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REFINING CASTELNUOVO-HALPHEN BOUNDS

VINCENZO DI GENNARO AND DAVIDE FRANCO

Abstract. Fix integers r, d, s, π with r ≥ 4, d ≫ s, r − 1 ≤ s ≤ 2r − 4, and

π ≥ 0. Refining classical results for the genus of a projective curve, we exhibit

a sharp upper bound for the arithmetic genus pa(C) of an integral projective

curve C ⊂ P
r of degree d, assuming that C is not contained in any surface of

degree < s, and not contained in any surface of degree s with sectional genus

> π. Next we discuss other types of bound for pa(C), involving conditions on

the entire Hilbert polynomial of the integral surfaces on which C may lie.

Keywords and phrases: Castelnuovo-Halphen Theory, Hartshorne-Rao mod-
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1. Introduction

A classical problem in the theory of projective curves is the classification of all

their possible genera in terms of the degree d and the dimension r of the space

where they are embedded. In 1882 Halphen [10] and Noether [15] determined an

upper bound G(3, d) for the genus of an irreducible, non degenerate curve in P
3,

and in 1889 Castelnuovo [2] found the analogous bound G(r, d) for the genus of

irreducible, non degenerate curves in P
r, r ≥ 3.

Since curves of maximal genus G(3, d) in P
3 must lie on a quadric surface, it

is natural to ask for the maximal genus G(3, d, s) of space curves of degree d, not

contained in surfaces of degree less than a fixed integer s. In fact Halphen gave

such a refined bound. His argument was not complete, but in 1977 Gruson and

Peskine [9] provided a complete proof in the range d > s2 − s.

The same phenomenon occurs for curves of maximal genus G(r, d) in P
r, also

called Castelnuovo’s curves: at least when d > 2r, they must lie on surfaces of

minimal degree r − 1. As before, one may refine Castelnuovo’s bound, looking for

the maximal genus G(r, d, s) of curves of degree d in P
r, not contained in surfaces

of degree less than a fixed integer s. In 1982 Eisenbud and Harris ([5], Theorem

(3.22), p. 117) determined such a bound for r − 1 ≤ s ≤ 2r − 2 and d ≫ s. Next,

in 1993, the bound G(r, d, s) has been computed for any s and d ≫ s (see [3]).

A very special feature of the curves of maximal genusG(r, d, s), which generalizes

what we said about Castelnuovo’s curves (i.e. when s = r − 1), is that they must

lie on Castelnuovo’s surfaces of degree s, i.e. on surfaces whose general hyperplane

sections are themselves curves of maximal genus G(s, r − 1) in P
r−1 (see [3]).
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Therefore, pushing further previous analysis, one may ask for the maximal genus

G(r, d, s, π) of curves of degree d, not contained in surfaces of degree < s, neither

in surfaces of degree s with sectional genus greater than a fixed integer π (e.g.

π = G(r − 1, s) − 1). Of course, one may assume 0 ≤ π ≤ G(r − 1, s), and for

π = G(r − 1, s) and d ≫ s we have G(r, d, s, π) = G(r, d, s).

In the present paper we compute G(r, d, s, π), in the range r − 1 ≤ s ≤ 2r − 4

and d ≫ s (Theorem 2.2)(except for the cases s = 2r − 3 and s = 2r − 2, it is the

quoted Eisenbud-Harris range for s [5]). Next we discuss other types of bound for

pa(C), involving conditions on the entire Hilbert polynomial of the integral surfaces

on which C may lie (Proposition 2.3).

2. Notations and the statement of the main results

In order to state our results we need some preliminary notation, which we will

use throughout the paper.

Notations 2.1. (i) Fix integers r, d, s, π and p, with r ≥ 3 and s ≥ r− 1. Define m

and ǫ by dividing d− 1 = ms+ ǫ, 0 ≤ ǫ ≤ s− 1. Set π0 := π0(s, r− 1) := s− r+1.

Notice that when r−1 ≤ s ≤ 2r−3 then π0 = G(r−1, s), i.e. π0 is the Castelnuovo’s

bound for a curve of degree s in P
r−1 [5]. Set

d0(r) :=





16(r − 2)(2r − 3) if 4 ≤ r ≤ 6

8(r − 2)3 if 7 ≤ r ≤ 11

2r+1 if r ≥ 12.

(ii) When r − 1 ≤ s ≤ 2r − 4 define:

G∗(r, d, s, π, p) :=

(
m

2

)
s+m(ǫ+ π)− p+ max

(
0,

[
2π − (s− 1− ǫ)

2

])

(square brackets indicate the integer part). Even if G∗(r, d, s, π, p) does not depend

on r, we prefer to use this notation in order to recall that r−1 ≤ s ≤ 2r−4. Observe

that the number G∗(r, d, s, π0, 0) is the quoted bound G(r, d, s) determined in [5],

Theorem (3.22), when r − 1 ≤ s ≤ 2r − 3 (in [5] these numbers are denoted by

πα(d, r), with α := s− r + 2).

(iii) We define the numerical function hr,d,s,π as follows:

hr,d,s,π(i) :=






1− π + is−max (0, π0 − π − i+ 1) if 1 ≤ i ≤ m

d−max
(
0,
[
2π−(s−1−ǫ)

2

])
if i = m+ 1

d if i ≥ m+ 2.

(iv) For a projective subscheme X ⊆ P
N we will denote by IX its ideal sheaf

in P
N , and by M(X) := ⊕i∈ZH

1(PN , IX(i)) the Hartshorne-Rao Module. We will

denote by hX the Hilbert function of X [5], and by ∆hX the first difference of hX ,
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i.e. ∆hX(i) := hX(i)−hX(i−1). We will say that X is a.C.M. if it is arithmetically

Cohen-Macaulay.

(v) Given numerical functions h1 : Z → Z and h2 : Z → Z, we say that h1 > h2

if h1(i) ≥ h2(i) for any i ∈ Z, and if there exists some i such that h1(i) > h2(i).

Our main result is the following:

Theorem 2.2. Fix integers r, d, s, π with r ≥ 4, r−1 ≤ s ≤ 2r−4, 0 ≤ π ≤ π0 and

d > d0(r). Let C ⊂ P
r be an irreducible, reduced, nondegenerate, projective curve

of degree d, and arithmetic genus pa(C). Let Γ ⊂ P
r−1 be the general hyperplane

section of C, and hΓ its Hilbert function. Assume that C is not contained in any

surface of degree < s, and not contained in any surface of degree s with sectional

genus > π. Then one has:

(a) hΓ(i) ≥ hr,d,s,π(i) for any i ∈ Z;

(b) pa(C) ≤ G∗
(
r, d, s, π,−

(
π0−π+1

2

))
, and therefore

G(r, d, s, π) ≤ G∗

(
r, d, s, π,−

(
π0 − π + 1

2

))
;

(c) the bound is sharp, and the curves with maximal genus are a. C.M. with hΓ =

hr,d,s,π, and contained in surfaces S of degree s, sectional genus π and arithmetic

genus pa(S) = −
(
π0−π+1

2

)
.

By property (c), combined with Corollary 3.6 below, we see that curves with

maximal arithmetic genus lie in surfaces with minimal arithmetic genus. The proof

of this fact relies on a general bound (see Proposition 3.9 below) which, as far as we

know, although elementary, seems to have escaped explicit notice. We hope that

Proposition 3.9 can be useful to obtain further information in the range s ≥ 2r− 3.

As for the other properties, the proof of Theorem 2.2 follows a now classic pattern

in Castelnuovo-Halphen Theory (see [5]), taking into account [7] which allows us

to estimate the Hartshorne-Rao module of the general hyperplane section of an

integral surface S ⊂ P
r of degree r − 1 ≤ s ≤ 2r − 4 (compare also with [16]).

According to the above, previous Theorem 2.2 suggests a more refined analysis:

given integers r, d, s, π, p, find the maximal genus G(r, d, s, π, p) for an integral curve

in P
r of given degree d ≫ s, not contained in any surface of degree < s, and not

contained in any surface of degree s with sectional genus > π and arithmetic genus

< p. By Theorem 2.2 we already know that when r − 1 ≤ s ≤ 2r − 4 then

G
(
r, d, s, π,−

(
π0−π+1

2

))
= G∗

(
r, d, s, π,−

(
π0−π+1

2

))
. To this purpose we are able

to prove the following partial result.

Proposition 2.3. Fix integers r, d, s, π, p with r ≥ 4, r−1 ≤ s ≤ 2r−4, 0 ≤ π ≤ π0,

−
(
π0−π+1

2

)
≤ p ≤ 0, and d > d0(r). Let C ⊂ P

r be an irreducible, reduced,
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nondegenerate, projective curve of degree d, and arithmetic genus pa(C). Assume

that C is not contained in any surface of degree < s, and not contained in any

surface of degree s with sectional genus > π and with arithmetic genus < p. Then

one has:

(a) pa(C) ≤ G∗ (r, d, s, π, p), i.e. G (r, d, s, π, p) ≤ G∗ (r, d, s, π, p);

(b) if the bound is sharp, i.e. if G (r, d, s, π, p) = G∗ (r, d, s, π, p), then the curves

with maximal genus are contained in surfaces of degree s, sectional genus π and

arithmetic genus p;

(c) if there is a nondegenerate, irreducible, smooth curve Σ ⊂ P
r−1 of degree s

and genus π with the Hartshorne-Rao module of dimension −p (in this case one has

a fortiori p ≤ −(π0 − π)), then the bound is sharp, and there are extremal a.C.M.

curves on the cone S ⊂ P
r over Σ (when 2π ≥ s− 1 + ǫ we must also assume that

Σ is an isomorphic projection of a Castelnuovo curve Σ′ ⊂ P
r−1+π0−π contained in

a smooth rational normal scroll surface);

(d) when p = −
(
π0−π+1

2

)
or p = −(π0 − π) or p = 0, then bound is sharp.

The line of the proof is similar to the proof of Theorem 2.2. However we are

forced to slightly modify it because, in this more general setting, there is no a

minimal Hilbert function for the general hyperplane section of C as in Theorem

2.2, (a) (and in fact there are extremal curves which are not a.C.M. (see Remark

4.2 below, (iii), (iv) and (v))). We are able to overcome this difficulty thanks to the

quoted Proposition 3.9. As far as we know, the question of the existence of a curve

Σ as in (c) of Proposition 2.3 (essentially of a curve with a prescribed Hartshorne-

Rao module) is quite difficult. Therefore previous proposition appears as a partial

result in this setting.

We refer to Remark 4.2 for other examples and comments on extremal curves

in the sense of Theorem 2.3. Our assumption d > d0(r) is certainly not the best

possible. It is only of the simplest form we were able to conceive. For r ≥ 12 this

assumption coincides with the one introduced in [5], p. 117, Theorem (3.22).

3. Preliminary results

In this section we collect some preliminary results which we need in order to

prove the announced results. We start with the following consequence of Theorem

1 in [7] (compare also with Theorem 3.2 in [16]). We keep the notation introduced

before.

Proposition 3.1. Let Σ ⊂ P
r−1 be a non degenerate integral curve of degree

s with arithmetic genus π. Assume that r − 1 ≤ s ≤ 2r − 4. Then one has

h1(Σ,OΣ(i)) = 0 for any i ≥ 1, h1(Pr−1, IΣ(1)) = π0 − π, and h1(Pr−1, IΣ(i)) ≤
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max
(
0, h1(Pr−1, IΣ(i− 1))− 1

)
for any i ≥ 2. In particular h1(Pr−1, IΣ(i)) ≤

max (0, π0 − π + 1− i) for any i ≥ 1.

Proof. Since π ≤ π0 = s − r + 1 then 2π − 2 < s. Therefore Σ is non special and

so h1(Σ,OΣ(i)) = 0 for any i ≥ 1. In particular h1(Pr−1, IΣ(1)) = h0(Σ,OΣ(1))−

hΣ(1) = (1 − π + s) − r = π0 − π. It remains to prove that h1(Pr−1, IΣ(i)) ≤

max
(
0, h1(Pr−1, IΣ(i − 1))− 1

)
for any i ≥ 2.

To this purpose let H be the general hyperplane section of Σ. Since r− 1 ≤ s ≤

2r − 4 then by Castelnuovo Theory [5] we know that hH(i) = s for any i ≥ 2, and

so h1(Pr−2, IH(i)) = 0 for any i ≥ 2. Therefore for any i ≥ 2 we have the following

exact sequence:

(1) 0 → H0(Pr−1, IΣ(i−1)) → H0(Pr−1, IΣ(i)) → H0(Pr−2, IH(i)) →

H1(Pr−1, IΣ(i− 1)) → H1(Pr−1, IΣ(i)) → 0.

In particular we have h1(Pr−1, IΣ(i)) ≤ h1(Pr−1, IΣ(i − 1)). Now suppose by

contradiction that h1(Pr−1, IΣ(i)) = h1(Pr−1, IΣ(i − 1)) > 0 for some i ≥ 2. Then

the map H0(Pr−1, IΣ(i)) → H0(Pr−2, IH(i)) should be surjective. But by [7] we

know that the homogeneous ideal of H is generated by quadrics. It would follow

that the map H0(Pr−1, IΣ(j)) → H0(Pr−2, IH(j)) is onto for any j ≥ i, which in

turn would imply that h1(Pr−1, IΣ(j)) = h1(Pr−1, IΣ(i− 1)) > 0 for any j ≥ i− 1.

This is absurd. �

Lemma 3.2. With the same notation as above we have:

(1)
∑+∞

i=1 (d− hr,d,s,π(i)) = G∗
(
r, d, s, π,−

(
π0−π+1

2

))
;

(2) if π′ < π then hr,d,s,π′ > hr,d,s,π, therefore G∗

(
r, d, s, π′,−

(
π0−π′+1

2

))
<

G∗
(
r, d, s, π,−

(
π0−π+1

2

))
;

(3) if d ≥ (2s+1)(s+1) then hr,d,s+1,π′

0
> hr,d,s,π, therefore G∗ (r, d, s+ 1, π′

0, 0)

< G∗
(
r, d, s, π,−

(
π0−π+1

2

))
(here we set π′

0 := π0(s+ 1, r − 1) = (s+ 1)− r + 1).

The proof is straightforward, and so we omit it.

Lemma 3.3. Fix integers r, d, s with r ≥ 4, r−1 ≤ s ≤ 2r−4, and d ≥ s(s−1). Let

C ⊂ P
r be an irreducible, reduced, non degenerate, projective curve of degree d, with

general hyperplane section Γ. Assume that C is contained in an integral projective

surface S ⊂ P
r of degree s and sectional genus π. Then one has hΓ(i) ≥ hr,d,s,π(i)

for any i ≥ 1.
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Proof. By Bezout Theorem we have hΓ(i) = hΣ(i) for any 1 ≤ i ≤ m, where Σ

denotes the general hyperplane section of S. On the other hand, by Proposition

3.1, for 1 ≤ i ≤ m one has

hΣ(i) = h0(Σ,OΣ(i))− h1(Pr−1, IΣ(i)) = 1− π + is− h1(Pr−1, IΣ(i))

≥ 1− π + is−max (0, π0 − π − i + 1) = hr,d,s,π(i).

It remains to examine the range i ≥ m+ 1.

To this purpose first notice that if L is a general hyperplane such that Σ = S∩L,

then Sing(Σ) = Sing(S)∩L, and so deg(Sing(S)) = deg(Sing(Σ)) ≤ π0. It follows

that C is not contained in Sing(S) because d ≫ s. Hence Γ does not meet the

singular locus of Σ, i.e. Γ ⊂ Σ\Sing(Σ), and so Γ defines an effective Cartier divisor

on Σ. It follows the existence of the exact sequence:

0 → OΣ(−Γ + (m+ j)H) → OΣ((m+ j)H) → OΓ → 0,

where H denotes the general hyperplane section of Σ. Since d ≫ s then from [8]

it follows that the natural map H0(Pr−1,OPr−1(m + j)) → H0(Σ,OΣ(m + j)) is

surjective for any j ≥ 0, and so from previous exact sequence we get:

(2) hΓ(m+ j) = h0(Σ,OΣ(m+ j))− h0(Σ,OΣ(−Γ + (m+ j)H))

= 1− π + (m+ j)s− h0(Σ,OΣ(−Γ + (m+ j)H)).

If h1(Σ,OΣ(−Γ+ (m+ j)H)) = 0 then h0(Σ,OΣ(−Γ+ (m+ j)H)) = 1− π+(m+

j)s−d and therefore hΓ(m+ j) = d. Otherwise h1(Σ,OΣ(−Γ+(m+ j)H)) > 0 and

by Clifford’s Theorem for possibly singular curves (see [5], p. 46, or [6], Proposition

1.5., and compare with [5], p.121) we know that

h0(Σ,OΣ(−Γ + (m+ j)H))− 1 ≤
(m+ j)s− d

2

hence

hΓ(m+ j) ≥
(m+ j)s+ d

2
− π,

and so hΓ(i) ≥ hr,d,s,π(i) for any i ≥ m+ 1. �

Lemma 3.4. Let S ⊂ P
r be an irreducible, reduced, non degenerate projective

surface of degree s and arithmetic genus pa(S). Denote by Σ the general hyperplane

section of S, and by H the general hyperplane section of Σ. For any integer i set

δi := ∆hΣ(i)− hH(i) and µi := ∆hS(i)− hΣ(i). Then we have:

pa(S) =
+∞∑

i=1

(i− 1)(s− hH(i))−
+∞∑

i=1

(i− 1)δi +
+∞∑

i=1

µi.

In particular, when r − 1 ≤ s ≤ 2r − 4, then

pa(S) = − dimC M(Σ) +
+∞∑

i=1

µi,

where M(Σ) denotes the Hartshorne-Rao module of Σ.
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Remark 3.5. By [4], p. 30, we know that

δi = dimC

[
Ker

(
H1(Pr−1, IΣ(i − 1)) → H1(Pr−1, IΣ(i))

)]
.

Similarly as in [4], p. 30 one may prove that

µi = dimC

[
Ker

(
H1(Pr, IS(i− 1)) → H1(Pr, IS(i))

)]
.

Proof of Lemma 3.4. Recall that when t ≫ 0 then the Hilbert polynomial of S at

level t coincides with the Hilbert function hS(t) of S. Therefore we have:

(3) pa(S) = hS(t)− s

(
t+ 1

2

)
+ tπ − t− 1,

where π denotes the sectional genus of S. Now we may write:

hS(t) =

t∑

j=0

∆hS(j) =

t∑

j=0

hΣ(j) + µj =

t∑

j=0

(
j∑

i=0

∆hΣ(i)

)
+

t∑

j=0

µj

=
t∑

j=0

(
j∑

i=0

hH(i) + δi

)
+

t∑

j=0

µj =
t∑

i=0

(t− i+ 1)(hH(i) + δi) +
t∑

j=0

µj .

Taking into account that δ0 = µ0 = 0 and that hH(0) = 1, inserting previous

equality into (3) we obtain:

(4) pa(S) = t

[
π +

t∑

i=1

hH(i) + δi

]
−

t∑

i=1

(i− 1)(hH(i) + δi) +
t∑

j=0

µj − s

(
t+ 1

2

)
.

By [4], pg. 31, we have (recall that t ≫ 0) π =
∑t

i=1 (s− hH(i)− δi), therefore

from (4) it follows that

pa(S) =

[
t2 −

(
t+ 1

2

)]
s−

t∑

i=1

(i− 1)(hH(i) + δi) +
t∑

j=0

µj

=

+∞∑

i=1

(i− 1)(s− hH(i))−

+∞∑

i=1

(i− 1)δi +

+∞∑

i=1

µi.

As for the last claim, observe that when r−1 ≤ s ≤ 2r−4 we have hH(i) = s for

any i ≥ 2 by Castelnuovo Theory [5], and so
∑+∞

i=1 (i−1)(s−hH(i)) = 0. Moreover,

by Remark 3.5 and (1) we see that δi = h1(Pr−1, IΣ(i− 1))− h1(Pr−1, IΣ(i)), from

which we get
∑+∞

i=1 (i− 1)δi = dimC M(Σ). �

Corollary 3.6. Let S ⊂ P
r be an irreducible, reduced, non degenerate projective

surface of degree s, sectional genus π, and arithmetic genus pa(S). Assume that

r − 1 ≤ s ≤ 2r − 4. Then we have

−

(
π0 − π + 1

2

)
≤ pa(S) ≤ 0.
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Proof. By previous Lemma 3.4 and Proposition 3.1 we deduce

pa(S) ≥ − dimC M(Σ) ≥ −

(
π0 − π + 1

2

)
.

Therefore we only have to prove that pa(S) ≤ 0. To this aim first observe that

pa(S) = −h1(S,OS) + h2(S,OS) ≤ h2(S,OS). Moreover by [14], Lemma 5, we

know that h2(S,OS) ≤
∑+∞

i=1 (i−1)(s−hH(i)). This number is 0 because hH(i) = s

for any i ≥ 2. Hence pa(S) ≤ 0. �

Remark 3.7. With the same assumption as in Corollary 3.6, previous argument

proves that pa(S) = −
(
π0−π+1

2

)
if and only if M(S) = 0, and h1(Pr−1, IΣ(i)) =

max (0, π0 − π − i+ 1) for any i ≥ 1.

Next lemma, for which we did not succeed in finding an appropriate reference,

states an explicit upper bound for Castelnuovo-Mumford regularity of an integral

projective surface. We need it in order to make explicit the assumption d ≫ s

appearing in Proposition 3.9 below (which in turn we will use, via Corollary 3.11,

in the proof of Theorem 2.2, (c), and Proposition 2.3, (a)).

Lemma 3.8. Let S ⊂ P
r be an irreducible, reduced, non degenerate projective

surface of degree s ≥ r − 1 ≥ 2 and Castelnuovo-Mumford regularity reg(S). Then

one has

reg(S) ≤ (s− r + 2)

(
s2

2(r − 2)
+ 1

)
+ 1.

Proof. Let Σ be the general hyperplane section of S. By [8] we know that:

(5) reg(Σ) ≤ s− r + 3.

Hence, by ([13], p. 102) we have

reg(S) ≤ s− r + 3 + h1(Pr, IS(s− r + 2)).

Therefore it suffices to prove that:

(6) h1(Pr, IS(s− r + 2)) ≤ (s− r + 2)
s2

2(r − 2)
.

To this purpose first notice that by (5) we know that h1(Pr−1, IΣ(i)) = 0 for any

i ≥ s− r + 2, so the natural map H0(Pr,OPr(i)) → H0(Σ,OΣ(i)) is surjective for

any i ≥ s − r + 2. A fortiori the natural map H0(Pr,OS(i)) → H0(Pr,OΣ(i)) is

surjective for any i ≥ s− r+2. It follows that H1(S,OS(i− 1)) ⊆ H1(S,OS(i)) for

any i ≥ s−r+2 in view of the exact sequence 0 → OS(i−1) → OS(i) → OΣ(i) → 0,

and from the vanishing H1(S,OS(i)) = 0 for i ≫ 0 we obtain H1(S,OS(i)) =

0 for any i ≥ s− r + 1. Hence we have:

(7)

h1(Pr, IS(s−r+2)) = h0(S,OS(s−r+2))−hS(s−r+2) ≤ pS(s−r+2)−hS(s−r+2),
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where hS(s− r + 2) and pS(s− r + 2) denote the Hilbert function and the Hilbert

polynomial of S at level s− r + 2. By [5], Lemma (3.1), we may estimate

hS(s− r + 2) ≥
s−r+2∑

i=0

hΣ(i) ≥
s−r+2∑

i=0




i∑

j=0

hH(j)


 =

s−r+2∑

i=0

(s− r + 3− i)hH(i),

where hH denotes the Hilbert function of the general hyperplane section H of Σ.

Since

pS(t) = s

(
t+ 1

2

)
+ (1 − π)t+ 1 + pa(S)

(π and pa(S) denote the sectional and the arithmetic genus of S) from (7) it follows

that:

(8) h1(Pr, IS(s− r + 2)) ≤

[
s

(
s− r + 3

2

)
+ (1− π)(s − r + 2) + 1 + pa(S)

]

−

[
s−r+2∑

i=0

(s− r + 3− i)hH(i)

]
= pa(S)−

s−r+3∑

i=1

(i − 1)(s− hH(i))

+2s

(
s− r + 3

2

)
− (s− r + 2)(π +

s−r+3∑

i=1

hH(i)).

From [14], Lemma 5, we know that:

pa(S) = h2(S,OS)− h1(S,OS) ≤ h2(S,OS) ≤
+∞∑

i=1

(i− 1)(s− hH(i)),

and from [5], Theorem (3.7), we have:

+∞∑

i=1

(i− 1)(s− hH(i)) =

s−r+3∑

i=1

(i− 1)(s− hH(i))

because hH(i) = s for i ≥ w + 1, and w + 1 ≤ s − r + 4 (we define w by dividing

s− 1 = w(r − 2) + v, 0 ≤ v ≤ r − 3). We deduce that:

pa(S)−

s−r+3∑

i=1

(i− 1)(s− hH(i)) ≤ 0,

and so from (8) we get:

h1(Pr, IS(s− r + 2)) ≤ 2s

(
s− r + 3

2

)
− (s− r + 2)(π +

s−r+3∑

i=1

hH(i))

= (s− r + 2)

[(
s−r+3∑

i=1

s− hH(i)

)
− π

]
.

By [5], Corollary (3.3) and proof, and Theorem (3.7), the term
∑s−r+3

i=1 (s− hH(i))

is bounded by Castelnuovo’s bound G(r−1, s) :=
(
w
2

)
(r−2)+wv for the arithmetic

genus of Σ. Since G(r − 1, s) ≤ s2

2(r−2) we get

s−r+3∑

i=1

(s− hH(i)) ≤
s2

2(r − 2)
.

Combining the last two estimates we obtain (6). �
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Proposition 3.9. Let S ⊂ P
r be an irreducible, reduced, non degenerate projective

surface of degree s ≥ r − 1 ≥ 2, sectional genus π and arithmetic genus pa(S).

Let C ⊂ S be an irreducible, reduced, non degenerate projective curve of degree

d ≥ s4

2(r−2) . Denote by pa(C), by IC ⊂ OPr and by hC the arithmetic genus,

the ideal sheaf and the Hilbert function of C. Denote by Γ the general hyperplane

section of C and by hΓ its Hilbert function. Then one has:

(9) pa(C) =

(
m

2

)
s+m(ǫ+ π)− pa(S) +

+∞∑

i=m+1

d−∆hC(i).

In particular one has

(10) pa(C) ≤

(
m

2

)
s+m(ǫ+ π)− pa(S) +

+∞∑

i=m+1

d− hΓ(i),

and pa(C) attains this bound if and only if h1(Pr, IC(i)) = 0 for any i ≥ m.

Proof. Since for t ≫ 0 we have hC(t) = 1− pa(C) + dt then we may write

(11) pa(C) = dt+ 1− hC(t) =

t∑

i=1

d−∆hC(i) =

+∞∑

i=1

d−∆hC(i)

=

m∑

i=1

d−∆hC(i) +

+∞∑

i=m+1

d−∆hC(i).

On the other hand by Bezout’s Theorem we have hC(i) = hS(i) for any i ≤ m, and

therefore we have
m∑

i=1

d−∆hC(i) = md+ 1− hC(m) = md+ 1− hS(m).

By Lemma 3.8 we deduce that hS(m) coincides with the Hilbert polynomial pS(m)

of S at level m, i.e.

hS(m) = pS(m) =

(
m+ 1

2

)
s+m(1 − π) + 1 + pa(S).

It follows that
m∑

i=1

d−∆hC(i) = md+ 1− hS(m)

= md+ 1−

[(
m+ 1

2

)
s+m(1− π) + 1 + pa(S)

]
=

(
m

2

)
s+m(ǫ + π)− pa(S).

Inserting this into (11) we obtain (9).

As for (10), we observe that

+∞∑

i=m+1

d−∆hC(i) =
+∞∑

i=m+1

d− hΓ(i)−
+∞∑

i=m+1

∆hC(i)− hΓ(i).

Hence (9) implies (10) because ∆hC(i) − hΓ(i) ≥ 0 for any i ([5], Lemma (3.1)).

Moreover we deduce that pa(C) attains the bound appearing in (10) if and only if
∑+∞

i=m+1 ∆hC(i) − hΓ(i) = 0. And this is equivalent to say that h1(Pr, IC(i)) = 0
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for any i ≥ m in view of Remark 3.5. This concludes the proof of Proposition

3.9. �

Remark 3.10. (i) From the proof it follows that if there is an a.C.M. curve on S

of degree d ≫ s then
∑+∞

i=1 µi = 0, and therefore the Hartshorne-Rao module of S

vanishes.

(ii) When S is smooth one knows that reg(S) ≤ s − r + 3 [12], and so to prove

Proposition 3.9 one may simply assume that m ≥ s− r+2, or also d ≥ s(s− r+3).

This last numerical assumption is enough also if one knows that h1(Pr, IS(m)) = 0,

e.g. when S is a. C. M..

Combining (10) with Lemma 3.3 we get the following

Corollary 3.11. Let S ⊂ P
r be an irreducible, reduced, non degenerate projective

surface of degree s with 2 ≤ r − 1 ≤ s ≤ 2r − 4, sectional genus π and arithmetic

genus pa(S). Let C ⊂ S be an irreducible, reduced, non degenerate projective curve

of arithmetic genus pa(C) and degree d ≥ s4

2(r−2) . Then one has:

(12) pa(C) ≤ G∗(r, d, s, π, pa(S)).

4. Proof of Theorem 2.2 and of Proposition 2.3

We begin by proving Theorem 2.2.

(a) First assume C is not contained in any surface of degree s. Then C is not

contained in any surface of degree< s+1. By [5] we know that hΓ(i) ≥ hr,d,s+1,π′

0
(i)

for any i, and by Lemma 3.2 we deduce hΓ(i) ≥ hr,d,s,π(i) for any i. Hence we may

assume that C is contained in a surface of degree s, with sectional genus π′ ≤ π.

By Lemma 3.2 and by Lemma 3.3 we get again hΓ(i) ≥ hr,d,s,π(i) for any i.

(b) Since in general we have pa(C) ≤
∑+∞

i=1 (d−hΓ(i)) ([5], Corollary (3.2)) then

by (a) and Lemma 3.2 we deduce

pa(C) ≤

+∞∑

i=1

(d− hΓ(i)) ≤

+∞∑

i=1

(d− hr,d,s,π(i)) = G∗

(
r, d, s, π,−

(
π0 − π + 1

2

))
.

(c) If the bound is sharp, i.e. if pa(C) = G∗
(
r, d, s, π,−

(
π0−π+1

2

))
, then previous

inequality shows that pa(C) =
∑+∞

i=1 (d−hΓ(i)), i.e. C is a.C.M., and hΓ = hr,d,s,π.

Moreover, the same argument developed in (a) and (b), combined with Lemma 3.2,

proves also that if C reaches the bound then C must be contained in a surface S of

degree s and sectional genus π. As for pa(S), observe that, by Corollary 3.11, we

have

pa(C) = G∗

(
r, d, s, π,−

(
π0 − π + 1

2

))
≤ G∗ (r, d, s, π, pa(S)) .
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It follows pa(S) ≤ −
(
π0−π+1

2

)
, and by Corollary 3.6 we get pa(S) = −

(
π0−π+1

2

)
.

Now, to conclude the proof of Theorem 2.2, we only have to prove that the upper

bound is sharp.

To this purpose, fix integers r ≥ 4, r−1 ≤ s ≤ 2r−4, 0 ≤ π < π0 := s−r+1. Let

Σ′ ⊂ P
r−1+π0−π be a smooth Castelnuovo curve of degree s and genus π (which

we may find on a smooth rational normal scroll surface in P
r−1+π0−π (use [11],

Corollary 2.18 and 2.19)).

Choose general π0 − π + 2 points on Σ′ (compare with [16], p. 13, Example

3.7). Denote by P
π0−π+1 the linear space generated by these points. A general

subspace P
π0−π−1 ⊂ P

π0−π+1 defines a projection ϕ : Pr−1+π0−π\Pπ0−π−1 → P
r

which maps isomorphically Σ′ to a curve Σ ⊂ P
r−1. Since ϕ(Pπ0−π+1\Pπ0−π−1) is a

(π0 −π+2)−secant line to Σ then Castelnuovo-Mumford regularity of Σ is at least

π0−π+2. By Lemma 3.1 it follows that h1(Pr−1, IΣ(i)) = max (0, π0 − π + 1− i)

for any i ≥ 1 and so hΣ(i) = 1− π + si−max (0, π0 − π + 1− i) for any i ≥ 1. In

particular, once fixed an integer d ≫ s, we have hΣ(i) = hr,d,s,π(i) for 1 ≤ i ≤ m

(with d− 1 = ms+ ǫ, 0 ≤ ǫ ≤ s− 1).

Denote by S ⊂ P
r the projective cone on Σ. Fix an integer k ≫ s of type

k − 1 = µs + ǫ, 0 ≤ ǫ ≤ s − 1, and a set D of s − 1 − ǫ distinct points on Σ. Let

C(D) ⊂ S be the cone over D, and let F ⊂ P
r be a hypersurface of degree µ + 1

containing C(D), consisting of µ+1 sufficiently general hyperplanes. Let R be the

residual curve to C(D) in the complete intersection of F with S. Equipped with

the reduced structure, R is a cone over k distinct points of Σ. In particular R is

a (reducible) a.C.M. curve of degree k on S, and, if we denote by R′ the general

hyperplane section of R, we have pa(R) =
∑+∞

i=1 (k−hR′(i)). We make the following

claim. We will prove it in a while.

Claim. For a suitable D one has hR′(i) = hr,k,s,π(i) for any i ≥ 1.

It follows that

pa(R) =
+∞∑

i=1

(k − hR′(i)) =
+∞∑

i=1

(k − hr,k,s,π(i)) = G∗

(
r, k, s, π,−

(
π0 − π + 1

2

))
.

Now let d ≫ k, with d − 1 = ms + ǫ. Let G ⊂ P
r be a hypersurface of degree

m+1 containing C(D) such that the residual curve C in the complete intersection

of G with S, equipped with the reduced structure, is an integral curve of degree d,

with a singular point of multiplicity k at the vertex p of S, and tangent cone at p

equal to R. We are going to prove that C is the curve we are looking for, i.e.

pa(C) = G∗

(
r, d, s, π,−

(
π0 − π + 1

2

))
.

To this aim, let S̃ be the blowing-up of S at the vertex. By [11], p. 374, we know that

S̃ is the ruled surface P(OΣ ⊕OΣ(−1)) → Σ. Denote by E the exceptional divisor,

by f the line of the ruling, and by L the pull-back of the hyperplane section. We
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have L2 = s, L·f = 1, f2 = 0, L ≡ E+sf andK
S̃
≡ −2L+(2π−2+s)f . Let C̃ ⊂ S̃

be the blowing-up of C at p, which is nothing but the normalization of C. Since C

has degree d then C̃ belongs to the numerical class of (m+1+a)L+(1+ǫ−(a+1)s)f

for some integer a. Moreover E · C̃ = 1 + ǫ− (a+ 1)s = k, so

a = −
k + s− 1− ǫ

s
= −(µ+ 1).

By the adjunction formula we get

pa(C̃) =

(
m

2

)
s+m(ǫ + π) + π −

1

2
a2s+ a(π + ǫ −

1

2
s).

On the other hand we have

pa(C) = pa(C̃) + δp

where δp is the delta invariant of the singularity (C, p). Since the tangent cone of C

at p is R then the delta invariant is equal to the difference between the arithmetic

genus of R and the arithmetic genus of k disjoint lines in the projective space, i.e.

δp = pa(R)− (1 − k) = G∗

(
r, k, s, π,−

(
π0 − π + 1

2

))
− (1 − k).

It follows that

pa(C) =

(
m

2

)
s+m(ǫ+ π) + π −

1

2
a2s+ a(π + ǫ−

1

2
s)

+G∗

(
r, k, s, π,−

(
π0 − π + 1

2

))
− (1− k).

Taking into account that a = −k+s−1−ǫ
s

, a direct computation proves that this

number is exactly G∗
(
r, d, s, π,−

(
π0−π+1

2

))
.

It remains to prove the claim, i.e. that for a suitable D one has hR′(i) =

hr,k,s,π(i) for any i ≥ 1. This certainly holds true for any D and any 1 ≤ i ≤ µ

because in this range we have by construction hΣ(i) = hr,d,s,π(i), and hR′(i) = hΣ(i)

by Bezout Theorem. This holds true also in the range i ≥ µ+ 2 by degree reasons

(compare with the proof of Lemma 3.3). It remains to examine the case i = µ+ 1.

If max
(
0,
[
2π−(s−1−ǫ)

2

])
= 0 then, as before, again by degree reasons we have

hR′(µ + 1) = hr,k,s,π(µ + 1) = k. Otherwise max
(
0,
[
2π−(s−1−ǫ)

2

])
> 0. In this

case let S′ ⊂ P
r+π0−π be the cone over Σ′. By [3], Example 6.5 (here we need to

choose Σ′ on a smooth rational normal scroll surface), we know that for a suitable

set D′ (in [3] denoted by Z ′) of s − 1 − ǫ distinct points of Σ′, a general curve

C′, obtained from the cone over D′ through a linkage with S′ and a hypersurface

of degree µ + 1, is an integral curve of degree k and maximal arithmetic genus

pa(C
′) = G(r+π0−π, k, s) = G∗(r+π0−π, k, s, π, 0). Let Γ′ and H ′ be the general

hyperplane sections of C′ and Σ′. We have OΣ′(D′) ∼= OΣ′(−Γ′+(µ+1)H ′). Since

C′ is maximal then by a similar computation as in (2) we see that h0(Σ′,OΣ′(D′)) =

s− ǫ−π+d−hr+π0−π,k,s,π(µ+1). Since hr+π0−π,k,s,π(µ+1) = hr,k,s,π(µ+1) then
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h0(Σ′,OΣ′(D′)) = s− ǫ − π + d− hr,k,s,π(µ+ 1). Therefore if we choose D as the

divisor on Σ corresponding to D′ via the isomorphism Σ′ ∼= Σ, as in (2) we have

hR′(µ+ 1) = h0(Σ,OΣ(µ+ 1))− h0(Σ,OΣ(−R′ + (µ+ 1)H))

= 1−π+(µ+1)s−h0(Σ,OΣ(D)) = 1−π+(µ+1)s−h0(Σ′,OΣ(D
′)) = hr,k,s,π(µ+1).

This concludes the proof of Theorem 2.2.

Remark 4.1. Constructing extremal curves as above, we need to choose Σ′ on a

smooth rational normal scroll surface only in the case max
(
0,
[
2π−(s−1−ǫ)

2

])
> 0,

i.e. when 2π ≥ s− ǫ+ 1.

Next we turn to the proof of Proposition 2.3.

(a) First assume C is not contained in any surface of degree s. Then C is

not contained in any surface of degree < s + 1. By [5] we know that pa(C) ≤

G(r, d, s + 1) = d2

2(s+1) + O(d) which is strictly less than G∗(r, d, s, π, p) because

d ≫ s and G∗(r, d, s, π, p) = d2

2s +O(d). Hence we may assume that C is contained

in a surface of degree s, with sectional genus π′ ≤ π. If π′ < π then by Theorem

2.2 we know that pa(C) ≤ G∗(r, d, s, π′,−
(
π0−π′+1

2

)
) which is strictly less than

G∗(r, d, s, π, p) because π′ < π and d ≫ s. Therefore we may assume that C is

contained in a surface S of degree s, with sectional genus π, and arithmetic genus

pa(S) ≥ p. Then by Corollary 3.11 we know pa(C) ≤ G∗(r, d, s, π, pa(S)) which is

≤ G∗(r, d, s, π, p) because pa(S) ≥ p. This establishes the upper bound.

(b) Previous argument also shows that if pa(C) reaches the upper bound then

C is contained in a surface of degree s, sectional genus π, and arithmetic genus

pa(S) ≥ p. Since G∗(r, d, s, π, pa(S)) = G∗(r, d, s, π, p) then pa(S) ≤ p, hence

pa(S) = p.

(c) Taking into account Remark 4.2 (i) below, one may construct a.C.M. extremal

curves on the cone over Σ exactly as in the proof of Theorem 2.2. We omit the

details.

(d) The bound is sharp when p = −
(
π0−π+1

2

)
by Theorem 2.2. Next let Σ′ ⊂

P
r−1+πo−π be a smooth Castelnuovo curve of degree r − 1 ≤ s ≤ 2r − 4. By [1],

Theorem 2.6, p. 8, we know that a general projection Σ ⊂ P
r of Σ′ remains 2-

normal. By Proposition 3.1 it follows that Σ is k-normal for any k ≥ 2. Therefore

dimC M(Σ) = h1(Pr−1, IΣ(1)) = π0 − π. By property (c) this proves the sharpness

of the bound in the case p = −(π0 − π). As for the case p = 0, let S′ ⊂ P
r+π0−π

be a cone over a Castelnuovo curve of degree r− 1 ≤ s ≤ 2r− 4 as in [3], Example

6.4 and 6.5, and let C′ ⊂ S′ be an extremal curve with arithmetic genus pa(C
′) =

G(r + π0 − π, d, s). Projecting isomorphically in P
r we get extremal curves with

genus G∗(r, d, s, π, 0) = G(r + π0 − π, d, s). Therefore the bound G∗(r, d, s, π, p) is

sharp also when p = 0.
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This concludes the proof of Proposition 2.3.

Remark 4.2. (i) Let S ⊂ P
r be an integral nondegenerate surface of degree r− 1 ≤

s ≤ 2r− 4, with general hyperplane section Σ of arithmetic genus π. Fix an integer

d ≫ s and consider the following numerical function

hd,Σ(i) :=





1− π + is− h1(Pr−1, IΣ(i)) if 1 ≤ i ≤ m

d−max
(
0,
[
2π−(s−1−ǫ)

2

])
if i = m+ 1

d if i ≥ m+ 2.

Observe that hd,Σ(i) = hΣ(i) for 1 ≤ i ≤ m. Using the same argument as in Lemma

3.3 we see that for any curve C ⊂ S of degree d one has hΓ(i) ≥ hd,Σ(i) for any i,

and so

(13) pa(C) ≤

+∞∑

i=1

(d− hΓ(i)) ≤

+∞∑

i=1

(d− hd,Σ(i)) = G∗(r, d, s, π,− dimC M(Σ))

where M(Σ) denotes the Hartshorne-Rao module of Σ. This is another ”natural”

upper bound for pa(C). However notice that by Lemma 3.4 we know that pa(S) =

− dimC M(Σ) +
∑+∞

i=1 µi, and therefore the bound appearing in Corollary 3.11 is

more fine than this new bound (13), i.e.

G∗(r, d, s, π, pa(S)) ≤ G∗(r, d, s, π,− dimC M(Σ)).

The inequality can be strict. For example, this is the case for a non linearly normal

smooth surface S of arithmetic genus pa(S) = 0. In fact for such a surface we have

M(S) 6= 0, and therefore
∑+∞

i=1 µi > 0.

(ii) Combining the examples in [16], p. 14, Table 1, with Proposition 2.3, (c),

one may construct other examples of extremal curves with genus G∗(r, d, s, π, p).

(iii) Let X be a ruled surface over a smooth curve R of genus π, defined by the

normalized bundle E = OR ⊕ OR(−e), where e is a fixed divisor on R of degree

−e ≤ −2 [11]. Let n be a divisor on R of degree n ≥ 2π + 1. By ([11], Ex. 2.11,

pg. 385), we know that Σ := R0 + nf is very ample on X (here R0 denotes a

section of X with OX(R0) ∼= OP(E)(1), and f a fibre of the ruling X → R). As

in the proof of ([11], Theorem 2.17, pg. 379), we see that the complete linear

system |Σ | embeds X in P
r+1 as a linearly normal surface S of degree s, sectional

genus π and arithmetic genus pa(S) = −π = −(π0(s, r) − π), with s = 2n− e and

r + 1 = s+ 1 − 2π. In particular r ≤ s ≤ 2r − 4. Now let C be any curve on S of

degree d. For a suitable integer a and divisor ba on R of degree ba = 1+ ǫ− (a+1)s

we have C ∈ | (m+ a+1)Σ+ baf |. Taking into account that the canonical divisor

class of S is |KS | = | − 2Σ + (s + 2π − 2)f |, by the adjunction formula we may

compute the arithmetic genus of C, which is equal to

g(a) :=

(
m

2

)
s+m(ǫ + π) + π −

s

2
a2 + a(π + ǫ−

s

2
).
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Taking a = 0, we deduce that, in the case 2π ≤ s+1− ǫ, there are smooth curves C

on S with maximal genus g(0) = G∗(r+1, d, s, π, p), with p = −π = −(π0(s, r)−π).

Projecting isomorphically S in P
r, these examples show the existence of smooth

extremal curves with genus G∗(r, d, s, π,−(π0(s, r − 1) − π) + 1) which are not

a.C.M.. By contrast notice that in this range (i.e. p = −(π0 − π) + 1) Proposition

2.3, (c), combined with the examples in [16], p. 14, Table 1, proves also the existence

of a.C.M. extremal curves. So in certain range one can find both a.C.M. and not

a.C.M. extremal curves. Therefore the classification of extremal curves appears

somewhat complicated. Projecting in lower dimensional subspaces, this argument

works well also for other values of p ≥ −(π0 − π).

(iv) In the case p = 0, any extremal curve C cannot be a.C.M.. In fact if C

would a.C.M. then the surface S (of degree s, sectional genus π and arithmetic

genus pa(S) = 0) on which it lies should be a.C.M. in view of Remark 3.10. This is

impossible when π < π0.

(v) Let C ⊂ P
r be an extremal curve in the case p = −(π0 − π), contained

in a cone over a curve Σ ⊂ P
r−1 with dimC M(Σ) = π0 − π. Then we have

hΓ(2) = hΣ(2) = 1 − π + 2s. On the other hand, the Hilbert function at level 2

of the general hyperplane section of an extremal curve with genus G(r, d, s + 1)

is equal to hr,d,s+1,π′

0
(2) = s + r + 3, which is strictly less than hΓ(2) as soon as

π0−π > 3. Therefore we see that (at least in this case) there is no a minimal Hilbert

function for the general hyperplane section of a curve satisfying the conditions in

Proposition 2.3.

(vi) If S is smooth then pa(S) ≥ −π and so inequality (12) implies pa(C) ≤

G(r, d, s, π,−π).

(vii) From the proof of Corollary 3.11 we see that the bound

pa(C) ≤

(
m

2

)
s+m(ǫ+ π)− pa(S)

holds true for any s and d ≫ s, if 2π ≤ s+ 1− ǫ. So when π = 0 then we have the

bound

pa(C) ≤

(
m

2

)
s+mǫ− pa(S).

In certain cases it is sharp. In fact, let S ⊂ P
4 be a general projection of a smooth

rational normal scroll S′ ⊂ P
s+1, and let δS be the number of double points of S.

From the double point formula we know that δS =
(
s−2
2

)
. On the other hand we

have pa(S) = −δS . So previous bound becomes

pa(C) ≤

(
m

2

)
s+mǫ+

(
s− 2

2

)
.

Now take a Castelnuovo’s curve C′ ⊂ S′ of degree d ≫ s passing through the double

point set of S′. Then the projection C of C′ acquires δS nodes and so

pa(C) = pa(C
′) + δS =

(
m

2

)
s+mǫ+

(
s− 2

2

)
.



REFINING CASTELNUOVO-HALPHEN BOUNDS 17

(viii) The arithmetic genus of a curve C complete intersection of a surface S

with a hypersurface of degree m+ 1 is pa(C) =
(
m

2

)
s+m(ǫ + π) + π, where s and

π are the degree and sectional genus of S. On the other hand, in this range, i.e.

when ǫ = s− 1, we have G∗(r, d, s, π, p) =
(
m

2

)
s+m(ǫ+π)− p+π, which is strictly

greater than pa(C) when p < 0. In other words, in contrast with the classical case,

in our setting complete intersections are not extremal curves.

(ix) Let C be an extremal curve as in Theorem 2.2, and assume ǫ = s−1. Let S be

the surface of degree s, sectional genus π and arithmetic genus pa(S) = −
(
π0−π+1

2

)

on which C lies. We remark that S cannot be locally Cohen-Macaulay. In fact,

by the proof of Lemma 3.3 we see that since C is extremal then Γ is the complete

intersection of Σ with a hypersurface of degree m + 1. Since C is a. C. M. one

may lift such a hypersurface to a hypersuface F ⊂ P
r of degree m+1 containing C

and not containing S. If S would be locally Cohen-Macaulay then C, as a scheme,

would be the complete intersection of S with F for degree reasons. This is absurd

in view of previous remark (viii).
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