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Abstract. The spread of influence in social networks is studied in two
main categories: the progressive model and the non-progressive model
(see e.g. the seminal work of Kempe, Kleinberg, and Tardos in KDD
2003). While the progressive models are suitable for modeling the spread
of influence in monopolistic settings, non-progressive are more appropri-
ate for modeling non-monopolistic settings, e.g., modeling diffusion of
two competing technologies over a social network. Despite the extensive
work on the progressive model, non-progressive models have not been
studied well. In this paper, we study the spread of influence in the non-
progressive model under the strict majority threshold: given a graph G
with a set of initially infected nodes, each node gets infected at time τ
iff a majority of its neighbors are infected at time τ − 1. Our goal in the
MinPTS problem is to find a minimum-cardinality initial set of infected
nodes that would eventually converge to a steady state where all nodes
of G are infected.
We prove that while the MinPTS is NP-hard for a restricted family of
graphs, it admits an improved constant-factor approximation algorithm
for power-law graphs. We do so by proving lower and upper bounds
in terms of the minimum and maximum degree of nodes in the graph.
The upper bound is achieved in turn by applying a natural greedy algo-
rithm. Our experimental evaluation of the greedy algorithm also shows
its superior performance compared to other algorithms for a set of real-
world graphs as well as the random power-law graphs. Finally, we study
the convergence properties of these algorithms and show that the non-
progressive model converges in at most O(|E(G)|) steps.
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1 Introduction

Studying the spread of social influence over in networks under various propaga-
tion models is a central issue in social network analysis[19,?,30,36]. This issue
plays an important role in several real-world applications including viral mar-
keting [6,14,33,26]. As categorized by Kempe et al. [26], there are two main
types of influence propagation models: the progressive and the non-progressive
models. In progressive models, infected (or influenced) vertices will remain in-
fected forever, but in the non-progressive model, under some conditions, infected
vertices may become uninfected again. In the context of viral marketing and
diffusion of technologies over social networks, the progressive model captures
the monopolistic settings where one new service is propagated among nodes of
the social network. On the other hand, in non-monopolistic settings, multiple
service providers might be competing to get people adopting their services, and
thus users may switch among two or more services back and forth. As a result, in
these non-monopolistic settings, the more relevant model to capture the spread
of influence is the non-progressive model [23,5,15,25].

While the progressive model has been studied extensively in the literature
[26,34,21,4,9,10,11], the non-progressive model has not received much attention
in the literature. In this paper, we study the non-progressive influence models,
and report both theoretical and experimental results for our models. We focus
on the the strict majority propagation rule in which the state of each vertex at
time τ is determined by the state of the majority of its neighbors at time τ − 1.
As an application of this propagation model, consider two competing technolo-
gies (e.g. IM service) that are competing in attracting nodes of a social network
to adopt their service, and nodes tend to adopt a service that the majority of
their neighbors already adopted. This type of influence propagation process can
be captured by applying the strict majority rule. Moreover, as an illustrative ex-
ample of the linear threshold model [26], the strict majority propagation model
is suitable for modeling transient faults in fault tolerant systems [17,31,18], and
also used in verifying convergence of consensus problems on social networks [29].
Here we study the non-progressive influence models under the strict majority
rule. In particular, we are mainly interested in minimum perfect target set prob-
lem where the goal is to identify a target set of nodes to infect at the beginning
of the process so that all nodes get infected at the end of the process. We will
present approximation algorithms and hardness results for the problem as well
experimental evaluation of our results. As our main contributions, we provide
improved upper and lower bounds on the size of the minimum perfect target set,
which in turn, result in improved constant-factor approximations for power-law
graphs. Finally, we also study the convergence rate of our algorithms and re-
port preliminary results. Before stating our results, we define the problems and
models formally.

Problem Formulations. Consider a graph G(V,E). Let N(v) denote the set
of neighbors of vertex v, and d(v) = |N(v)|. Also, let ∆(G) and δ(G) denote
the maximum and minimum degree of vertices in G respectively. The induced
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subgraph of G with a vertex set S ⊆ V (G) is denoted by G[S]. Also dS(v)
denotes the number of neighbors of v in subset S.

A 0/1 initial assignment is a function f0 : V (G)→ {0, 1}. For any 0/1 initial
assignment f0, let fτ : V (G) → {0, 1} (τ ≥ 1) be the state of vertices at time
τ and t(v) be the threshold associated with vertex v. For the strict majority

model, the threshold t(v) = dd(v)+1
2 e for each vertex v.

In the non-progressive strict majority model:

fτ (v) =

{
0 if

∑
u∈N(v) fτ−1(u) < t(v)

1 if
∑
u∈N(v) fτ−1(u) ≥ t(v) .

In progressive strict majority model:

fτ (v) =

{
0 if fτ−1(v) = 0 and

∑
u∈N(v) fτ−1(u) < t(v)

1 if fτ−1(v) = 1 or
∑
u∈N(v) fτ−1(u) ≥ t(v) .

Strict majority model is related to the linear threshold model in which t(v) is

chosen at random and not necessarily equal to dd(v)+1
2 e.

A 0/1 initial assignment f0 is called a perfect target set (PTS) if for a finite
τ , fτ (v) = 1 for all v ∈ V (G), i.e., the influence will converge to a steady state of
all 1’s. The cost of a target set f0, denoted by cost(f0), is the number of vertices
v with f0(v) = 1. The minimum perfect target set (MinPTS) problem is to find a
perfect target set with minimum cost. The cost of this minimum PTS is denoted
by PPTS(G) and NPPTS(G) respectively for progressive and non-progressive
models. This problem is also called target set selection [1]. Another variant of
this problem is the maximum active set problem [1] where the goal is to find at
most k nodes to activate (or infect) at time zero such that the number of finally
infected vertices is maximized.

A graph is power-law if and only if its degree distribution follows a power-law
distribution asymptotically. That is, the fraction P (x) of nodes in the network
having degree x goes for large number of nodes as P (x) = αx−γ where α is a
constant and γ > 1 is called power-law coefficient. It is widely observed that
most social networks are power-law [12].
Our Results and Techniques. In this paper, we study the spread of influence
in the non-progressive model under the strict majority threshold. We present
approximation algorithms and hardness results for the problem as well exper-
imental evaluation of our results. As our main contributions, we provide im-
proved upper and lower bounds on the size of the minimum perfect target set,
which in turn, result in improved constant-factor approximations for power-
law graphs. In addition, we prove that the MinPTS problem (or computing
NPPTS(G)) is NP-hard for a restricted family of graphs. In particular, we
prove lower and upper bounds on NPPTS(G) in terms of the minimum degree
(δ(G)) and maximum degree (∆(G)) of nodes in the graph, i.e., we show that

2n
∆(G)+1 ≤ NPPTS(G) ≤ n∆(G)(δ(G)+2)

4∆(G)+(∆(G)+1)(δ(G)−2) . The proofs of these bounds

are combinatorial and start by observing that in order to bound NPPTS(G)
for general graphs, one can bound it for bipartite graphs. The upper bound is
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achieved in turn by applying a natural greedy algorithm which can be easily
implemented. Our experimental evaluation of the greedy algorithm also shows
its superior performance compared to other algorithms for a set of real-world
graphs as well as the random power-law graphs. Finally, we study the conver-
gence properties of these algorithms. We first observe that the process will always
converges to a fixed point or a cycle of size two. Then we focus on the conver-
gence time and prove that for a given graph G, it takes at most O(|E(G)|) rounds
for the process to converge. We also evaluate the convergence rate of the non-
progressive influence models on some real-world social networks, and report the
average convergence time for a randomly chosen set of initially infected nodes.

More Related Work. The non-progressive spread of influence under the strict
majority rule is related to the diffusion of two or more competing technologies
over a social network [23,5,15,25]. As an example, an active line of research in
economics and mathematical sociology is concerned with modeling these types of
diffusion processes as a coordination game played on a social network [23,5,15,25].
Note that none of these previous prior work provide a bound for the perfect target
set problem.

It has been brought to our attention that in a relevant unpublished work by
Chang [7], the MinPTS problem on pawer-law graphs is studied and the bound

of NPPTS(G) = O(d |V |2γ−1 e) is proved under non-progressive majority models
in a power-law graph. But his results do not practically provide any bound for
the strict majority model. We will show that our upper bound is better and
practically applicable for different amounts of γ under strict majority threshold.

Tight or nearly tight bounds on the PPTS(G) are known for special types
of graphs such as torus, hypercube, butterfly and chordal rings [16,17,27,31,32].
The best bounds for progressive strict majority model in general graphs are due
to Chang and Lyuu. In [9], they showed that for a directed graph G, PPTS(G) ≤
23
27 |V (G)|. In [8], they improved their upper bound to 2

3 |V (G)| for directed graphs

and |V (G)|
2 for undirected graphs. However, to the best of our knowledge, there

is no known bound for NPPTS(G) for any type of graphs. In this paper, we will

combinatorially prove that 2n
∆(G)+1 ≤ NPPTS(G) ≤ n∆(G)(δ(G)+2)

4∆(G)+(∆(G)+1)(δ(G)−2) .

It is known that the Target Set Selection problem and Maximum Active Set
problem are both NP-hard in the linear threshold model [26], and approximation
algorithms have been developed for these problems. Kempe et al. [26] and Mossel
and Roch [28] present a (1− 1

e )-approximation algorithm for the maximum active
set problem by showing that the set of finally influenced vertices as a function
of the originally influenced nodes is submodular. On the other hand, it has been
shown that the target set selection problem is not approximable for different
propagation models [21,4,8,10]. The inapproximability result of Chang and Lyuu
in [8] on progressive strict majority threshold model is the most relevant result
to our results. They show that unless NP ⊆ TIME(nO(ln lnn)), no polynomial
time ((1/2− ε) ln |V |)-approximation algorithm exists for computing PPTS(G).
To the best of our knowledge, no complexity theoretic results have been obtained
for the non-progressive models.
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The problem of maximizing social influence for specific family of graphs has
been studied under the name of dynamic monopolies in the combinatorics liter-
ature [16,17,27,31,32,8,1,7]. All these results are for the progressive model. The
optimization problems related to the non-progressive influence models are not
well-studied in the literature. The one result in the area is due to Kempe et al.
[26] who presented a general reduction from non-progressive models to progres-
sive models. Their reduction, however, is not applicable to the perfect target set
selection problem.

2 Non-Progressive Spread of Influence in General Graphs

In this section, we prove lower bound and upper bounds for minimum PTS in
graphs, and finally show that finding the minimum PTS in general graphs is
NP-Hard.
Lower bound. The following theorem shows that if we have some lower bound
and upper bound for minimum Perfect Target Set in bipartite graphs then these
bounds could be generalized to all graphs ( Theorem 1).

Lemma 1. If α|V (H)| ≤ NPPTS(H) ≤ β|V (H)| for every bipartite graph H
under strict majority threshold, then α|V (G)| ≤ NPPTS(G) ≤ β|V (G)| under
strict majority threshold for every graph G (see appendix A).

The following lemma shows characteristics of PTSs in some special cases.
These will be used in proof of our theorems.

Lemma 2. Consider the non-progressive model and let G = (X,Y ) be a bipar-
tite graph and f0 be a perfect target set under strict majority threshold. For every
S ⊆ V (G) if

∑
v∈S∩X f0(v) = 0 or

∑
v∈S∩Y f0(v) = 0, then there exists at least

one vertex u in S such that dS(u) ≤ d(u)− t(u) (see appendix A).

If the conditions of previous lemma holds, we can obtain an upper bound for
number of edges of the graph. Following lemma provides this upper bound.
This will help us finding a lower bound for NPPTS of graphs. The function
t : V (G) → N may be any arbitrary function but here it is interpreted as the
threshold function.

Lemma 3. Consider a graph G with n vertices. If for every S ⊆ V (G) there
exists at least one vertex v for which dS(v) ≤ d(v) − t(v), then |E(G)| ≤∑
u∈V (G)(d(u)− t(u)) (see appendix A).

The following theorem shows that for every bipartite graph G, NPPTS(G) ≥
2|V (G)|
∆(G)+1 . Lemma 1 generalizes this theorem to all graphs. Also, Theorem 4 shows

that this bound is tight. In the following, the induced subgraph of G with a
vertex set S ⊆ V (G) is denoted by G[S].

Theorem 1. For every bipartite graph G = (X,Y ) of order n, NPPTS(G) ≥
2n

∆(G)+1 .
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Proof. Let f0 be an arbitrary PTS for G. Partition the vertices of graph G into
three subsets BX , BY and W as follow.

BX = {v ∈ X | f0(v) = 1}
BY = {v ∈ Y | f0(v) = 1}
W = {v ∈ V (G) | f0(v) = 0}

Consider the induced subgraph of G with vertex set BX ∪W and suppose that
S ⊆ BX∪W . For every vertex v ∈ Y ∩S, we have f0(v) = 0. So By Lemma 2, for
every S ⊆ BX ∪W there is at least one vertex u such that dS(u) ≤ d(u)− t(u).
By Lemma 3, this implies that G[BX ∪W ] has at most

∑
u∈BX∪W (d(u)− t(u))

edges. Similarly we can prove that G[BY ∪W ] has at most
∑
u∈BY ∪W (d(u)−t(u))

edges. Let eW be the number of edges in G[W ], eWX be the number of edges
with one end point in BX and the other end point in W and eWY be the number
of edges with one end point in BY and the other end point in W . we have:

eWX + eW ≤
∑

v∈BX∪W
(d(v)− t(v))

eWY + eW ≤
∑

v∈BY ∪W
(d(v)− t(v))

and so,

eWX + eWY + 2eW ≤
∑

v∈V (G)

(d(v)− t(v)) +
∑
v∈W

(d(v)− t(v))

The total degree of vertices in W is
∑
v∈W d(v) = eWX + eWY + 2eW . Thus∑

v∈W
d(v) ≤

∑
v∈V (G)

(d(v)− t(v)) +
∑
v∈W

(d(v)− t(v))

If we denote the set of vertices for which f0 is equal to 1 by B, we have∑
v∈W

(2t(v)− d(v)) ≤
∑
v∈B

(d(v)− t(v)) (1)

For every vertex v, t(v) ≥ d(v)+1
2 , so

|W | ≤
∑
v∈B

d(v)− 1

2
⇒ |W | ≤ ∆− 1

2
(|B|)

⇒ |B| ≥ 2n

∆+ 1

And the proof is complete.

We now show that the bound in Theorem 4 is tight.
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Algorithm 1 Greedy NPPTS

sort the vertices in G in ascending order of their degrees as the sequence v1, . . . , vn.
for i = 1 to n do

whiteadj[vi] = 0
blocked[vi] = 0

end for
for i = 1 to n do

for each u ∈ N(vi) do
if whiteadj[u] = d(u)− t(u) then

blocked[vi] = 1
end if

end for
if (blocked[vi] = 1) then
f0(v) = 1

else
f0(v) = 0
for each u ∈ N(vi) do

whiteadj[u]+ = 1
end for

end if
end for

Lemma 4. For infinitely many n’s, there exists a 2d + 1-regular graph with n
vertices such that NPPTS(G) = n

d+1 under strict majority rule (see appendix
A).

Upper bound. In this section, we present a greedy algorithm which gives an
upper bound for NPPTS(G).

Theorem 2. For every graph G of order n, NPPTS(G) ≤ n∆(δ+2)
4∆+(∆+1)(δ−2) un-

der strict majority threshold.

Algorithm 1 guarantees this upper bound. This algorithm gets a graph G of
order n and the threshold function t as input and determines the values of f0
for each vertex.

Lemma 5. The algorithm Greedy NPPTS finds a Perfect Target Set for non-
progressive spread of influence.

Proof. By induction on the number of vertices for which f0 is determined, we
prove that f0 remains a PTS after each step of algorithm if we assume that f0
is 1 for undetermined values. It is clear that the claim is true at the beginning.
Consider a set of values of f0 which forms a PTS and let v be a vertex for
which value of f0(v) is set to 0 by the algorithm in the next step. By induction
hypothesis, f0 is a PTS if f0(v) is assumed to be 1. According to the algorithm,
f0(v) is set to 0 iff the value of blocked[v] is zero i.e. no adjacent vertex of v,
say u, has exactly d(u)− t(u) adjacent initially uninfected vertices. So by setting
f0(v) to 0, each initially infected vertex w still has at least t(w) infected vertices
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and also v has at least t(v) initially infected neighbors itself. Thus, after one step
of propagation, all initially infected vertices plus v are infected and by induction
hypothesis, all vertices will be infected eventually and so f0 remains a PTS.

Lemma 6. For every graph G of order n, Greedy NPPTS guarantees the upper

bound of n∆(δ+2)
4∆+(∆+1)(δ−2) for NPPTS(G) under strict majority threshold where

∆ and δ are maximum and minimum degree of vertices respectively.

Proof. According to the algorithm, for each vertex v, the value of f0(v) is set to
1 iff whiteadj[u] = d(u) − t(u) for some u ∈ N(v). Let S be the set of vertices
u for which whiteadj[u] = d(u)− t(u). B and W denote the set of infected and
uninfected vertices respectively. We have:

∑
v∈S

(d(v)− t(v)) ≤
∑
v∈W

d(v)⇒
∑
v∈S

(
d(v)

2
− 1) ≤

∑
v∈W

d(v)

Therefore,

(
δ

2
− 1)|S| ≤ ∆|W |.⇒ |S| ≤ 2∆

δ − 2
|W |

Each vertex in B has at least one adjacent vertex in S and each vertex v ∈ S
has at least d(v)− t(v) adjacent edges to W and so at most t(v) adjavent edges
to B, thus:

|B| ≤
∑
v∈S

(t(v)) ≤
∑
v∈S

(
d(v)

2
+ 1) ≤ 2|S|+

∑
v∈W

d(v)

≤ 2|S|+∆|W | ≤ (2
2∆

δ − 2
+∆)|W | ≤ 4∆+∆(δ − 2)

δ − 2
|W |

Thus,

|B| ≤ ∆(δ + 2)

4∆+ (∆+ 1)(δ − 2)
n

The approximation factor of the algorithm follows from previous claim and
the lower bound provided by Theorem 1:

Corollary 1. The Greedy NPPTS algorithm is a ∆(∆+1)(δ+2)
8∆+2(∆+1)(δ−2) approximation

algorithm for NPPTS problem.

NP-Hardness. In this section, we use a reduction from the Minimum Dominat-
ing Set problem (MDS) [3] to prove the NP-hardness of computing NPPTS(G).
The proof of following theorem is provided in appendix A.

Theorem 3. If there exists a polynomial-time algorithm for computing NPPTS(G)
for a given graph G under the strict majority threshold, then P = NP .
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3 Non-Progressive Spread of Influence in Power-law
graphs

In this section, we investigate the non-progressive spread of influence in power-
law graphs, and show that the greedy algorithm presented in the previous section
is indeed a constant-factor approximation algorithm for power-law graphs. For
each natural number x, we assume that the number of vertices with degree x is
proportional to x−γ and use α as the normalization coefficient. The value of γ,
known as power-law coefficient, is known to be between 2 and 3 in real-world
social networks . We denote the number of vertices of degree x by P (x) = αx−γ .
Let n be the number of vertices of graph, so we have:

n =

∞∑
x=1

αx−γ = αζ(γ)⇒ α =
n

ζ(γ)
,

where ζ is the Riemann Zeta function [24].
Lower bound. Consider a power-law graph G with a threshold function t and
a perfect target set f0. Denoting the set of initially influenced vertices by B and
the rest of the vertices by W , from the Equation 1, we have:∑

v∈W
(2t(v)− d(v)) ≤

∑
v∈B

(d(v)− t(v)).

The maximum cardinality of W is achieved when the degree of all vertices in B
is greater than or equal to the degree of all vertices in W . In this case, assume
that the minimum degree of vertices in B is k and 0 ≤ p ≤ 1 is the proportion
of the vertices of degree k in B, so under strict majority threshold we have:

k−1∑
x=1

αx−γ + (1− p)αk−γ ≤ |W | ≤
∑
v∈W

(2t(v)− d(v))

≤
∑
v∈B

(d(v)− t(v)) ≤
∞∑

x=k+1

αx−γ(
x− 1

2
) + pαk−γ

k − 1

2

⇒
k−1∑
x=1

x−γ + (1− p)k−γ ≤
∑∞
x=k+1(x1−γ − x−γ) + pk−γ(k − 1)

2

⇒ζ(γ)− ζ(γ, k − 1) + (1− p)k−γ

≤ ζ(γ − 1, k)− ζ(γ, k) + pk−γ(k − 1)

2
.

By estimating the value of Riemann Zeta function, we can estimate the upper
bound of k and lower bound of p for that k to provide a lower bound for |B|.
Assuming that we have the maximum possible value of k and minimum value of
p for that k, then:

|B| ≥
∞∑

x=k+1

αx−γ + αpk−γ =
ζ(γ, k) + pk−γ

ζ(γ)
n.
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The estimated values of lower bound for 2 ≤ γ ≤ 2.8 is shown in Figure 1.
Upper bound Suppose that one has run Greedy NPPTS algorithm under strict
majority threshold on a graph with power-law degree distribution. The follow-
ing theorem shows that unlike general graphs, the Greedy NPPTS algorithm
guarantees a constant factor upper bound on power-law graphs.

Theorem 4. Algorithm Greedy NPPTS initially influences at most (1 + 1
2γ+1 −

1
2ζ(γ) )n vertices under the strict majority threshold on a power-law graphs of

order n.

Proof. We may assume that the input graph is connected. We prove that the
number of uninfected vertices of degree 1 are sufficient for this upper bound.
Let v be a vertex of degree more than 1 with k adjacent vertices of degree 1 say
u1, u2 . . . uk. If d(v) is odd, it is clear that at least k

2 of the vertices u1, u2 . . . uk
will be uninfected since k ≤ d(v). Note that according to the greedy algorithm,
the value of f0 for degree 1 vertices are determined before any other vertex. If
d(v) is even, at least k

2 − 1 of vertices u1, u2 . . . uk will be uninfected. Therefore
we have:

NPPTS(G) ≤ n− 1

2
(P (1)−

∞∑
x=1

P (2x))

≤ n− 1

2
(α

1

1γ
− α

∞∑
x=1

1

(2x)γ
)

= n− α

2
(1− 1

2γ
ζ(γ)) = n(1 +

1

2γ+1
− 1

2ζ(γ)
)

By previous lemma, we conclude that the Greedy NPPTS algorithm is a
constant-factor approximation algorithm on power-law graphs under strict ma-
jority threshold. The lower bound and upper bound for different values of γ
are shown in Figure 1. As you can see our algorithm acts optimally on social
networks with large value of power-law coefficient since upper and lower bound
diagram meet each other for these values of power-law coefficient.

4 Experimental Evaluations

In this section we run our algorithm on real-world social networks as well as
random power-law graphs with a wide range of power-law coefficients. Following
the method used in [26], we compare the performance of our algorithm to other
heuristics for identifying influential individuals.
Random power-law and real-world networks. We evaluate the performance
of the greedy algorithm on graphs with various amount of power-law coefficient.
Following a previously developed way of generating power-law graphs from [2],
we set two parameters α and γ defined as follows: α is the logarithm of the
graph size and γ is the log-log growth rate (power-law coefficient). For details
of the way to generate random power-law graphs, see Appendix [?]. We also
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Fig. 1. Values of upper bound and lower bound in power-law graphs

run our algorithms over four social networks’ data: Who-trusts-whom network
of Epinions.com, Slashdot social network, collaboration network of Arxiv Astro
Physics, Arxiv High Energy Physics paper citation network, Amazon product
co-purchasing network. In cases where graph is not connected we select graphs’
giant component.
Setup. We compare our greedy algorithm with heuristics based on nodes’ de-
grees and centrality within the network, as well as the baseline of choosing ran-
dom nodes to target. High-Degree and distance-centrality heuristics choose ver-
tices in the order of decreasing degree and decreasing average distance to other
nodes. These heuristics are commonly used in the social science literature as
estimates of a node’s influence in the social network [35,26].

In each of these cases, in each step, we check whether the selected vertices
are a perfect target set or not. This can be easily verified by simulating spread
of influence process until the states of vertices become stable. The simulation
process ends at a polynomially bounded time τ when for each v ∈ V (G) we have
fτ (v) = fτ−2(v) (see Theorem 5 and Theorem 6).

Notice that because the optimization problem is NP-hard (Theorem 3), and
the testbed graphs are prohibitively large, we are not able to compute the opti-
mum value to verify the actual quality of approximations.
Experimental Results. Figure 2(a) shows the performance of our algorithm
in comparison to introduced heuristics on random power-law graphs. For any
value of γ (power-law coefficient), all heuristics pick almost entire vertices of the
graph while our algorithm pick a number of them between proved lower-bound
and upper-bound. The same phenomena happens for the four real-world social
networks data. The results are depicted in Figure 2(b).

5 Convergence Issues

Let the state graph H of a non-progressive spread of influence process for graph
G be as follows: Each node of this graph represents one of possible states of
the graph. An edge between two states A and B in H models the fact that
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(b) Results on the real network data

applying one step of the influence process on state A changes the state to state
B. First of all, one can easily see that the non-progressive model may not result
to a singleton steady state for any dynamics. To see this, consider the following
example: a cycle with 2k vertices C = v1v2...v2k and at time 0 infect vertices
with odd indices. In this case, the process will oscillate between exactly two
states. In fact, one can show a general theorem that any dynamics will converge
to either one or two states:

Theorem 5. The non-progressive spread of influence process on a graph reaches
a cycle of length of at most two (see appendix C).

Using this intuition, one can define the convergence time of a non-progressive
influence process under the strict majority rule as the time it takes to converge to
a cycle of size of two states, i.e., the convergence time is the minimum time T at
which fT (v) = fT+2(v) for all vertices v ∈ V (G). For a set S of initially infected
vertices, let ctG(S) to be the convergence time of the non-progressive process
under the strict majority model(T ). In the following theorem, we formally prove
an upper bound of O(|E(G)|) for this convergence time:

Theorem 6. For a given graph G and any set S ⊆ V (G), we have ctG(S) =
O(|E(G)|).

Proof. In each time step τ of the non-progressive spread of influence, all the
vertices apply the function fτ concurrently. In order to prove the theorem for
such concurrent dynamics , we first define a simplified sequential dynamics, prove
the convergence time for this simplified dynamics, and finally give a reduction
from the concurrent to the sequential dynamics. In sequential dynamics, the
vertices apply the influence process one by one in a sequence of rounds, where
in each step one vertex applies the influence process exactly once.

We first show that the sequential dynamic on every graph G and under the
strict majority model converges after at most O(|E(G)|.|V (G)|) steps. To see this
bound, consider the following potential function for a graph G: the number of
edges whose endpoints have different states. One can see that whenever a vertex
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changes its state from uninfected to infected the potential of G will decrease
at least one and otherwise it remains unchanged. Consider a vertex which has
k state changes during the process until it final convergence. At least k/2 of
these changes were from uninfected state to infected and so they cause one
decrement in the potential function. The initial amount of G’s potential is at
most |E(G)| and in each step (or |V (G)| consecutive steps), we have at least one
state change. So after at most 2|E(G)|.|V (G)| steps the potential of G would
reach its minimum, and the proof for the sequential dynamics is complete.

Now using the above observation, we show that the concurrent dynamics
convergences fast. Consider graph H = (X,Y ) built from G in Lemma 1.
We show that for every concurrent dynamics in G with convergence time of
T , there is an equivalent sequential dynamics in H with convergence time of
c|V (G)|T for some constant c. This will prove ctG ∈ O(|E(G)|), since we know
that the convergence time of the sequential dynamic in graph H is at most
2|V (H)|.|E(H)| = 8|V (G)|.|E(G)| = c|V (G)|.T . So T ∈ O(|E(G)|). The main
claim follows from the proof of Lemma 1. By induction on the number of steps,
we can show that the state of vertices in G is equal to the state of vertices in
X at odd steps and is equal to the state of vertices in Y at even steps (as we
did in the proof of Lemma 1). Now order vertices of X and Y with numbers
1, 2, · · · , |V (G)| and from |V (G)| + 1 to 2|V (G)|. It is easy to see that the se-
quential dynamics with this ordering, after |V (H)| steps, has the same outcome
under the concurrent dynamics in this graph.

The above theorem is tight i.e. there exists a set of graphs and initial states
with convergence time of O(|E(G)|). In power-law graphs since average degree is
constant, the number of edges is O(|V |) and thus the convergence time of these
graphs is O(|V |).

Finally, we study convergence time of non-progressive dynamics on several
real-world graphs, and observe the fast convergence of such dynamics on those
graphs. See Appendix C for details.

6 Conclusions

In this paper, we study the minimum target set selection problem in the non-
progressive influence model under the strict majority rule and provide theoretical
and practical results for this model. Our main results include upper bound and
lower bounds for these graphs, hardness and approximation algorithm for this
problem. We also apply our techniques on power-law graphs and derive improved
constant-factor approximation algorithms for this kind of graphs.

An important follow-up work is to study the minimum perfect set problem for
non-progressive models under other influence propagation rules, e.g. the general
linear threshold model. It is also interesting to design approximation algorithms
for other special kinds of complex graphs such as small-world graphs. Another
interesting research direction is to study maximum active set problem for non-
progressive models.
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Proof of Lemma 1. Consider a graph G with n vertices and vertex set V (G) =
{v1, v2, . . . vn} and threshold function t. Assume that there is a Perfect Target
Set f0 for G such that cost(f0) < α|V (G)|. Let H = (X,Y ) be a bipartite
graph such that X = {x1, . . . xn} and Y = {y1, . . . yn} and t′ be the threshold
function of vertices of H such that for every 1 ≤ i ≤ n, t′(xi) = t′(yi) = t(vi).
Define E(H) = {xiyj |vivj ∈ E(G)}. Let g0 be a Target Set for H such that
g0(xi) = g0(yi) = f0(vi) for every 1 ≤ i ≤ n. We claim that g0 is a PTS for H.
By induction on τ , we prove that gτ (xi) = gτ (yi) = fτ (vi) for every 1 ≤ i ≤ n.
By the definition, the assertion is true for τ = 0. Now let the assertion be true
for time τ . Consider a vertex xi ∈ X. We have

∑
y∈N(xi)

gτ (y) =
∑
v∈N(vi)

fτ (v)

and also t(xi) = t(vi), thus xi is influenced at time τ +1 by g0 iff vi is influenced
at time τ+1 by f0. By similar justification we can show that gτ+1(yi) = fτ+1(vi)
too. So g0 is a PTS for H iff f0 is a PTS for G, which is a contradiction since
by assumption NPPTS(H) ≥ α|V (H)| but cost(g0) < α|V (H)|.

Now we prove that NPPTS(G) ≤ β|V (G)|. Consider the bipartite graph
H with the aforementioned definition. By assumption there is a Perfect Target
Set g′0 with weight at most β|V (H)| for H. With no loss of generality assume
that the number of vertices in X for which g′0 is one (initially infected vertices)
is less than the number of initially infected vertices of Y . Let f ′0 be a PTS for
G such that f ′0(vi) = g′0(xi) for every 1 ≤ i ≤ n. We have cost(g′0) ≤ β|V (G)|
since |V (H)| = 2|V (G)|. By induction on τ we show that f ′2τ (vi) = g′2τ (xi) and
f ′2τ+1(vi) = g′2τ+1(yi) for every 1 ≤ i ≤ n and every τ ≥ 0. The assertion is
trivial for τ = 0. Now let the assertion be true for time 2τ . Consider a vertex
vi ∈ V (G). We have

∑
v∈N(vi)

f ′2τ (v) =
∑
x∈N(yi)

g′2τ (x) and also t(vi) = t(yi),

thus vi is influenced at time 2τ + 1 by f ′0 iff yi is influenced at time 2τ + 1 by
g′0. By similar justification we can show that f ′2τ+2(vi) = g′2τ+2(xi) too. So g′0 is
a PTS for H iff f ′0 is a PTS for G and so NPPTS(G) ≤ β|V (G)|.

In the following, dS(v) denotes the number of neighbors of v in subset.

Proof of Lemma 2. Consider a set S ⊆ V (G). With no loss of generality,
suppose that f0(v) = 0 for every v ∈ S ∩X. We prove the lemma by contradic-
tion. Assume that for every u ∈ S, dS(u) > d(u) − t(u). For every y ∈ S ∩ Y ,
f1(y) = 0 since y has at least d(y) − t(y) + 1 adjacent vertices in S ∩ X for
which f0 is zero. Similarly, for every x ∈ S ∩X, f2(x) = 0 since x has at least
d(x)− t(x) + 1 adjacent vertices in S ∩ Y for which f1 is zero, and so on. Thus
f0 is not a Perfect Target Set, a contradiction.

Proof of Lemma 3. We prove the lemma by induction on n. For n = 1 the asser-
tion is trivial. Consider a graph G with n vertices. Let S = V (G). By assumption,
there is at least one vertex v, such that d(v) ≤ d(v) − t(v). Remove the vertex
v from G. By induction hypothesis G− v has at most

∑
u∈V (G−v)(d(u)− t(u))

edges, so G has at most
∑
u∈V (G)(d(u)− t(u)) edges.

Proof of Theorem 4. Consider a (d+1)-regular graph G1 with m1 vertices . In
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step i (1 ≤ i ≤ ∞), Add mi+1 = d
d+1mi vertices to the graph and connect each

of them to Gi by d + 1 edges. Each vertex of Gi must receive exactly d newly
edges. Name the subgraph formed by these vertices Gi+1. This process is shown
in Figure 2. The final graph has n =

∑∞
i=1mi = m1(d+ 1) vertices. It is easy to

show that V (G1) is a PTS, so NPPTS(G) ≤ |V (G1)| = m1 = 2n
2d+2 = 2n

∆+1 .

G1

d
d + 1

d + 1 d

G2

G3

Fig. 2. A tight example for NPPTS(G)’s lower bound

Proof of Theorem 3. In an instance of the minimum dominating set problem
(MDS), given a graph G(V,E), our goal is to find find a subset S ⊆ V (G) of
minimum cardinality such that for any node v 6∈ S, we have S ∩N(v) 6= ∅. We
give reduction from this NP-hard problem to our problem. Given an instance G
of MDS with V (G) = {u1, u2, ..., un} and |E(G)| = e, we define an undirected
graph H as follows (See Figure 3): First, let

X0 = {g1, g2} X1 = {ai|1 ≤ i ≤ 2e+ 1}
X2 = {bi|1 ≤ i ≤ 2e+ 1} X3 = {ci|1 ≤ i ≤ 2e}
X4 = {wi|1 ≤ i ≤ n} X5 = {vi|1 ≤ i ≤ n}
X6 = {di|1 ≤ i ≤ 2e}.

Now let H(V,E) be

V (H) = ∪6i=0Xi
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d(u1)

d(u1)
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Fig. 3. The graph H

E(H) = {g1ai|1 ≤ i ≤ 2e+ 1}
∪ {g2bi|1 ≤ i ≤ 2e+ 1}
∪ {g1ci|1 ≤ i ≤ 2e}
∪ {g2ci|1 ≤ i ≤ 2e}

∪ {wicj |1 ≤ i ≤ n,
i−1∑
k=1

d(uk) ≤ j ≤
i∑

k=1

d(uk)}

∪ {viwj |uiuj ∈ E(G) ∨ i = j}

∪ {vidj |1 ≤ i ≤ n,
i−1∑
k=1

d(uk) ≤ j ≤
i∑

k=1

d(uk)}.

Suppose that D is a minimum dominating set for G. Define DH = {vi|ui ∈ D}.
We show that NPPTS(G) = 2e+ n+ 4 + |D|. It is easy to see that vertices in
X0∪X3∪X4∪DH plus one vertex from each of X1 and X2 form a Perfect Target
Set for the graph H. So, we have NPPTS(H) ≤ |X0|+ |X3|+ |X4|+ |DH |+2 =
2e+ n+ 4 + |D|.

It remains to prove that NPPTS(H) ≥ 2e + n + 4 + |D|. Suppose that
S ⊆ V (H) is a PTS for H with minimum cardinality. Consider vertex g1 in time
τ . If fτ (g1) = 0, in time τ + 1 for every vertex ai ∈ X1 we will have fτ+1(ai) = 0



18

and then fτ+2(g1) = 0. So we have, g1 ∈ S. Similarly, we have g2 ∈ S. Moreover,
at least 2e+ 1 vertices from each of g1 or g2’s neighbors must be in S, so w.l.o.g
suppose that X3’s members plus at least one vertex from each of X1 and X2 are
in S. By this setting, the vertices of X0 ∪ X1 ∪ X2 ∪ X3 become infected and
keep this infection for every τ > 0.

Consider a vertex wk ∈ X4. Let B(wk) = {di ∈ X6|di is reachable from wk
by a path of length 2}. Suppose that wk /∈ S. If there exists a di ∈ B(wk) ∩ S,
we replace it by wk in S. This modification does not prevent S from being a
PTS and also does not increase |S|. So, we may assume that B(wk) ∩ S = ∅
when wk /∈ S. Now, consider one of wk’s neighbors in X5 such as vp. None of
vp’s neighbors in X6 are infected initially. Thus vp has at most d(up) initially
infected neighbors. this implies that f1(vp) = 0 and it is true for all other wk’s
neighbors in X5. Similarly, f2(wk) = 0 and f2(dj) = 0 for all dj ∈ B(wk).
Similar to this argument, one can show that for every τ > 0, f2τ (wk) = 0 and
f2τ (dj) = 0 for all dj ∈ B(wk). Therefore, for every wk ∈ X4, at least one of its
neighbors in X5 must be in S. This means that S ∩X5 must have at least |D|
vertices and the proof is complete.

B Experimental Evaluation Data on Real Networks

Generating andom power-law networks. We evaluate the performance of
the greedy algorithm on graphs with various amount of power-law coefficient.
Following a previously developed way of generating power-law graphs from [2],
we set two parameters α and γ defined as follows: α is the logarithm of the
graph size and γ is the log-log growth rate (power-law coefficient). The number
of vertices with degree x, y satisfies

log y = α− γ log x.

The random power-law graph model is defined as follows: given n weighted
vertices with weights w1, w2, · · · , wn, a pair (i, j) of vertices appears as an edge
with probability wiwjp independently. These parameters p and w1, w2, · · · , wn
must satisfy

– ]{i|wi = 1} = beαc − r and ]{i|wi = k} = b e
α

kγ c for k = 2, 3, .., be
α
γ c. Here α

is a value minimizing |n−
∑beαγ c
k=1 b

eα

kγ c| and r = n−
∑beαγ c
k=1 b

eα

kγ c.
– p = 1∑n

i=1 wi

One can easily see the expected degree of i’th vertex would be wi and also
vertices’ weights follow power-law.

Experimental results for four real-world networks. Table 1 includes the
exact amount of greedy NPPTS’s output compared to the output of other heuris-
tics.
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Table 1. Results on the real networks

Network No. of γ No. of nodes selected by algorithm
nodes Greedy High Degree Central Random

Who-trusts-whom network of Epin-
ions.com

75888 1.50 27131 75878 75879 75888

Slashdot social network 77360 1.68 49978 77327 77360 77360

Collaboration network of Arxiv As-
tro Physics

18772 1.84 8287 18771 18772 18763

Arxiv High Energy Physics paper
citation network

34546 2.05 14647 34539 34546 34505

Amazon product co-purchasing net-
work

262111 2.54 155085 262111 262005 262026

C Missed Things from Section 5

Proof of theorem 5. In [20], it is shown that, for a function ∆ from {0, 1}n
to {0, 1}n whose components from a symmetric set of threshold functions, the
repeated application of ∆, leads either to a fixed point or to a cycle of length
two. Since the set of functions fτ (defined in Section 1) are symmetric threshold
functions, the lemma follows immediately from this fact.
Average convergence time of the process on social networks. Applying
a sampling technique and simple concentration inequalities, one can easily show
that the average convergence time of the non-progressive process on graph G

can be approximated with an additive error of ε in time O( e
2.n log(n)

ε2 ) where
e = |E(G)| and n = |V (G)|.
Theorem 7. Computing the average convergence time of the non-progressive

process on graph G, with an error of ε is possible in time O( e
2.n log(n)

ε2 ) where
e = |E(G)| and n = |V (G)|.

Proof. Define random variable XS = ctG(S). We uniformly select some of the
V (G)’s subsets S1, S2, ..., Sm and take the average of XSis. In [22], Hoeffding
shows that with large value of m and if XSis are bounded between ai and bi,
XS would be a good estimation (with an error less than ε) for E[XS ] that is our
desired target:

Pr(|XS − E[XS ]| ≥ ε) ≤ 2 exp

(
− 2ε2m2∑m

i=1(bi − ai)2

)
From Theorem 6 we know putting ai = 0 and bi = 8e for all 1 ≤ i ≤ m, meets
the preconditions of the above inequality. To have Pr(|XS − E[XS ]|) ≤ 2

n , we
can set

m2 ≥
ln(n)

∑m
i=1(bi − ai)2

ε2
=

64.m.e2.ln(n)

ε2
⇒ m ≥ 64e2.ln(n)

ε2

Since computing each XSi needs O(n) the total time will be at most O(mn) =

O( e
2.n log(n)

ε2 ).
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Corollary 2. Computing the average convergence time of the process on a power-

law graph G, with an error of ε is possible in time O(n
3 log(n)
ε2 ) where n = |V (G)|.

As a result, we can perform experimental evaluation of convergence time in
several families of graphs. In particular, through experimental evaluations, we
show the average time of convergence for random power law graphs with ε = 0.1.
Figure 4 shows average convergence time calculated by sampling for 500 random
power law graphs with average of 100 vertices.
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Fig. 4. Average convergence time on random power-law graphs
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