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Abstract

We define the notion of normal A -schemes, and approximable A -

schemes. Approximable A -schemes inherit many good properties of

ordinary schemes. As a consequence, we see that the Zariski-Riemann

space can be regarded in two ways – either as the limit space of ad-

missible blow ups, or as the universal compactification of the given

non-proper scheme. We can prove Nagata embedding using Zariski-

Riemann spaces.
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0 Introduction

We introduced the concept of A -schemes in [T]. In this paper, we will inves-
tigate further properties of A -schemes, mainly focusing on Zariski-Riemann
spaces.
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First, we will show that there is a normalization of A -schemes, just as
for ordinary schemes. This is important, since we are aiming for an analog
of Zariski’s main theorem.

One of the advantage of introducing A -schemes is that we can simplify
the proof of Nagata embedding theorem; it can be proven intuitively, as in the
original paper of Nagata [N]. Note that the essential part is already proven
in Corollary 4.4.6 of [T]. Compare with the proof of Conrad [C], which only
uses ordinary schemes, but is long (approximately 50 pages).

Also, we introduce the notion of approximable A -schemes: an A -scheme
is approximable if it is a (filtered) projective limit of ordinary schemes. This
notion is convenient, since locally free sheaves on approximable schemes al-
ways come from a pull back of a localy free sheaves on ordinary schemes.
At the same time, we see that the Zariski-Riemann space defined in [T] is
identified with the conventional one, namely the limit space of U -admissible
blow ups along the exceptional locus X \ U where U is an open subscheme
of a scheme X . This shows that the conventional Zariski-Riemann space has
the desirable universal property in the category of A -schemes, not only with
schemes.

This paper is organized as follows. In section 1, we quickly review the
definitions and properties of A -schemes, which plays the central role in this
paper. In section 2, we construct the normalization functor of A -schemes.
In section 3, we give a notion of approximable A -schemes. This actually
determines the pro-category of the category (Q-Sch) of ordinary schemes.
In section 4, we will give a proof of the original version of Nagata embedding,
which says that any separated scheme of finite type can be embedded as an
open subscheme of a proper scheme.

Notation and conventions. In this paper, the algebraic type A is
always that of rings. When we say ordinary schemes, we treat only coherent
schemes and quasi-compact morphisms between them; to emphasize this as-
sumption and to distinguish ordinary coherent schemes from A -schemes, we
will say Q-schemes instead of coherent schemes.

For an A -scheme X , the description |X| stands for the underlying topo-
logical space, which is coherent.

An A -scheme X will be called integral if it is irreducible and reduced.
This condition is in fact, stronger than assuming any section ring OX(U) is
integral.

A morphism of A -schemes is proper, if it is separated and universally
closed. We do not include the condition “of finite type”.
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1 A brief review of A -schemes

In this section, we will recall some terminologies and definitions in [T]. A
good reference for general lattice theories is [S].

A topological space X is coherent, if it is sober, quasi-compact, quasi-
separated, and has a quasi-compact open basis.

The category (Coh) of coherent spaces and quasi-compact morphisms is
isomorphic to the opposite category (DLat)op of distributive lattices by the
functor C(−)cpt. For a coherent space X , we may regard C(X)cpt as the set
of quasi-compact open subsets of X , or the set of their complements.

Therefore, we can regard an A -valued sheaf on a coherent space X as a
continuous covariant functor C(X)cpt → A .

On a coherent space X , there is a canonical (DLat)-valued sheaf τX on
X , which is defined by U 7→ C(U)cpt for quasi-compact open U ; this extends
uniquely to the entire Zariski site of X .

We have a functor α1 : (Rng)→ (Dlat) from the category of commuta-
tive rings, which sends a ring R to the set of finitely generated ideals of R
modulo the relation I2 = I. Note that this gives the usual spectrum of rings,
when combined with the previous isomorphism C(−)cpt.

Also, we have a natural homomorphism R → α1(R) of multiplicative
monoids, sending a ∈ R to the principal ideal generated by a. This homo-
morphism commutes with localizations.

An A -scheme is a triple X = (|X|,OX, βX), where

(i) |X| is a coherent space (the “underlying space”),

(ii) OX is a ring-valued sheaf on |X| (the “structure sheaf”), and

(iii) βX : α1OX → τX is a morphism of (DLat)-valued sheaves (the “support
morphism”),

which satisfies the following condition: for an inclusion V →֒ U of quasi-
compact open subsets of |X|, the restriction map OX(U) → OX(V ) factors
through OX(U)Z , where OX(U)Z is the localization along the multiplicative
system

{a ∈ OX(U) | βX(a) ⊂ Z}.

By this property, A -schemes are locally ringed spaces. A morphism of A -
schemes f = (f, f#) : X → Y is a morphism of ringed spaces, which com-
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mutes with the support morphism:

α1OY

α1f
#

//

βY

��

f∗α1OX

βX

��

τY
f−1

// f∗τX

The category (A -Sch) of A -schemes is complete, and co-complete.
We have a fully faithful functor (Q-Sch) → (A -Sch), which preserves

pull backs and finite patchings by quasi-compact opens.
For the definition of a morphism of profinite type, we refer to [T].

2 Normalization

In this section, we fix an integral base A -scheme S, and any A -scheme is
integral, of profinite type over S. We denote by (Int. A -Sch) the category
of integral A -schemes of profinite type over S and dominant morphisms.

Definition 2.1. An A -scheme X is normal, if the ring of every stalk OX,x

is integrally closed.

Remark 2.2. We do not assume Noetherian property on normal rings (or
schemes) in this paper.

Theorem 2.3. Let (N. A -Sch) be the full subcategory of (Int. A -Sch),
consisting of normal schemes, and U : (N. A -Sch)→ (Int. A -Sch) be the
underlying functor. Then, U has a right adjoint ‘nor’. Moreover, the counit
η : U ◦ nor⇒ Id is proper dominant.

We will refer to this right adjoint as the normalization functor.

Proof. The proof is somewhat long, so we will divide it into several steps.
The construction of the normalization functor is analogous to that of Zariski-
Riemann spaces, described in detail in [T]. We will denote by Rnor the
integral closure of a given integral domain R in the sequel.

Step 1: First, we will construct the underlying space of the normalization of a
given integral A -scheme X . Let N X

0 be the set of finite sets of pairs
(U, α), where
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(a) U is a quasi-compact open subset of X , and

(b) α ∈ OX(U)nor \ {0}.

Let a = {(Ui, αi)}i, b = {(Vj, βj)}j be two elements of N X
0 . We define

two operations +, · on N X
0 by

a+ b = a ∪ b, a · b = {(Ui ∩ Vj , αiβj)}ij

For a pair (U, α), define U [α] as

U [α] = {x ∈ U | x is in the image of SpecOX,x[α
−1]→ SpecOX,x},

where α−1 = {a−1}a∈α. For two elements a = {(Ui, αi)}i, b = {(Vj, βj)}j,
the relation a ≺ b holds if

(a) Ui[αi] ⊂ ∪jVj[βj ] for any i, and

(b) For any x ∈ Ui[αi], set Jx = {j | x ∈ Vj[βj ]}. Then (βj)j∈Jx
generates the unit ideal in Onor

X,x[α
−1
i ].

Let ≈ be the equivalence relation generated by ≺, and set N X =
N X

0 / ≈. The addition and multiplication of N X
0 descends to N X ,

which makes N X into a distributive lattice. Set |Xnor| = SpecN X .
This is the underlying space of the normalization Xnor.

Step 2: There is a natural homomorphism C(X)cpt → N X of distributive lat-
tices, defined by Z 7→ {(Z, 1)}. This defines a quasi-compact morphism
π : |Xnor| → |X| of coherent spaces.

Step 3: Let p be a point of |Xnor|, and set x = π(p). Then,

p = {a ∈ O
nor
X,x | (X, a) ≤ p}

becomes a prime ideal of Onor
X,x. Let Rp be the localization of Onor

X,x by
p. Then, Rp dominates OX,x.

Step 4: The structure sheaf OXnor is defined by

U 7→ {a ∈ K | a ∈ Rp (p ∈ U)},

where K is the function field of X . The support morphism βXnor :
α1OXnor → τXnor is defined by

α1OXnor(U) ∋ (a1, · · · , an) 7→ {(U, ai)}i.

This defines an A -scheme Xnor = (|Xnor|,OXnor, βXnor).
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Step 5: We have a canonical morphism of sheaves OX → π∗OXnor, defined by
the identity a 7→ a. This yields a morphism π : Xnor → X of A -
schemes. It is of profinite type, by the criterion 4.3.3 in [T].

Step 6: Let us show that π is proper.

We can see from the construction that we have a natural morphism
ZRf(K,X) → Xnor: the morphism |ZRf (K,X)| → |Xnor| of underly-
ing spaces is defined by

N
X →M

X ({(Ui, αi)}i 7→ {(X \ Ui), {α
−1})}i,

where MX = C(ZRf (K,X))cpt, and the morphism between the struc-
ture sheaves is canonical. Note that ZRf (K,X) is already normal. This
shows that Xnor is proper over X by the valuative criterion.

Step 7: We will show that the normalization is a functor. Let f : X → Y be a
dominant morphism of A -schemes. |fnor| : Xnor → Y nor is defined by

N
Y → N

X : {(Ui, αi)}i 7→ {(f
−1Ui, f

#αi)}i.

The morphism f# : OY → f∗OX extends canonically to fnor,# : OY nor →
fnor,∗OXnor . This gives a functor nor : (Int. A -Sch)→ (N. A -Sch).

Step 8: It remains to show that the normalization functor is indeed the right
adjoint of the underlying functor. The unit ǫ : Id ⇒ nor ◦U is the
identity, since the normalization of a normal A -scheme is trivial. The
counit η : U ◦ nor⇒ Id is given by π defined above.

Lemma 2.4. Let X be a normal A -scheme. Then. OX(U) is normal for
any open U .

Proof. Let b ∈ K be an element which is integral over OX(U), where K is
the function field of X . Since bx is integral over the stalk OX,x for any x ∈ U
and OX,x is integrally closed, we have bx ∈ OX,x. Hence, b ∈ OX(U).

Proposition 2.5. The normalization functor coincides with the usual nor-
malization, when restricted to Q-schemes.
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Proof. First, we will show for affine schemes X = SpecA. The universality
of the normalization functor gives a canonical morphism f : Spec(Anor) →
Xnor. Since Γ(Xnor,OX,x) is normal, we have a canonical homomorphism
Anor → Γ(Xnor,OX,x). This yields a morphism g : Xnor → Spec(Anor). It is
easy to check that these two morphisms f, g are inverse to each other.

It is obvious from the construction that normalization commutes with
localizations. This shows that the normalization of any Q-scheme coincides
with the usual definition.

3 Approximations by ordinary schemes

We fix an integral base Q-scheme S in the sequel. The next proposition is
pure category-theoretical and easy, so we will omit the proof.

Proposition 3.1. Let B, C be two categories, with B finite complete and C
small complete. Let F : B → C be a finite continuous functor, namely F
preserves fiber products. For any object a of C, The followings are equivalent:

(i) a is isomorphic to a limit of the objects in ImF .

(ii) a is isomorphic to a filtered limit of the objects in ImF .

Definition 3.2. Let X be an A -scheme, and P be a class of Q-schemes.

(1) X is approximable by P, if X is isomorphic to a filtered limit of some
objects of P.

(2) X is approximable, if X is isomorphic to a filtered limit of some Q-
schemes.

Proposition 3.3. Any approximable A -scheme is approximable by Q-schemes
of finite type.

Proof. It suffices to show that any Q-scheme is approximable by Q-schemes
of finite type.

Let X be any Q-scheme, and {Uijk → Ui} be a finite affine covering of
X . Since Uijk → Ui is quasi-compact, Uijk is of finite type over Ui. Thus, we
have approximations Ui = lim

←−λ
Uλ
i and Uijk = lim

←−λ
Uλ
ijk so that Uλ

i and Uλ
ijk

are of finite type and Uλ
ijk → Uλ

i are open immersions. We may also assume
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that the above limits are filtered. Since filtered limits and finite colimits
commute, we have

X = lim
−→
i

Ui = lim
−→
i

lim
←−
λ

Uλ
i = lim
←−
λ

lim
−→
i

Uλ
i

and lim
−→i

Uλ
i is a Q-scheme of finite type.

Definition 3.4. Let X, Y be two integral A -schemes. A morphism f : X →
Y is birational, if f induces an isomorphism Q(X) ≃ Q(Y ) between the
rational function fields.

Remark 3.5. Note that, the morphism being birational does not imply the
existence of an open dense subset U of X such that U ≃ f(U).

Proposition 3.6. Let X be an approximable A -scheme, say X = lim←−λ
Xλ

where Xλ’s are Q-schemes.

(1) If X is reduced, then X is approximable by reduced Q-schemes.

(2) If X is integral, then X is approximable by integral Q-schemes.

(3) Further, if the rational function field Q(X) is finitely generated over an
integral base Q-scheme, then X is approximable by integral Q-schemes
birational to X .

(4) If X is normal, then X is approximable by normal Q-schemes.

(5) If X is proper and approximable by separated Q-schemes, then X is
approximable by proper (and of finite type) Q-schemes.

Proof. The proofs are all similar, so let us just see (1).
Since X is reduced, X → Xλ factors through the reduced Q-scheme

(Xλ)red. This shows that X ≃ lim←−(X
λ)red.

Proposition 3.7. Let f : X → Y be a morphism of A -schemes over S, and
X approximable and Y a Q-scheme, of finite type over S.

(1) Suppose X is a filtered projective limit lim←−λ
Xλ of Q-schemes. Then,

f factors through X → Xλ for some λ.

(2) Furthermore, if X is proper over S and approximable by separated Q-
schemes, and Y is separated over S, then the above Xλ can be chosen
to be a proper scheme over Y .
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Proof. (1) We may assume that Y is affine. Since Y is of finite type and
Γ(OX) is a filtered colimit of Γ(OXλ), f factors through Xλ for some
λ.

(2) By the above proposition, we may assume that Xλ’s are proper over
the base scheme S. Since Y is separated, these morphisms are proper.

Theorem 3.8. Let f : X → Y be a proper birational morphism, where
X is an integral A -scheme approximable by separated Q-schemes, and Y a
normal Q-scheme separated and of finite type over S. Then, f∗OX = OY .

Proof. The previous proposition shows that f factors through proper mor-
phisms fλ : Xλ → Y , where X = lim←−λ

Xλ and {Xλ} is a filtered system of
integral Q-schemes, proper birational and of finite type over Y . Since Y is
normal, the usual Zariski’s main theorem tells that OY → (fλ)∗OXλ is an
isomorphism (Corollary III. 11.4 of [H]), and f∗OX coincides with the right
hand side, since it is a colimit of (fλ)∗OXλ ’s.

Since “of profinite type” morphisms are stable under taking limits, ap-
proximable A -schemes are necessarily of profinite type over S.

Theorem 3.9. Let X be a normal A -scheme, proper and profinite over the
integral base Q-scheme S. Assume that the rational function field Q(X) is
finitely generated over Q(S). The followings are equivalent:

(i) X is approximable by separated Q-schemes.

(ii) Let U = {∐Uijk ⇒ ∐Ui} be any quasi-compact open covering of
X . Then, there exists a refinement ∐Vijk ⇒ ∐Vi of U such that
SpecOX(Vijk)→ SpecOX(Vi) are open immersions.

Proof. (i)⇒(ii): X can be written as a filtered limit X = lim←−λ
Xλ, where

Xλ’s are normal Q-schemes, proper and of finite type over S. Since the
number of Ui’s and Uijk’s are finite, Ui = π−1Ũi, Uijk = π−1Ũijk for some
π : X → Xλ, where Ũi’s and Ũijk’s are quasi-compact open subsets of Xλ.
Take any refinement {∐Ṽijk → ∐Ṽi} of Ũ = {∐Ũijk → ∐Ũi}, by affine opens
Ṽijk and Ṽi. Set Vijk = π−1Ṽijk and Vi = π−1Ṽi. Since Vi → Ṽi is proper
and Ṽi is normal, of finite type, Theorem 3.8 implies that OX(Vi) = OXλ(Ṽi).
This shows that SpecOX(Vijk)→ SpecOX(Vi) are open immersions.
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(ii)⇒(i): For any covering U = {∐Uijk ⇒ ∐Ui} of X , the refinement
∐Vijk ⇒ ∐Vi gives open immersions SpecOX(Vijk) → SpecOX(Vi) which
patches up to give a Q-scheme X(U) and the canonical morphism πU : X →
X(U). The covering U is a pull back of a covering of X(U), and ditto for the
elements of OX(Ui)’s. From this observation, we see that the induced mor-
phism X → lim←−U

X(U) is an isomorphism. It is clear from the construction
that X(U) is proper.

4 Another proof of Nagata embedding

In the sequel, any A -schemes are integral.

Definition 4.1. Let S be a Q-scheme, and X be a Q-scheme over S. We
say that X is compactifiable over S, if there is an open immersion X → Y
where Y is a Q-scheme, proper, of finite type over S.

Proposition 4.2. Let S be a Q-scheme, and X be a Q-scheme over S. The
followings are equivalent:

(i) X is compactifiable over S.

(ii) ZRf(X,S) is approximable by separated Q-schemes, and the natural
map X → ZRf(X,S) is an open immersion.

Proof. (i)⇒(ii): There exists an open immersion X → Y into a Q-scheme
Y , proper of finite type over S. This morphism factors through ZRf(X,S)
by the universal property. We will show that for any quasi-compact open
subset U of ZRf (X,S), there exists a proper birational morphism Y ′ → Y ,
such that g−1(V ) = U for some quasi-compact open subset V of Y ′, where
g : ZRf(X,S)→ Y ′ is the canonical extension of f : ZRf (X,S)→ Y :

U //

��

�

ZRf (X,S)

g

��

f

$$J

J

J

J

J

J

J

J

J

J

Xoo

��

V // Y ′ // Y

By the construction of ZRf(X,S), we may assume U is of the form U(W,α),
where W is a quasi-compact open subset of S and α is a finite subset of
K \ {0}, and

U(W,α) = π−1(W ) ∩ {p ∈ ZRf (X,S) | α ⊂ OZRf (X,S),p}.
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Note that f(U∩X) is open in Y , since X → ZRf(X,S) is an open immersion.
Suppose α = {ai/bi}i, where ai, bi ∈ OY locally. Let Y ′ → Y be the blow
up along (Y \X) ∩ Supp(ai, bi). Then, either ai/bi or bi/ai is in OY ′ locally,
which shows that the domain of ai/bi is open in Y ′. This shows that U is
the pull back of some V by the morphism g : ZRf (X,S) → Y ′. Hence,
ZRf (X,S) → lim←−λ

Y λ becomes a homeomorphism on the underlying space,

where Y ∞ = lim←−λ
Y λ is the filtered projective limit of X-admissible blow-

ups of Y . A similar argument shows that OY ∞ → OZRf (X,S) also becomes

an isomorphism. Note that Y λ’s are separated over S, since we only used
blow-ups.

(ii)⇒(i): The Zariski-Riemann space ZRf(X,S) can be written as a form
lim←−λ

Y λ, where Y λ’s are proper, of finite type Q-schemes. Since X →

ZRf (X,S) is an open immersion andX is quasi-compact, X → ZRf (X,S)→
Y λ becomes an open immersion for some λ.

Now, we are on the stage to give the proof of the Nagata embedding.

Theorem 4.3 (Nagata). Let S be a Q-scheme, and X be a Q-scheme,
separated and of finite type over S. Then, X is compactifiable.

In this section, we will prove this theorem for the essential case, namely
when S and X are integral. This restriction is due to the fact that we simply
haven’t established the theorem of Zariski-Riemann spaces for non-integral
schemes.

Since X is quasi-compact, and affine schemes of finite type over S is
obviously compactifiable, it suffices to prove the following proposition:

Proposition 4.4. Let V1 and V2 be compactifiable open sub-Q-schemes
of a Q-scheme X separated over S, with X = V1 ∪ V2. Then X is also
compactifiable.

Proof. Consider ZRf(X,S). Since X is separated, of finite type over S, the
morphism X → ZRf (X,S) is an open immersion by Corollary 4.4.6 of [T].
Let W1 (resp. W2) be the complement of the closure of V2 \V1 (resp. V1 \V2)
in ZRf(X,S).

We can see that W1 ∩W2 = V1 ∩ V2, since the open kernel of the comple-
ment of V1 ∪ V2 is empty. Next, we see that W1 ∪W2 = ZRf(X,S). For this,
it suffices to show that V2 \ V1 ∩ V1 \ V2 = ∅. Suppose there is a point p in
V2 \ V1 ∩ V1 \ V2. Since V2 \ V1 and V1 \ V2 are coherent subset of ZR

f (X,S),
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p must be a specialization of some x1 ∈ V2 \V1 and x2 ∈ V1 \V2 by Corollary
1.2.8 of [T]. Since ZRf(K,S) → ZRf(X,S) is surjective, there are inverse
images yi ∈ ZRf (K,S) of xi such that yi specializes to p. The points in
ZRf (K,S) are valuation rings, hence y2 must be the specialization of y1, or
the converse. In either cases, this contradicts to the fact that x1 and x2

has no specialization-generalization relations. This also shows that W1 and
W2 are quasi-compact. The morphism p1 : ZR

f (V1, S)→ ZRf(X,S) induces
an isomorphism on W1, hence W1 is approximable by Q-morphisms of finite
type over S, ditto for W2.

Take any Q-model Yi of Wi (namely, a morphism πi : Wi → Yi where
Yi is a Q-scheme) such that the morphism πi induces an isomorphism on
Vi. Then, Y1 and Y2 can be patched along π1(W1 ∩W2) ≃ π2(W1 ∩W2) to
obtain a Q-scheme Y of finite type, and a surjective morphism ZRf(X,S) =
W1 ∪W2 → Y . This shows that Y is proper.
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