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BUNDLE GERBES AND MODULI SPACES

PETER BOUWKNEGT, VARGHESE MATHAI, AND SIYE WU

Abstract. In this paper, we construct the index bundle gerbe of a family of self-adjoint

Dirac-type operators, refining a construction of Segal. In a special case, we construct a geo-

metric bundle gerbe called the caloron bundle gerbe, which comes with a natural connection

and curving, and show that it is isomorphic to the analytically constructed index bundle

gerbe. We apply these constructions to certain moduli spaces associated to compact Rie-

mann surfaces, constructing on these moduli spaces, natural bundle gerbes with connection

and curving, whose 3-curvature represent Dixmier-Douady classes that are generators of the

third de Rham cohomology groups of these moduli spaces.

1. Introduction

Given a compact, simply-connected simple Lie group G, let M denote the moduli space

of flat principal G-bundles on a compact Riemann surface Σ of genus greater than one.

More precisely, we only consider the smooth, dense, open subset of M corresponding to

irreducible homomorphisms from the fundamental group of Σ to G, which we will denote by

the same symbol. Quantization of M was considered by Witten [36, 4] via the determinant

line bundle L of the index bundle of the associated family of Cauchy-Riemann operators

{∂̄ρ : ρ ∈ Hom(π1(Σ ), G)}. The fibre of L at ρ is

Lρ =

max∧
ker(∂̄∗ρ)⊗

max∧
coker(∂̄ρ).

It carries the Quillen metric [32] and the curvature of the canonical hermitian connection

coincides with the natural Kähler form on the moduli space M. Moreover, the first Chern

class of L generates the second de Rham cohomology group of M. The moduli space M plays

an important role in quantum field theory. In particular, the space of holomorphic sections

of L can be naturally identified with what physicists call the space of conformal blocks in
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a standard conformal field theory, the WZW-model [7], on which there exists an extensive

literature.

For a family of self-adjoint Dirac-type operators, an index gerbe was introduced by Carey-

Mickelsson-Murray [12, 13] and by Lott [23]. The gerbe was described by local data, which

can be viewed as the analogues of the transition functions of the determinant line bundle.

The index gerbe is related to Hamiltonian anomalies. In [34], Segal constructs a projective

Hilbert bundle; its Dixmier-Douady invariant is the obstruction to lifting it to a Hilbert

bundle. In this paper, we construct the index bundle gerbe for such a family, which is a

global version of prior constructions. Our construction of the index bundle gerbe is inspired

by these papers and by the work on determinant line bundles [9, 17, 32]. Melrose-Rochon [25]

have a completely different construction of an index bundle gerbe using pseudodifferential

operators. In the special case of a circle fibration, we also construct the caloron bundle gerbe

using geometric data and show that it is isomorphic to the analytically defined index bundle

gerbe. We apply these constructions to the moduli space M and obtain on it natural bundle

gerbes with connections and curvings. The 3-curvatures represent Dixmier-Douady classes

that are generators of the third de Rham cohomology group of M.

Applications of moduli spaces of Riemann surfaces are ubiquitous. The construction of

explicit geometric realizations of the degree 3 classes on moduli spaces through bundle gerbes

was motivated by the desire to generalize the geometric Langlands correspondence [18, 19, 21]

by including background fluxes.

Here we outline the contents of the paper. In Section 2, we construct the index bundle

gerbe associated to a set of geometric data using the spectrum of a family of Dirac-type

operators. In Section 3, given a unitary representation of the structure group, we construct

the caloron bundle gerbe using the projective Hilbert space bundle obtained from the caloron

correspondence of Murray-Stevenson [29]. In Section 4, we establish an isomorphism (not

just a stable isomorphism) between the geometrically constructed caloron bundle gerbe and

the analytically defined index bundle gerbe for a circle fibration. Section 5 contains the

application of these constructions to the moduli space M, obtaining natural bundle gerbes

with connections and curvings, whose Dixmier-Douady classes generate the third de Rham

cohomology group of M. We end with a section of conclusions, where we outline future

work on constructing bundle gerbes on other moduli spaces such as the moduli space of

anti-self-dual connections, on a compact four dimensional Riemannian manifold.

2



2. Index bundle gerbe

In this section we will construct an index bundle gerbe associated to the following set of

geometric data. For an introduction to bundle gerbes, see [27].

Basic setup:

Let Z → X be a smooth fibre bundle whose typical fibre is a compact odd-dimensional man-

ifold. Let T (Z/X) → Z denote the vertical tangent bundle, which is a sub-bundle of the

tangent bundle TZ. We assume that there is a Riemannian metric on T (Z/X). Suppose

that T (Z/X) has a spin structure and let S → Z denote the corresponding bundle of spinors.

Let E → Z be a hermitian vector bundle with connection ∇E.

In this case, there is a smooth family {DE
x : x ∈ X} of self-adjoint Dirac-type operators

DE
x : Γ (Zx, S⊗E) → Γ (Zx, S⊗E) acting on sections over the fibres Zx (x ∈ X) of Z → X .

The L2-completions Hx of Γ (Zx, S⊗E) form a Hilbert bundle H over X . We denote by the

same symbol DE
x the operator on Hx. Recall that for any x ∈ X , spec(DE

x ) ⊂ R is a closed

countable set with accumulation point only at infinity. For λ ∈ Q,1 consider the open subset

Uλ = {x ∈ X
∣∣λ /∈ spec(DE

x )} (2.1)

of X . For x ∈ Uλ, let the Hilbert space H+
λ,x (H−

λ,x, respectively) be the span of eigenspaces

of DE
x with eigenvalues greater than (less than, respectively) λ. They form Hilbert bundles

H
±
λ over Uλ.

Suppose µ > λ and λ, µ ∈ Q. Observe that for x ∈ Uλ ∩ Uµ, we have

H+
λ,x = H+

µ,x ⊕ (H+
λ,x ∩H−

µ,x), H−
µ,x = H−

λ,x ⊕ (H+
λ,x ∩H−

µ,x),

where H+
λ,x ∩H−

µ,x is a finite dimensional space. Let Lλµ = det(H+
λ ∩H−

µ ), which is a line

bundle over Uλ ∩ Uµ. Since

(H+
λ ∩H−

µ )⊕ (H+
µ ∩H−

τ ) = H+
λ ∩H−

τ

on Uλ ∩ Uµ ∩ Uµ for any λ < µ < τ in Q, we have a cocycle condition

Lλµ ⊗ Lµτ
∼= Lλτ . (2.2)

The collection {Lλµ} defines the index gerbe [12, 13, 23] over X .

1We restrict to λ ∈ Q to have a countable open cover of X .
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Over Uλ, we construct the Fock bundle Fλ =
∧
(H+

λ ⊕H−
λ ). Hodge duality asserts that

for any finite dimensional complex vector space V there is a canonical isomorphism

∧
V ⊗ det V ∼=

∧
V.

Thus on the overlap Uλ ∩ Uµ, we get

Fλ =
∧

H
+
λ ⊗

∧
H

−
λ

∼=
∧

H+
µ ⊗

∧
(H+

λ ∩H−
µ )⊗

∧
H−

λ

∼=
∧

H+
µ ⊗

∧
H−

λ ⊗
∧

(H+
λ ∩H−

µ )⊗ Lλµ

∼=
∧

H+
µ ⊗

∧
H−

µ ⊗ Lλµ

= Fµ ⊗ Lλµ.

Therefore there is a canonical isomorphism of the projectivizations P(Fλ) ∼= P(Fµ) on the

overlap Uλ ∩ Uµ and hence a well defined projectivized Fock bundle π : P(F) → X .

To construct the index bundle gerbe, we now define a line bundle L → P(F)[2] on the fibre

product of P(F) with itself. Let Lλ be the universal line bundle over P(Fλ) = π−1(Uλ). That

is, over any ℓ ∈ P(Fλ), the fibre is

(Lλ)ℓ = {(ℓ, v) : v ∈ ℓ} ⊂ {ℓ} × (Fλ)π(ℓ).

Lλ is a hermitian line bundle, but does not glue properly on the overlaps in P(F) for the

same reason that Fλ doesn’t on X . In fact, on π−1(Uλ) ∩ π−1(Uµ) = π−1(Uλ ∩ Uµ), we have

Lλ
∼= Lµ ⊗ π∗Lλµ. (2.3)

Now, δ(Lλ) = L∗
λ ⊠ Lλ is a line bundle on P(Fλ) × P(Fλ) which restricts to the total

space of the bundle π
[2]
λ : P(Fλ)

[2] → Uλ. However, this time, δ(Lλ) = δ(Lµ) on the overlap

(π
[2]
λ )−1(Uλ∩Uµ), since the fudge factor for each cancels, thereby defining a global hermitian

line bundle L → P(F)[2]. There is a line bundle δ(L) → P(F)[3] defined by

δ(L) = π∗
12L⊗ (π∗

13L)
−1 ⊗ π∗

23L,

where πij : P(F)
[3] → P(F)[2] for 1 ≤ i < j ≤ 3 is the projection onto the ith and jth factors.

It is trivial precisely because of (2.2).

Therefore we have established the following.
4



Theorem 2.1. Given the Basic setup, there is a well-defined global fibre bundle of projective

Hilbert spaces π : P(F) → X and a line bundle L → P(F)[2] such that δ(L) → P(F)[3] is

trivial.

Thus we have a bundle gerbe over X , which we call the index bundle gerbe. Note that

the line bundle Lλ → P(Fλ) provides a local trivialization of the index bundle gerbe over

Uλ ⊂ X .

We remark that the considerations in this section can straightforwardly be generalized

to more general open coverings {Uα} of X so that for each Uα there exists a spectral cut

λα /∈ spec(DE
x ), for all x ∈ Uα. We restrict our discussion to the cover (2.1) for notational

simplicity. Finally, we remark that the construction in this section works for a family of

general elliptic self-adjoint operators on a compact manifold.

3. The caloron bundle gerbe

We begin by reviewing the caloron correspondence of Murray-Stevenson [29]. We then

study the behavior of this construction under a unitary representation of the structure group.

Finally, we obtain a fibre bundle whose typical fibre is a projective Hilbert space; we will

call the associated bundle gerbe the caloron bundle gerbe.

3.1. The caloron correspondence. Let X be a manifold and let S1 denote the unit circle.

Let P → S1 × X be a principal G-bundle, where G is a connected and simply-connected

compact Lie group. Then there exists a canonical identification between equivalence classes

of principal G-bundles over S1 ×X and principal LG-bundles over X ,



G −−−→ Py
S1 ×X


 ⇔




LG −−−→ Qy
X


 , (3.1)

as follows. Given P , the bundle Q is the push-forward of P under the projection map

S1 × X → X . That is, the fibre of Q over x ∈ X is Qx = Γ (S1 × {x}, P ). Clearly,

the free loop group LG acts freely and transitively on Qx and hence Q is a principal LG-

bundle. The total space Q can be constructed globally as follows. Consider the LG-bundle

LP → L(S1 × X). Then Q → X is the pullback of LP by the map η : X → L(S1 × X)

given by η(x) = (θ 7→ (θ, x)). Conversely, given an LG-bundle Q → X , we can define a

principal G-bundle P over S1 ×X by P = (Q×G× S1)/LG, where the right LG-action on

Q×G×S1 is given by (p, g, θ)γ = (pγ, γ(θ)−1g, θ) and the G-action is by right multiplication
5



in the second factor. Clearly these actions commute, establishing the canonical equivalence

in (3.1). For a generalization of the caloron correspondence to principal G-bundles over

non-trivial circle bundles or over more general fibrations, see [8, 11, 30, 20].

Given a connection Ã on P , we define a connection A = η∗LÃ on Q by pulling back the

connection LÃ on LP . In addition, Ã determines a Higgs field Φ = η∗ιΞ (LÃ), where Ξ is

a canonical vector field on LP generating the translation on S1. The map Φ : Q → Lg is

smooth and satisfies

Φ(pγ) = ad(γ−1)Φ(p) + γ−1∂θγ (3.2)

for γ ∈ LG. Conversely, given a connection A on Q and a Higgs field Φ for Q satisfying

Eqn. (3.2), we have a 1-form

Ã = ad(g−1)A(θ) +Θ + ad(g−1)Φ dθ

on Q × G × S1 which descends to a connection 1-form on P . Here Θ denotes the Cartan-

Maurer 1-form on G. We summerize the above in the following

Proposition 3.1 (caloron correspondence [29]). The canonical equivalence in (3.1) deter-

mines a bijection between isomorphism classes of G-bundles with a connection over S1 ×X

and isomorphism classes of LG-bundles with a connection and a Higgs field over X.

Recall that for a simple group G, there is a basic central extension (cf. [31])

1 −→ U(1) −→ L̂G
p−→ LG −→ 1

corresponding to a cocycle that generates the second cohomology of LG. Denote by ξ : Q[2] →
LG the map given by (q1, q2) 7→ γ, where γ ∈ LG is the unique element such that q2 = q1γ.

Let PQ → Q[2] be the pullback of the U(1)-bundle L̂G → LG via ξ and let LQ → Q[2] be

the line bundle associated to PQ. Equivalently, if LLG → LG is the line bundle associated

to L̂G, then LQ = ξ∗(LLG). Since ξ is a homomorphism of groupoids, the line bundle LQ

determines a bundle gerbe called the lifting bundle gerbe of Q.

Theorem 5.1 of [29] asserts that a connection A on Q and a Higgs field for Q determine a

curving (or B-field)

B =

√
−1

2π

∫

S1

(
1

2
〈A, ∂θA〉 − 〈FA,∇Φ〉

)
dθ,

where FA is the curvature of the connection A and ∇Φ = dΦ + [A,Φ] − ∂θA. Here and

below, the inner product 〈·, ·〉 on the Lie algebra g is chosen such that the length of a long

root is
√
2. It induces an inner product (with the same notation) on Lg. The 3-curvature
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H = dB ∈ Ω3(X), associated to B, represents the Dixmier-Douady class of the bundle gerbe

(Q,LQ) in de Rham cohomology. It pulls back to −
√
−1

4π2

∫
S1〈FA,∇Φ〉 dθ on Q. Let FÃ denote

the curvature of the connection Ã on P . Then the first Pontryagin form of P is 1
8π2 〈FÃ, FÃ〉,

and Theorem 6.1 in [29] asserts that

− 1

8π2

∫

S1

〈FÃ, FÃ〉 = H. (3.3)

If ρ : G → SU(V ) is a unitary representation of G on a finite dimensional vector space

V , we can study the behavior of the caloron correspondence under ρ. First, we have a

principal SU(V )-bundle P ρ = P ×G SU(V ) → S1 ×X ; let rP : P → P ρ be the map induced

by ρ that changes the structure group. Correspondingly, there is a principal LSU(V )-

bundle Qρ = η∗(LP ρ) = Q ×LG LSU(V ) over X . Let rQ : Q → Qρ be the map induced

by Lρ : LG → LSU(V ). Using the map ξρ : (Q
ρ)[2] → LSU(V ), we have a line bundle

Lρ = ξ∗ρ(L
LSU(V )) and hence a bundle gerbe (Qρ,Lρ). We recall that the line bundles

LLG → LG and LLSU(V ) → LSU(V ) satisfy the relation (Lρ)∗(LLSU(V )) ∼= (LLG)⊗ιρ , where

ιρ is the Dynkin index of the representation ρ [5]. Using the commutative diagram

Q[2]
ξ

//

r
[2]
Q

��

LG

Lρ

��

(Qρ)[2]
ξρ

// LSU(V ),

we get (r
[2]
Q )∗(Lρ) ∼= (LQ)⊗ιρ . Therefore, the bundle gerbe (Qρ,Lρ) on X is the ιρ-th power

of (Q,LQ).

Given a connection Ã of P → S1×X , the induced connection Ãρ on P
ρ satisfies r∗P (Ãρ) =

ρ̇(Ã), where ρ̇ : g → su(V ) is the representation of the Lie algebra g. The connection on Qρ is

Aρ = η∗(LÃρ); it satisfies r
∗
Q(Aρ) = Lρ̇(A), and therefore we have r∗Q(FAρ

) = Lρ̇(FA) for the

corresponding curvatures. Similarly, the Higgs field Φρ = η∗ιΞ (LÃρ) : Q
ρ → Lsu(V ) satisfies

r∗Q(Φρ) = Lρ̇(Φ). Since the pull-back by ρ̇ of the primitive bilinear form on su(V ) is ιρ times

the form 〈·, ·〉 on g, the curving (B-field) Bρ on Qρ is related to B on Q by r∗Q(Bρ) = ιρB.

Therefore, the 3-curvature Hρ on X associated to Bρ is Hρ = ιρH . This is compatible with

an earlier result that the bundle gerbe (Qρ,Lρ) is the ιρ-th power (Q,LQ).

We summarize the results in the following

Proposition 3.2. Given a representation ρ : G → SU(V ) in the above setting, the induced

bundle gerbe (Qρ,Lρ) on X is the ιρ-th power of (Q,LQ). Furthermore, its B-field and the
7



3-curvature are, respectively,

r∗QBρ = ιρB, Hρ = ιρH.

3.2. Projective Hilbert bundle and the caloron bundle gerbe. As before, G is a

simple, connected and simply-connected compact Lie group and ρ : G→ SU(V ) is a unitary

representation of G. Let H = L2(S1, V ). Then there is an induced unitary representation

ρ̃ : LG → U(H) of LG defined by ρ̃(γ)(θ) = ρ(γ(θ)), where γ ∈ LG and θ ∈ S1. For any

λ ∈ R, we have a decomposition H = H+
λ ⊕H−

λ , where H+
λ (H−

λ , respectively) denotes the

Hilbert space span of the Fourier modes not less than (less than, respectively) λ. Actually,

we have ρ̃ : LG→ Ures(H), where the restricted unitary group is

Ures(H) = {S ∈ U(H) : [S, Iλ] is a Hilbert-Schmidt operator} .

Here Iλ is an involution on H such that Iλ = id on H+
λ and Iλ = −id on H−

λ (cf. [31]). It is

clear that Ures(H) does not depend on the choice of λ.

Let Fλ denote the associated Fock (Hilbert) space

Fλ =
∧

(H+
λ ⊕H−

λ ) .

Then we have the Shale-Stinespring embedding σλ : Ures(H) →֒ PU(Fλ) (cf. [37]). Let

ρ̂λ = σλ ◦ ρ̃ : LG → PU(Fλ) be the composition. It is a positive energy representation of

LG. In the next section, we will compare the representations for different values of λ, but

for the remainder of this section we will only need λ = 0.

Given a principal G-bundle P → S1×X , we have the principal LG-bundle Q→ X by the

caloron correspondence. Together with a representation ρ of G on V , we form the associated

fibre bundle

P(Fρ) = Q×LG P(F0) → X,

where LG acts on the typical fibre P(F0) via ρ̂0. We will next define a line bundle Lρ →
P(Fρ)[2] induced by PQ or LQ → Q[2]. Since

PQ = {(q1, q2, g) ∈ Q[2] × L̂G | q2 = q1p(g)},

there is a right action of L̂G× L̂G on PQ given by

(g1, g2) : (q1, q2, g) 7→ (q1p(g1), q2p(g2), g
−1
1 gg2).

On the other hand, if we denote the universal line bundle over P(F0) by L, the left LG-action

on P(F0) (via ρ̂0) lifts to an action of L̂G on L. We set Lρ = PQ ×
L̂G×L̂G

(L ⊠ L); this is
8



a line bundle over Q[2] ×(LG×LG) (P(F0)× P(F0)) = P(Fρ)[2]. The triviality of δ(LQ) → Q[3]

implies that of δ(Lρ) → P(Fρ)[3]. Thus we have a bundle gerbe which we call the caloron

bundle gerbe.

We explain the above construction using local data. Let {Uα} be an open cover ofX which

locally trivializes the principal LG-bundle Q. Then the restriction of Q to Uα, Qα → Uα,

has a lift to a principal L̂G-bundle Q̂α → Uα. On the overlap Uα ∩ Uβ , the two bundles

Q̂α and Q̂β differ by a principal U(1)-bundle whose associated line bundle we denote by

L
Q
αβ → Uα ∩ Uβ . They satisfy L

Q
αβ ⊗ L

Q
βγ

∼= LQ
αγ on Uα ∩ Uβ ∩ Uγ and the collection

{LQ
αβ} is a local description of the bundle gerbe (Q,LQ). Given a unitary representation

ρ : G → SU(V ), the principal LSU(V )-bundle Qρ
α = Qα ×LG LSU(V ) lifts to a principal

̂LSU(V )-bundle Q̂ρ
α = Q̂α ×

L̂G
̂LSU(V ) over Uα. On the overlap Uα ∩ Uβ , the two lifts Q̂ρ

α

and Q̂ρ
β differ by a U(1)-bundle whose associated line bundle is Lρ

αβ = (LQ
αβ)

⊗ιρ .

Let Fρ
α = Q̂α ×

L̂G
F0 → Uα be the associated Fock bundles; the projectivizations P(Fρ

α)

glue properly to form the bundle πρ : P(F
ρ) → X . On the overlap Uα∩Uβ , the Fock bundles

are related by Fρ
α
∼= (LQ

αβ)
⊗ιρ ⊗ F

ρ
β. As in the construction of the index bundle gerbe, let

Lρ
α be the universal bundle over P(Fρ

α). Then Lρ
α = L

ρ
β ⊗ π∗

ρ(L
ρ
αβ). So the line bundles

(Lρ
α)

−1
⊠ Lρ

α over P(Fρ
α)

[2] ⊂ P(Fρ
α)× P(Fρ

α) glue properly to define globally the line bundle

Lρ → P(Fρ)[2]. This defines the same caloron bundle gerbe. The line bundles Lρ
α are its

local trivializations under which the bundle gerbe is described locally by a collection of line

bundles Lρ
αβ = (LQ

αβ)
⊗ιρ over Uα ∩ Uβ .

4. Comparison of the index bundle gerbe and the caloron bundle gerbe

Recall that P is a principal G-bundle over S1 × X and Q is the corresponding principal

LG-bundle over X . The fibre of Q at x ∈ X is Qx = Γ (S1 × {x}, P ) with the obvious

right LG-action. Given a finite dimensional unitary representation ρ of G on V , there is an

associated hermitian vector bundle E = P×GV → S1×X . Consider the Hilbert space bundle

H → X whose fibre Hx over x ∈ X is the L2-completion of the space Γ (S1×{x}, E). There
is a family of Dirac operators {Dx} on S1 coupled to E acting on the fibres of H. By Sect. 2,

there is a projectivized Fock bundle P(F) → X and a hermitian line bundle L → P(F)[2] that

defines the index bundle gerbe. By Sect. 3.2, there is a another projectivized Fock bundle

P(Fρ) → X constructed by using the data from caloron correspondence and the spectral cut

at 0 and a hermitian line bundle Lρ → P(Fρ)[2] that defines the caloron bundle gerbe. The

purpose of this section is to show that the two bundle gerbes are isomorphic.
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4.1. Spectral cuts, equivalent representations and Bogoliubov transformations.

In this section, we show that the projective loop group representation the projectivized Fock

space P(Fλ), corresponding to a spectral cut λ, is equivalent to P(Fµ), for µ 6= λ. This is

achieved by using a Bogoliubov transformation (see also [26], Sect. 12.3).

Let {ψi
n : n ∈ Z, 1 ≤ i ≤ dimV } be a basis for H. Then {ψ̄i

n : n ∈ Z, 1 ≤ i ≤ dim V }
is a basis for H, where ψ̄i

n is the complex conjugation of ψi
−n. They are chosen so that H+

λ

is spanned by {ψi
n : n ∈ Z, n ≥ λ, 1 ≤ i ≤ dimV } and H−

λ is spanned by {ψi
n : n ∈ Z, n <

λ, 1 ≤ i ≤ dimV }. Similarly, H+
λ is spanned by {ψ̄i

n : n ∈ Z, n ≤ −λ, 1 ≤ i ≤ dimV } and

H−
λ is spanned by {ψ̄i

n : n ∈ Z, n > −λ, 1 ≤ i ≤ dimV }. The Fock space Fλ is spanned by

{ψi1
n1
. . . ψiN

nN
ψ̄j1
m1
. . . ψ̄jM

mM
|λ〉 , n1, . . . , nN ≥ λ, m1, . . . , mM > −λ}, where the ‘vacuum’ |λ〉

has the properties

ψi
n |λ〉 = 0 , n < λ and ψ̄i

n |λ〉 = 0 , n ≤ −λ .

and ψi
m and ψ̄j

n are operators act on Fλ satisfying

{ψi
m, ψ

j
n} = 0 = {ψ̄i

m, ψ̄
j
n} ,

{ψi
m, ψ̄

j
n} = δm+n,0δ

i,j .

If µ > λ, then

|µ〉 =
( ∏

λ<n≤µ

∏

i

ψi
n

)
|λ〉 , |λ〉 =

( ∏

−µ≤n<−λ

∏

i

ψ̄i
n

)
|µ〉 .

The operator
∏

λ<n≤µ

∏

i

ψi
n, corresponding to a base vector of the complex line det(Hλ+∩Hµ−),

relates the two vacua in Fλ and Fµ; this is the so called Bogoliubov transformation.

Just as Ures(H), we have the restricted general linear group

GLres(H) = {U ∈ GL(H) : [U, Iλ] is a Hilbert-Schmidt operator} ,

which is also independent of λ. Define the bounded operator eijn on H by eijn (ψ
k
m) = δj,kψi

m+n.

Then id + eijn ∈ GLres(H). On the Fock space Fλ we define the operators σλ(e
ij
n ) =

∑
m :

ψi
mψ̄

j
n−m :λ , where the λ-normal ordering is defined as

:ψi
mψ̄

j
n :λ=

{
ψi
mψ̄

j
n, if m ≤ λ ,

−ψ̄j
nψ

i
m, if m < λ .

A standard computation then gives

[σλ(e
ij
m), σλ(e

kl
n )] = δj,kσλ(e

il
m+n)− δi,lσλ(e

kj
m+n) + δj,kδ

i,lmδm+n,0 ,
10



which shows that σλ is a representation on Fλ of the central extension ̂glres(H) of the Lie

algebra glres(H) of GLres(H).

Now let µ > λ. Then one computes

σµ(e
ij
n ) = σλ(e

ij
n )−

∑

λ<m<µ

{ψi
m, ψ̄

j
n−m}

= σλ(e
ij
n )− nλµδ

i,jδn,0,

where nλµ = #{m : λ < m ≤ µ}. Since eijn generates ̂glres(H), we have

σµ(K) = σλ(K)− nλµTr(K)

for any K ∈ ̂glres(H) and hence

σµ(U) = σλ(U) det(U)
−nλµ

for any U ∈ ̂GLres(H). That is, the projective representations on P(Fλ) and P(Fµ) of

Ures(H) ⊂ GLres(H), and hence those of LG are equal.

We note that in this particular case, not only do we have an action of a central extension

of GLres(H) on Fλ, but also an action of the Virasoro algebra (the central extension of the

2-dimensional conformal algebra). The calculations in this section are of course well-known

to the experts in conformal field theory (see, e.g., [14] and references therein). It is an

interesting question whether our construction of the caloron bundle gerbe has applications

in the context of conformal field theory as well.

4.2. Isomorphism between the index and caloron bundle gerbes. In this section,

we will show that the geometrically obtained caloron bundle gerbe is isomorphic (not just

stably isomorphic) to the analytically defined index bundle gerbe in this context. For the

notion of stable isomorphism of bundle gerbes, see [28].

Consider the vector bundle E = P ×GV over S1×X , which itself fibers over X with circle

fibres. We first show that Hilbert bundle H defined in Sect. 2 is the associated bundle of

Q by ρ̃, i.e., H ∼= Q ×LG H. Suppose X has an open covering {Uα} such that the bundle

Q is trivial over each Uα. Then P is also trivial on S1 × Uα; let gαβ : S
1 × (Uα ∩ Uβ) → G

be the transition functions. Then the transition functions g̃αβ : Uα ∩ Uβ → LG of Q are

given by g̃αβ(x) = gαβ(·, x), x ∈ Uα ∩ Uβ . Under the trivialisation over Uα, the fibre Hx

(x ∈ Uα) can be identified with H. Using the local trivialisations of P , if x ∈ Uα ∩ Uβ ,

the two identifications of Hx with H from Uα and Uβ are related by ρ̃(g̃αβ(x)) ∈ U(H).
11



This shows the result that H is associated to Q and thus we have the bundle isomorphism

H ∼= Q×LG H.

We now show that P(F) defined in Sect. 2 is an associated bundle of Q by ρ̂0. We assume

that on each Uα, we can choose λα 6∈ spec(Dx) for all x ∈ Uα. We then have a bundle of

Fock spaces Fλα
over Uα. Since H is an associated bundle of Q by the representation ρ̃ of

LG on the typical fibre H, P(Fλα
) is an associated bundle of Qα → Uα by the representation

ρ̂λα
: LG → PU(Fλα

), where Fλα
is the Fock space of H with a polarization corresponding

to λα. Under the natural identification of P(Fλα
) and P(F0), the representation ρ̂λα

is the

same as ρ̂0. This crucial step follows from the independence of representation of LG on the

cuts, as explained in Sect 4.1. Therefore, P(F) is an associated bundle of Q; in fact it is

isomorphic to P(Fρ).

Since the line bundles L → P(F)[2] in Sect. 2 and LQ → P(Fρ)[2] in Sect. 3.2 are both

constructed from the universal line bundle, we have the following results.

Theorem 4.1. Let P → S1×X be a principal G-bundle and let Q→ X be the corresponding

principal LG-bundle. Let ρ be a finite dimensional unitary representation of G on V and

let E = P ×G V . Let ρ̂0 be the projective representation of LG on F0, the Fock space of

H = L2(S1, V ) with polarization at 0. Let H be the Hilbert bundle whose fiber Hx at x ∈ X

is the L2-completion of Γ (S1×{x}, E). Then the projectivized Fock bundle P(F), constructed

from H, is isomorphic to the associated bundle Q×ρ̂0 P(F0) = P(Fρ). Furthermore, the index

bundle gerbe of the family of Dirac operators on S1 coupled to E is isomorphic to the caloron

bundle gerbe.

An alternative, less explicit argument for the same result goes as follows. For simplicity,

we will assume for the rest of the section that H3(X,Z) is torsion free, i.e., the torsion

subgroup of H3(X,Z) is trivial. It is well known that fibre bundles over X whose typical

fibre is a projective (infinite dimensional) Hilbert space are classified up to isomorphism

by their Dixmier-Douady classes in H3(X,Z). Conversely, every class in H3(X,Z) is the

Dixmier-Douady class of a fibre bundles over X whose typical fibre is a projective (infinite

dimensional) Hilbert space. This is essentially contained in Proposition 2.1 of [2].

Given a unitary representation ρ : G → U(V ), E = P ×G V is a hermitian vector bundle

over S1 × X . A connection Ã on P induces a hermitian connection ∇E on E, whose cur-

vature is FE . For the family of self-adjoint Dirac operators on S1 coupled to E, the index

bundle gerbe (P(F),L) is constructed in Sect. 2, and its Dixmier-Douady class in H3(X,Z)
12



is represented by the 3-curvature form on X [12, 13, 23]

1

8π2

∫

S1

trV (FE ∧ FE),

where FE is the curvature of the induced connection ∇E on E. This is equal to Hρ = ιρH

according to Proposition 3.2. Therefore the Dixmier-Douady class of P(F) is equal to that

of the bundle gerbe (Qρ,Lρ).

On the other hand, the homomorphism LSU(V ) → Ures(H) pulls back the basic central

extension of Ures(H) to that of LSU(V ) (see [31], Sect. 6.7), whereas the Shale-Stinespring

embedding σ0 : Ures(H) → PU(F0) pulls back the basic central extension U(F0) → PU(F0)

of PU(F0) to that of Ures(H). The latter can be argued from the literature as follows. One

has the commutative diagram

Ures(H) //

��

PU(F0)

��

Grres(H) // P(F0),

(4.1)

where Grres(H) denotes the restricted grassmannian, which is the quotient of Ures(H) by a

contractible subgroup (cf. page 115 in [31]). The vertical arrows in equation (4.1) are the

projection maps, which have degree one since the fibres are contractible. Similarly, since the

fibre of PU(F0) → P(F0) is also contractible, the Dixmier-Douady class of the P(F0) bundle

is equal to that of the PU(F0) bundle. The bottom horizontal arrow in (4.1) is the Plücker

embedding. The sentence just after equation (7.7.4) on page 116 in [31] says that the pullback

of the tautological line bundle on projective Fock space P(F0) (under the Plücker embedding)

is the determinant line bundle on the restricted grassmannian Grres(H). Page 115 in [31]

identifies the determinant line bundle on the restricted grassmannian Grres(H) with the

central extension of restricted unitary group Ures(H). Therefore the Dixmier-Douady class

of the bundle gerbe (Qρ,Lρ) is equal to that of the induced PU(F0) bundle and that of the

projective Hilbert space bundle P(Fρ).

Thus, both the projective bundle P(F) on X associated to the index bundle gerbe and

the projective bundle P(Fρ) on X associated to the caloron bundle gerbe have the same

Dixmier-Douady class in de Rham cohomology. By our assumption on H3(X,Z) and by

the classification theorem for projective Hilbert bundles over X , there is an isomorphism

of projective Hilbert bundles over X , P(Fρ) ∼= P(F). In particular, there is an induced
13



isomorphism of fibred products P(Fρ)[2] ∼= P(F)[2]. Finally, we conclude that the caloron

bundle gerbe (P(Fρ),Lρ) and the index bundle gerbe (P(F),L) are isomorphic.

5. Bundle gerbes on moduli spaces associated to Riemann surfaces

In this section we apply the constructions of bundle gerbes in Sect. 2 and Sect. 3.2 to

construct bundle gerbes on moduli spaces associated to Riemann surfaces whose Dixmier-

Douady classes are generators of the third integral cohomology groups of these moduli spaces.

We first review the construction of moduli spaces and universal bundles.

Let G be a compact, connected, semisimple real Lie group whose centre is Z(G). Let Gad

be the quotient G/Z(G), which has a trivial centre.

Let Σ be a compact, connected Riemann surface of genus g > 1, and let Σ̃ be its universal

covering space, with a right action of the fundamental group π1Σ . There is a left G-action

on the set of homomorphisms Hom(π1Σ , G) given by G ∋ h : φ 7→ Adh ◦ φ. An element

φ is irreducible if the isotropy subgroup is Z(G), that is, Adh ◦ φ = φ for h ∈ G implies

h ∈ Z(G). Let Homirr(π1Σ , G) be the subset of such. The quotient M = Homirr(π1Σ , G)/G

is the moduli space of flat G-connections on Σ . More generally, fix an element z ∈ Z(G). Let

Σ ′ be the surface Σ with a puncture. Its fundamental group π1Σ
′ is the central extension

of π1Σ by Z. Let Homz(π1Σ
′, G) be the set of homomorphisms such that the generator of Z

is mapped to z. Again there is a G-action on it and we have the subset Homirr
z (π1Σ

′, G) of

irreducible homomorphisms. The quotient Mz = Homirr
z (π1Σ

′, G)/G is the moduli space of

flat G-connections on Σ ′ whose holonomy around the puncture is z.

For any z ∈ Z(G), there is a left G-action on Σ̃ × Homirr
z (π1Σ

′, G) × G given by G ∋
h : (p, φ, g) 7→ (p,Adh ◦ φ, hg). There is also a left π1Σ -action on the same space given

by π1Σ ∋ γ : (p, φ, g) 7→ (pγ−1, φ, φ(γ)g). It is easy to check that the two actions com-

mute and hence there is a left action of G × π1Σ on Σ̃ × Homirr
z (π1Σ

′, G) × G. Let

U = (Σ̃ × Homirr
z (π1Σ

′, G) × G)/G × π1Σ be the quotient space and let π : U → (Σ̃ ×
Homirr

z (π1Σ
′, G))/G × π1Σ = Σ × M be the projection given by π : [(p, φ, g)] 7→ [(p, φ)] =

([p], [φ]), where φ ∈ Homirr
z (π1Σ

′, G), p ∈ Σ̃ and g ∈ G. Then U is a principal Gad-

bundle over Σ × Mz. To see this, we note that there is a right G-action on each fibre

π−1([p], [φ]) = {[(p, φ, g)] | g ∈ G} given by G ∋ h : [(p, φ, g)] 7→ [(p, φ, gh)]. The isotropic

subgroup is Z(G) because if [(p, φ, g)] = [(p, φ, gh)] = [(p,Adghg−1 ◦φ, g)], then ghg−1 ∈ Z(G)

or h ∈ Z(G) by the irreducibility of φ. The right G-action thus descends to a free action of

Gad on U.
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The bundle π : U → Σ ×Mz is called the universal bundle [22] because for each [φ] ∈ Mz,

the restriction of U to Σ × [φ] is the flat Gad-bundle over Σ defined by the homomorphism

α ◦ φ ∈ Homirr(π1Σ , Gad), where α : G → Gad is the quotient map. In fact, there is a

Gad-equivariant 1-1 map from U|Σ×[φ] = π−1(Σ × [φ]) = {[(p, φ, g)] : p ∈ Σ̃ , g ∈ G} to

Σ̃ ×α◦φ Gad = {[(p, g)] : p ∈ Σ̃ , g ∈ Gad} given by [(p, φ, g)] 7→ [(p, α(g))]. Moreover, for any

σ ∈ Σ , the restriction of U to σ×Mz is isomorphic to the Gad-bundle Hom
irr
z (π1Σ

′, G) → Mz.

To see this, we note that U|σ×Mz
= π−1(σ×Mz) = {[(p0, φ, g)] | φ ∈ Homirr

z (π1Σ
′, G), g ∈ G}

for a fixed p0 ∈ Σ̃ such that [p0] = σ. Under the bijection [(p0, φ, g)] = [(p0,Ad
−1
g ◦ φ, 1)] 7→

Ad−1
g ◦ φ, the right G-action G ∋ h : [(p0, φ, 1)] 7→ [(p0, φ, h)] = [(p0,Ad

−1
h ◦ φ, 1)] on U|σ×Mz

corresponds to G ∋ h : φ 7→ Ad−1
h ◦ φ on Homirr

z (π1Σ
′, G).

We assume that the moduli space Mz is closed. When G = SU(n), Mz is closed if and only

if z generates the center Z(SU(n)) ∼= Zn. Then the first Pontryagin class x of AdU → Σ×Mz

is a generator of H4(Σ × Mz,Q). For G = SU(n), H2(M,Q) is generated by the slant

product [Σ ]\x while H3(Mz,Q) is generated by [γ]\x, where γ : S1 → Σ are smooth loops

whose homology classes generate H1(Σ ,Z) ∼= Z2g when g > 1 [15]. There is no torsion

for H3(Mz,Z) if z generates Z(SU(n)) [6]. Given a Riemannian metric on Σ , the universal

bundle has a canonical connection [3] whose curvature is denoted by FU ∈ Ω2(Σ×Mz ,AdU).

In de Rham cohomology, x is represented by − 1
8π2 〈FU, FU〉. Therefore, the generators [Σ ]\x

and [γ]\x are represented by

− 1

8π2

∫

Σ

〈FU, FU〉 and Hρ,γ = − 1

8π2

∫

S1

(γ × id)∗〈FU, FU〉,

respectively.

When G = SU(n) and z generates Z(G), we apply the constructions of the index and

caloron bundle gerbes to obtain bundle gerbes on Mz whose Dixmier-Douady invariants are

the generators of the third de Rham cohomology group. Given a smooth loop γ : S1 → Σ ,

let Pγ = (γ × id)∗U be the principal Gad-bundle over S1 × Mz. With a finite dimensional

unitary representation ρ of Gad on V , we have a principal SU(V )-bundle P ρ
γ → S1 × Mz

and hence an LSU(V )-bundle Qρ
γ → Mz by caloron correspondence, with a line bundle Lρ

γ

over (Qρ
γ)

[2]. The universal connection on U pulls back to Pγ and induces one on P ρ
γ . The

latter determines a connection and a Higgs field for Qρ
γ. In particular, the Dixmier-Douady

class of bundle gerbe (Qρ
γ ,L

ρ
γ) is represented by ιρHρ,γ, which is one of the 2g generators of

H3(M,R) if g > 1.
15



Moreover, there are two ways to construct a projective Fock space bundles over Mz of

the same Dixmier-Douady class as above. First, by considering the the family of self-adjoint

Dirac operators on S1 coupled to the vector bundle Eγ = Pγ ×G V , we get the index bundle

gerbe (P(Fγ),Lγ) from Sect. 2. Second, using the LSU(V ) bundle Qρ
γ , we have the caloron

bundle gerbe (P(Fρ
γ),L

ρ
γ) from Sect. 3.2. They are isomorphic by Sect. 4.2 and their Dixmier-

Douady class is equal to that of (Qρ
γ ,L

ρ
γ).

The construction of natural bundle gerbes also applies to other moduli spaces associated

to Riemann surfaces, such as the Hitchin moduli space and the monopole moduli space.

6. Conclusions and outlook

In this paper, we have constructed bundle gerbes on moduli spaces M of flat G-bundles

on a compact Riemann surface Σ of genus g > 1, where G is a compact connected simply-

connected Lie group. These are the index bundle gerbe and the caloron bundle gerbe, which

we show are isomorphic (not just stably isomorphic). We have constructed a bundle gerbe

connection and curving (or B-field), and have computed the 3-curvature which represents the

Dixmier-Douady class of the bundle gerbe in de Rham cohomology. The construction is such

that it extends without change to other moduli spaces, such as the moduli space of principal

U(n)-bundles with fixed determinant bundle and the moduli space of Higgs bundles.

In Sect. 2, given the basic setup, we have constructed the index bundle gerbe, refining a

construction of Segal. It remains to define a natural bundle gerbe connection and curving on

it, and to compute the 3-curvature form. This has been established in the paper in a special

case using Sect. 4.2, which is the case that applies to the moduli spaces considered here.

In the setting of Sect. 3, let Q be a principal LG-bundle over X and ρ̂0 : LG → PU(F0)

a positive energy representation of LG. Then we can form the algebra bundle

KQ = Q×LG K(F0) −→ X

with fibre the algebra of compact operators on Fock space, K(F0). The space of continuous

sections of KQ,ρ̂0 vanishing at infinity, C0(X,KQ,ρ̂0), is a C
∗-algebra, which is a continuous

trace algebra with spectrum equal toX . This non-commutative algebra is only locally Morita

equivalent to continuous functions on X . The operator K-theory K•(C0(X,KQ,ρ̂0)) is the

twisted K-theory K•(X,H) (cf. [33]), where H is the Dixmier-Douady class of P(Fρ) (see

[10] for a alternate description of twisted K-theory). In particular, for each of the 2g bundle
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gerbes that we have constructed on the moduli space M, we can form the twisted K-theory,

and it would be interesting to compute these.

Another interesting problem is to give natural constructions of holomorphic bundle gerbes

on the moduli space stable holomorphic bundles over a Riemann surface Σ . If the degree

and the rank are coprime, then the 2g generators of the third cohomology are of types (2, 1)

and (1, 2) for g > 1 [16]. According to section 7 in [24], there are hermitian holomorphic

bundle gerbes that have these as Dixmier-Douady classes, but the challenge is to find natural

constructions for them.

Next we outline a construction of bundle gerbes on other moduli spaces such as the moduli

space of anti-self-dual (ASD) connections on a compact four dimensional Riemannian man-

ifold M such that dim(H1(M,R)) > 0. More precisely, let P denote a principal G-bundle

over M , where G is a compact semisimple Lie group, and let A−
P denote the space of all ASD

connections on P . We will assume that A−
P 6= ∅, which occurs under various hypotheses on

P and M , cf. the introduction in [35].

If GP denotes the gauge group of P , then one has the universal principal Gad bundle

Gad −→ (P ×A−
P )/GP −→M ×A−

P/GP .

Using this, we may also construct our bundle gerbes, for instance as follows. For γ : S1 →M

a generator of H1(M,Z), consider the restricted bundle

Gad −→ (γ∗P ×A−
P )/GP −→ S1 ×A−

P/GP , (6.1)

which as before determines the caloron bundle gerbe over the ASD moduli space.

LGad −→ Qγ −→ A−
P/GP .

One can similarly define the index bundle gerbe and show that these bundle gerbes are

isomorphic to each other and that their Dixmier-Douady is class given by
∫

S1

p1
(
γ∗(P )×A−

P )/GP

)
∈ H3(A−

P/GP ,Z).

Here p1
(
γ∗P ×A−

P )/GP

)
denotes the first Pontryagin class of the principal bundle in equation

(6.1).
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