
begin with some facts about Green’s functions. Recall that for a given (possibly
unbounded) domain Ω in R2 with ∂Ω 6= ∅ of class C2,α we may define the Green’s
function of Ω with pole at p ∈ Ω to be the unique function G(x; p) so that

(1) G(·; p) ∈ C∞(Ω\ {p}) ∩ C0(Ω\ {p});
(2) G(x; p) = − 1

2π log |x− p|+R(x; p) where R ∈ C0(Ω× Ω);
(3) ∆G(·; p) = 0 in Ω\ {p};
(4) G(·; p)|∂Ω = 0 and if Ω is unbounded limx→∞G(·; p) = 0.

The uniqueness of G follows from the maximum principle which also ensures that
G(·; p) > 0 on Ω\ {p}. The function R(x; p) is the regular part of G and can be
checked to be a smooth harmonic function in both x and p. We set R(x) = 1

2R(x;x)
a function in C∞(Ω) also known as the Robins function of Ω. For later reference we
give the Robin’s function when Ω = {x : (x− x0) · v > 0), |v| = 1} is a half-space

(5.1) R(x) =
1

2π
log (2v · (x− x0)) .

We then have a general approximation result for very flat minimal graphs:

Theorem 5.1. Fix Ωi ⊂ P a sequence of bounded convex domains with ∂Ωi = σi
each of class C2,α. Suppose in addition there is a, possibly unbounded, convex
domain Ω with non-empty boundary so that Ωi → Ω 6= ∅ in the following sense:

(1) Ωi → Ω in the Hausdorff sense

(2) σi → σ = ∂Ω in C2,α
loc (P ) and with multiplicity one.

If there is a sequence of points pi ∈ Ωi, radii ri > 0 and functions ui ≥ 0 so that:

(1) Dri(pi) ⊂ Ωi;
(2) pi → p ∈ Ω and ri → 0;
(3) ui ∈ C∞(Ωi\Dri(pi)) ∩ C2(Ωi\Dri(pi)) with ui > 0 on Ωi and

ui|∂Ωi
= 0

(4) ui → 0 in C∞loc(Ω\ {p}).
(5) Σi = Γui is a minimal annulus.

then there is a sequence of λi > 0 with λi → 0 and functions vi so that

(1) vi ∈ C∞(Ωi\Dri(pi)) ∩ C2(Ωi\Dri(pi))
(2) vi → 0 in C∞loc(Ω\ {p}).
(3) On Ω\Dri(p) one has

ui(x) = λiG(x; p) + λivi(x)

where here G is Green’s function of Ω with pole at p.
(4) The flux Fi of Σi has the asymptotic form

Fi = −λie3 − λ2
i (∂1R(p)e1 + ∂2R(p)e2) + o(λ2

i )

where here R is the Robin’s function of Ω.

Proof. We first prove the existence of the values λi and the functions vi using the
Harnack inequality. To that end, fix a point q ∈ Ω\ {p}. By throwing out a finite
number of elements in the sequence we may assume that q ∈ Ωi\Dri(pi) for all i.
Set µi = ui(q) > 0 and Kj = Ω\

(
Tδj (∂Ω) ∪Bδj (p)

)
∩DRj . Here we choose δj → 0



12 JACOB BERNSTEIN

and Rj → ∞ so that each Kj is a compact annulus containing q, Kj ⊂ K̊j+1 and
Ω\ {p} = ∪∞j=1Kj .

Fix ε > 0, as Ωi → Ω in the Hausdorff sense and Ωi is convex, for each Kj there
is an ij so that for i > ij one has Kj ⊂ Ωi and dist(Kj , ∂Ωi) >

1
2δj . Furthermore,

as ui → 0 in C∞loc(Ω\ {p})
(5.2) sup

Kj

|ui|+ |∇ui| < ε.

In particular, when i > ij , ui solves a uniformly elliptic equation on Kj . Hence, the
Harnack inequality (Chapter 8 of [9]) gives a constant C = Cj > 0 with Cj+1 ≥ Cj
so that for i > ij :

(5.3) sup
Kj

|ui| ≤ Cjµi

By applying the maximum principle to the component of Ωi\Kj with boundary
∂Ωi ∪ ∂Kj and noting that u = 0 on ∂Ωi one obtains, for i > ij , the estimate:

(5.4) sup
Ωi\Dδj (p)

ui ≤ Cjµi.

Plane barriers, (5.4) and the boundary maximum principle imply that for i > i1

(5.5) sup
∂Ωi

|∇ui| ≤ C1µi.

Hence, interior gradient estimates and (5.4) give a constant C > 0 so for i > ij :

(5.6) sup
Ωi\D2δj

(p)

|∇ui| ≤ CCjδ−1
j µi.

In particular, for i > ij sufficiently large, the ui satisfy a uniformly elliptic equation

on Ω\D2δj . Thus, Schauder estimates give a constant C so that

(5.7) sup
Ωi\D2δj

(p)

|ui|+ δj |∇ui|+ δ2
j |∇2ui| ≤ CCjµi.

On the other hand, interior estimates give constants C(k, j) so that on Kj

||ui||Ck ≤ C(k, j)µi.

Hence, if we set ũi = µ−1
i ui then by the Arzela-Ascoli theorem one has (up to

passing to a subsequence) that ũi converges in C∞loc(Ω\ {p}) ∩ C1(Ω\Dδ1(p)) to a
function ũ which vanishes on ∂Ω and has ũ(q) = 1. As |∇ui| → 0 in C∞loc(Ω\ {p})∩
C0(Ω\Dδ1(p)) one has ũ harmonic on Ω\ {p}. It follows from the Harnack inequality
and the nature of the convergence that ũ > 0 in Ω\ {p}. Moreover,

sup
DΩ\D2δ1

(p)

|ũ| ≤ CC1.

In addition, if Ω is unbounded by using barriers arising from Riemann’s minimal
surfaces we have that limx→0 ũ(x) = 0. Indeed, let µ̂i = sup∂Dε1 (p) |ui| so that

the Harnack inequality gives µ̂i ≤ Ĉµi for some uniform constant Ĉ ≥ 1. Fix
a y ∈ ∂Ω and let Hy be the half-space so that Ω ⊂ Hy and y ∈ ∂Hy. Such a
half-space exists as Ω is convex. By considering an appropriate piece of one of
Riemann’s examples it is possible to find a sequence of minimal graphs wi over
Hy\Dδ1(p) so that wi(x) = Ĉ ′µ̂iGy(x; p) + µiŵi(x) where here Gy is the Green’s
function of Hy, ŵi = 0 on ∂Hy and limx→∞ ŵ(x) = 0. Moreover, ŵi → 0 uniformly
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on compact subsets of Hy\Dδ1(p) and Ĉ ′ satisfies Ĉ ′ inf∂Dδ1 (p)Gy(x; p) > Ĉ. For

i large, wi ≥ ui on ∂Dδ1(p), and so wi ≥ ui by the maximum principle. Hence,

Ĉ ′Gy(x; p) ≥ ũ(x) for all x. It follows that ũ = λG for some λ > 0 where G is the
Green’s function of Ω with pole at p. Hence, we set λi = µiλ and vi = ui

λi
−G.

We must also verify the asymptotic expansion for the force vector. To that end
we fix a r > 0 and take i large enough so that Dri(pi) ⊂ Dr(p) ⊂ Ωi. We let
γri be the image of ∂Dr(p) in Σi. Clearly, [γri ] generates H1(Σi). We normalize
νi : γri → R3 the conormal to γri in Σi so the vector field Π∗νi points out of Dr(p).
If we introduce polar coordinates (ρ, θ) centered at p and write u for ui then

νidsi = r

(
(1 +

u2
θ

r2 ) cos θ + uρ
uθ
r sin θ, (1 +

u2
θ

r2 ) sin θ − uρ uθr cos θ, uρ

)
√

1 + |∇u|2

= r(cos θ, sin θ, uρ)

+ r((
u2
θ

r2
− 1

2
|∇u|2) cos θ + uρ

uθ
r

sin θ, ((
u2
θ

r2
− 1

2
|∇u|2) sin θ − uρ

uθ
r

cos θ, 0) +O(|∇u|3)

where dsi is the length element. As ui = λiG+ λivi and vi = o(1) on ∂Dr(p),

Fi = −λie3 + λ2
i r

∫ 2π

0

((
G2
θ

r2
− 1

2
|∇G|2) cos θ +Gρ

Gθ
r

sin θ

)
e1

+

(
(
G2
θ

r2
− 1

2
|∇G|2) sin θ −Gρ

Gθ
r

cos θ

)
e2

)
dθ + o(λ2

i )

To proceed further we write out an expansion for G about p:

G(r, θ) = − 1

2π
log r + a0 + a1r cos θ + b1r sin θ +O(r2).

One computes,

G2
θ

r2
=

1

2
a2

1(1− cos 2θ) +
1

2
b21(1 + cos 2θ)− 2a1b1 sin 2θ +O(r)

|∇G|2 =
1

4π2r2
+

1

πr
a1 cos θ +

1

πr
b1 sin θ +O(1)

and

Gθ
r
Gρ = − 1

2πr
a1 sin θ +

1

πr
b1 cos θ +O(1).

Plugging this into the formula above we obtain:

Fi = −λie3 + λ2
i (−a1e1 − b1e2) +O(rλ2

i ) + o(λ2
i )

= −λie3 − λ2
i (a1e1 + b1e2) + o(λ2

i )

where the second asymptotic equality follows as we may take r = ri → 0 as i→∞.
The proof is concluded by noting that a1 = ∂1R(p) and b1 = ∂2R(p).

�

6. Concluding the Proof

We are now in a position to prove Theorem 3.2.
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Proof. Pick C as in Proposition 4.6 and a sequence Ci > C with Ci → ∞. Using

this Ci and Ω± pick θ̂i as in Proposition 4.5. Up to passing to a subsequence, we

have that θi < θ̂i and so are able to find (pi, si) each a Ci blow-up pairs in Σi. We

also take pi → p ∈ Ω− ∩ Ω+ and si → 0.
By Proposition 3.4 Σi converges to Ω− ∩ Ω+ in the Hausdorff sense. Further-

more, by Item (1) of Proposition 3.4 and Proposition 4.4 one has νθi → 8πδp
in the weak* sense. Finally, Proposition 4.6 gives u±i defined on Ω̂±θi so that

Σi\BCsi(pi) = Σ−i ∪ Σ+
i where Σ±i = R±θi(Γ∓u±). Notice that on Ω̂±θi one has

|∇u±i | ≤ 1
10 while |u±i | ≤ C0θi for C0 = C0(Ω−,Ω+). In particular, u±i satisfies a

uniformly elliptic equation on Ω̂±±θi and tends to zero as i→∞ point-wise. Hence,

for any ε > 0, Σ±i \Bε(p) converges in C2(R3\Bε(p)) to Ω− ∩ Ω+\Bε(p).
Thus, Items (1), (2) and (3) will be verified provided we can show that p satisfies

dist(p, `2) = dist(Ω− ∩ Ω+, `2). To that end we first show that p 6∈ Ω−∩Ω+. Indeed,
if p ∈ Ω− ∩ Ω+ then Theorem 5.1 applied to u±i and a rotation by ±θi gives:

F±i =

 cos θi 0 ± sin θi
0 1 0

∓ sin θi 0 cos θi

λ±i
 0

0
2π

∓ (λ±i )2

∂1R
±(p)

∂2R
±(p)
0

+ o((λ±i )2)

(6.1)

As Σi is connected the forces F±i must balance–that is F−i = F+
i . In particular,

F+
i · e3 = F−i · e3 so, as sin θi = o(1),

2πλ−i cos θi + o((λ−i )2) = 2πλ+
i cos θi + o((λ+

i )2)

In particular, λ+
i = λ−i + o((λ−i )2). Item (3) of Proposition 4.6, implies that λ−i =

O(θi). Hence, F−i · e1 = F+
i · e1 and sin θi = θi + o(θ2

i ) give

2πθi +O(θ2
i ) = −2πθi +O(θ2

i ).

As θi > 0 this is impossible so p 6∈ Ω− ∩ Ω+.
Set di = dist(pi, ∂Σi) and d±i = dist(pi, σ

±
i ) so di = min

{
d−i , d

+
i

}
and di → 0

because p 6∈ Ω− ∩ Ω+. Up to a passing to a subsequence and reflecting across P ,

we may take d+
i ≥ d−i > 0 and

d−i
d+
i

= µi > 0 where µi → µ ∈ [0, 1]. Consider

now Σ̂±i = (d±i )−1
(
Σ±i − p

)
. As d−i → 0 we have that Σ̂− tends to a half-plane

H− ⊂ P that contains 0 and has dist(0, ∂H−) = 1. Similarly, if d+
i → 0 then Σ̂+

i

converges to a half-plane H+ ⊂ P while if d+
i → d+ > 0 then Σ̂+

i converges to Ω̂+

a bounded convex domain containing D1(0). In either case, Theorem 5.1 applies

and allows us to compute the force of Σ̂±i to be as in (6.1). However, in order to
balance d+

i F+
i = d−i F−i , equivalently, F+

i = µiF
−
i .

The third component of the force is balanced when

2πµiλ
−
i cos θi + µio((λ

−
i )2) = 2πλ+

i cos θi + o((λ+
i )2).

As µi > 0, this implies that if we write λi = λ−i then λ+
i = µiλi + µio(λ

2
i ). By

considering the second component of the forces,

−µ2
iλ

2
i ∂2R

+(0) = µiλ
2
i ∂2R

−(0) + µio(λ
2
i ).

As µi > 0, this occurs only when

(6.2) − µ∂2R
+(0) = ∂2R

−(0).
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Similarly, as µi > 0 the first component of the force is balanced when

λi
(
2π sin θi − µiλi∂1R

+(0)
)

= λi
(
−2π sin θi + λi∂1R

−(0)+
)

+ o(λiθi) + o(λ2
i ).

In particular, one has θi = γλi + o(λi) with γ <∞ and

(6.3) 4πγ = µ∂1R
+(0) + ∂1R

−(0).

For R, the Robin’s function of the half-space p ∈ {x : (y − y0) · v > 0, |v| = 1},

(6.4) ∇R(p) =
1

2πL
v,

where here L = |(p − y0) · v|. Suppose that µ = 0. In this case, it follows from
(6.2), (6.3) and (6.4) with p = 0 that H− =

{
y : (y − y−0 ) · v− > 0

}
where v− = e1

and y−0 = −e1. This implies that TpΩ
− is parallel to `2 and since Ω− is convex

separates Ω− from `2. Hence, dist(p, `2) = dist(Ω−, `2) = dist(Ω− ∩ Ω+, `2) as
claimed. Suppose now that µ > 0. In this case we have that d+

i → 0 and so
we consider 0 ∈ H± =

{
y : (y − y±0 ) · v± > 0

}
. As dist(0, ∂H±) = 1 we have

y±0 = −v± and L± = 1. It follows from (6.2), (6.3) and (6.4) that

v− + µv+ = 4πγe1.(6.5)

By Item (3) of Proposition 3.4, v− 6= −v+. On the other hand, if v− = v+ then
(6.5) implies that v± = e1 and hence p is as claimed. Thus, we may assume that
∂H−∩∂H+ consists of a single pointQ and that µ < 1. As (v−+µv+)·(v−−µv+) =

1−µ2, it follows from (6.5) and µ < 1 that 2v− ·e1 = 1−µ2

4πγ +4πγ > 0. Furthermore,

(6.5) and µ < 1 imply that v− · e2 < v+ · e2. As 0 ∈ H− ∩ H+, this together
with v− · e− > 0 imply that 0 ∈ H− ∩ H+ ⊂ {x1 > x1(Q)}. As Ω− ∩ Ω+ is
convex, this implies that TpΩ

− ∪ TpΩ+ separates Ω− ∩ Ω+ from `2 and hence
dist(p, `2) = dist(Ω− ∩ Ω+) as claimed.

Item (4) follows by taking αi = d−1
i . �

7. Constructions

Let us construct the sequences of Theorems 1.1 and 1.2. We begin with the
zig-zag sequence.

Proof. Fix p0 = (10, 0, 0) ∈ H so D5(p0) ⊂ H. We take Ω0 = D5(p0) ∩ {x1 > 10}
the half-disk. By “rounding off the corners” of Ω0 we may obtain a domain Ω with
the following properties

(1) ∂Ω is of class C∞

(2) Ω is symmetric with respect to reflection across `1
(3) Ω ⊂ Ω0 and Ω0\Ω ⊂ D1(p1) ∪ D1(p2) where p1 = (10, 5, 0) and p2 =

(10,−5, 0).
(4) ∂Ω ∩ {x1 = 10} = L where L is the line segment {(10, t, 0) : −4 ≤ t ≤ 4}.

Set Ω+
θ = Rθ(Ω) and Ω−θ = R−θ(Ω). For θ small the area minimizing surface

spanning ∂Ω+
θ ∪ ∂Ω−θ is an annulus. Hence, by Theorem 3.1, there is a unique

embedded unstable minimal annulus Σθ with ∂Σθ = ∂Ω+
θ ∪ ∂Ω−θ . The uniqueness

of Σθ symmetry of ∂Σθ with respect to the plane {x2 = 0} imply that Σθ is also
symmetric with respect to this plane

Consider the surface Σ1
θ obtained by extending Σθ by Schwarz reflecting it across

Lθ and across L−θ. That is, Σ1
θ\Σθ consists of two copies of Σθ obtained by rotating

by 180◦ around Lθ and L−θ. If we let P⊥+ = {x1 = 15} then ∂Σθ lies on one side of
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P⊥+ and so by the convex hull property so does Σθ. P
⊥
− = {x1 = 5} is obtained from

P⊥− by rotating around either Lθ or L−θ and so Σ1
θ lies in the slab S between P⊥−

and P⊥+ . As S\ (Hθ ∪H−θ) consists of three distinct components, there are three
components of Σ1

θ\ (Hθ ∪H−θ) each a copy of Σθ. Hence, Σ1
θ is embedded. The

reflection procedure can be iterated and so produce an embedded minimal planar
domain Σ∞θ lying in S and so that ∂Σ∞θ ∩Π−1(D1(p0)) = ∅.

By Theorem 3.2, there exist θi → 0 so Σθi converges to Ω in the Hausdorff
sense. Moreover, Item (2) of Theorem 3.2 and the symmetry of Σθi imply that the
curvature concentrates at p0. Let αi be the sequence given by Item (4) of Theorem
3.2 and let Σi = αi(Σ

∞
θi
− p0) ∩ Bαi so ∂Σi ⊂ Bαi . If S± are the lines through

p± = (±1, 0, 0) perpendicular to P , then Item (3) Theorem 3.2 and the symmetry
across L±θ imply that Σi converge, in C2

loc(R3\S), to a foliation, L, of R3 by planes
parallel to P . Here S = S− ∪ S+. Indeed, for ε > 0 and i sufficiently large each
component of Σi\Tε(S) is a graph over P .

Finally, fix R > 1 and 1
2 > δ > 0 and suppose p±i ∈ Σi ∩ BR satisfy |x3(p+

i ) −
x3(p−i )| > δ. Let Σ±i be the component of Σi ∩ B2R\Tδ/4(S) containing p±i . For
i large enough each of these components are graphs, in particular we can sense
of a component lying between Σ−i and Σ+

i . As Σ±i converge to subsets of planes
parallel to P , Σ±i meets both components of Tδ/2(S and indeed this is true for

each component Γ between Σ−i and Σ+
i . Hence, p±i can be connected in B2R ∩ Σi.

As |x3(p+
i ) − x3(p−i )| > δ, for each n there is an i so that there are at least n

components between Σ−i and Σ+
i . If Γ is one of these components and γ a curve

connecting p−i to p+
i in Σi the γ must connect each component of Tδ/2(S) in Γ. In

particular, γ has length at least n/2. �

A slight modification of the above construction gives Theorem 1.2.

Proof. We begin by taking Ω+ = Ω where Ω is defined in the proof of Theorem 1.1.
If Ω′ ⊂ P is the domain obtained by reflecting Ω across L then we set Ω− = Ω′+2e1.
In particular, dist(Ω− ∩ Ω+, `2) = dist(p0, `2) and D2(p0) ⊂ Ω−. For θ sufficiently
small the least area surface spanning σ±±θ = ∂Ω±±θ is a stable minimal annulus.
Hence, by Theorem 3.1 there is a unique unstable embedded minimal annulus, Σθ
with ∂Σθ = ∂σ−−θ ∪ σ

+
θ which is symmetric with respect to the plane {x2 = 0}. We

let Σ1
θ be the surface obtained extending Σθ by Schwarz reflecting across Lθ. As

Hθ separates Σ1
θ into two components, each a copy of Σθ, Σ1

θ is embedded. Notice
that for θ small enough, Π−1(D1(p0)) ∩ ∂Σ1

θ = ∅.
By Item (1) of Theorem 3.2, there exist θi → 0 so Σθi converges to Ω− ∪ Ω+ in

the Hausdorff sense. Moreover, Item (2) of Theorem 3.2 and the symmetry of Σθi
imply that the curvature concentrates at p0. Let αi be the sequence given by Item
(4) of Theorem 3.2 and let Σi = αi(Σ

∞
θi
−p0)∩Bαi so ∂Σi ⊂ Bαi . If p± = (±1, 0, 0)

then Item (3) of Theorem 3.2 and the symmetries of Σi imply that Σi converges to
P\ {p−, p+} in C2

loc(R3\ {p−, p+}) with multiplicity three. �
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