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Abstract

We present explicit solutions for the ordinary differential equations system describing

the motion of the particles beneath small-amplitude capillary-gravity waves which

propagate on the surface of an irrotational water flow with a flat bottom. The required

computations involve elliptic integrals of first kind, the Legendre normal form and a

solvable Abel differential equation of the second kind.

1 Introduction

We consider the problem of water waves in a domain of finite depth bounded
above by a free surface and under the combined effects of gravity and surface
tension. We suppose that the water flow is irrotational. Mathematically, the
problem is formulated as a free boundary problem for incompressible Euler
equations with the irrotational condition. After rewriting the equations in an
appropriate non-dimensional form, we have two non-dimensional parameters δ
and ǫ, the shallowness parameter and the amplitude parameter, respectively,
and another non-dimensional parameter We called Weber number, which comes
from the surface tension on the free surface. We simplify the governing equa-
tions with a linearization which is slightly different from the classical case in
line with the Stokes condition for irrotational flows (see, for example, [5], [10]).
By this linearization, we obtained a parameter c0 by which we can describe
different backward flows in the irrotational case: still water (c0 = 0), favorable
uniform current c0 > 0, adverse uniform current c0 < 0.
Further, we get the general solution of the linearized problem. Notice that there
are only a few explicit solutions to the nonlinear governing equations: for grav-
ity water waves, Gerstner’s solution1[16] and the edge wave solution related to it

1 This solution was independently re-discovered later by Rankine [30]. Modern detailed
descriptions of this wave are given in the recent papers [2] and [20].
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(see [3]), for capillary water waves, Crapper’s solution [13] and its generalization
in the case of finite depth (see [26]).
After getting the general solution of the linearized problem we investigate the
nonlinear equations of the motion of the fluid particles. In the case the con-
stant c0 equals the non-dimensional speed of propagation of the linear wave,
the required computations involve elliptic integrals of first kind and their Leg-
endre’s normal form. The exact solutions obtained in this case contain in their
expressions Jacobian elliptic functions. Only one solution is presented in detail,
the others will be presented in a future paper. In the case the constant c0 is
different from the non-dimensional speed of propagation of the linear wave, the
computations involve a solvable Abel differential equation of the second kind.
In the both cases we remark that the obtained solutions are not closed curves.
This result is in the line with the recent results obtained for capillary-gravity
water waves by using phase-plane considerations for the nonlinear system de-
scribing the particle motion (see [18], [19]). By the same method see also the
results obtained for gravity water waves in [5], [10] and for constant vorticity
gravity water waves in [14], [15]. Beside the phase-plane analysis, the exact so-
lutions allow a better understanding of the dynamics (see [22], [23]). The same
type of results are obtained for the governing equations without linearization, by
analyzing a free boundary problem for harmonic functions in a planar domain
(see [4] for Stokes waves, [9] for solitary waves and [17] for deep-water Stokes
waves) or by applying local bifurcation theory (see [33] for small-amplitude
waves with vorticity).
The existence of regular periodic travelling waves with vorticity was recently
established (see [11], [32]). For steady periodic gravity waves the symmetry is
known to be ubiquitous (see [6], [21]). The study of the symmetry of rotational
water waves was initiated in the papers [7], [8]; for irrotational flows see also
[28]. However, exact information about the flow beneath such waves, is not
readily available even in the irrotational case. This paper addresses this issue.

2 Small-amplitude approximation of the water-wave problem

The water flow under consideration is two-dimensional, bounded by a rigid hor-
izontal surface below at z = 0 and a free surface above at z = h0 + η(x, t),
with h0 > 0 a constant. The undisturbed water surface is z = h0. Let
(u(x, z, t), v(x, z, t)) be the velocity of the water and p(x, z, t) be the pressure.
Water can be assumed to be inviscid fluid, even though it is slightly viscous. In
problems of water waves it is also reasonable to assume that the fluid is incom-
pressible (constant density ρ) ([27]), which implies the equation of mass con-
servation (MC). A capillary-gravity wave is influenced by the effects of surface
tension and gravity, as well as by the fluid inertia. The surface tension will play
a role in the formulation of the boundary conditions but not in the equations of
motion valid in the fluid domain. For the capillary-gravity water waves, the ap-
propriate equations of motion are Euler’s equations (EE)([24]). The boundary
conditions for the water wave problem are the kinematic boundary conditions
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as well as the dynamic boundary condition. The kinematic boundary condi-
tions (KBC) express the fact that the same particles always form the free water
surface and that the fluid is assumed to be bounded below by a hard horizontal
bed z = 0. The dynamic boundary condition (DBC) express the fact that the
difference of pressure on the two sides of the surface η is balanced by the ef-
fects of surface tension. Thus, the boundary value problem for capillary-gravity
water waves is:

ut + uux + vuz = − 1
ρpx

vt + uvx + vvz = − 1
ρpz − g

(EE)

ux + vz = 0 (MC)
v = ηt + uηx on z = h0 + η(x, t)

v = 0 on z = 0
(KBC)

p = p0 − Γ
R , on z = h0 + η(x, t) (DBC)

(1)

where g is the constant gravitational acceleration, p0 is the constant atmospheric
pressure, the parameter Γ(> 0) is the coefficient of surface tension and 1

R is the
mean curvature (up to a factor 1/2) of the surface. For the surface defined as a
function η(x, t), the mean curvature has the following expression

1

R
=

ηxx

(1 + η2x)
3/2

(2)

In respect of the well-posedness for the initial-value problem for (1) there has
been significant recent progress, see [12] and the references therein.
A key quantity in fluid dynamics is the curl of the velocity field, called vorticity.
For two-dimensional flows we denote the scalar vorticity of the flow by

ω(x, z) = uz − vx (3)

In what follows we consider a flow which is uniform with depth, that is, described
by a zero vorticity (irrotational case).

We search for a linear approximation of the water-wave problem (1). First
the system (1) is non-dimensionalized by making use of the following scales:
the undisturbed depth of water h0, as the vertical scale, a typical wavelength
λ, as the horizontal scale, and

√
gh0 as the scale of the horizontal component

of the velocity. The surface wave itself leads to the introduction of a typical
amplitude of the wave a. For more details see [24]. Thus, we define the set of
non-dimensional variables

x 7→ λx, z 7→ h0z, η 7→ aη, t 7→ λ√
gh0

t,

u 7→ √
gh0u, v 7→ h0

√
gh0

λ v
(4)

where, to avoid new notations, we have used the same symbols for the non-
dimensional variables x, z, η, t, u, v, on the right-hand side.
We set the constant water density ρ = 1 and let us now define the non-
dimensional pressure. If the water would be stationary, that is, u ≡ v ≡ 0,
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from the equations (EE) and (DBC) with η = 0, Γ = 0, we get for a non-
dimensionalised z, the hydrostatic pressure p0 + gh0(1 − z). Thus, the non-
dimensional pressure is defined by

p 7→ p0 + gh0(1− z) + gh0p (5)

Taking into account (4) and (5) the two-dimensional capillary-gravity waves
on water of finite depth are described, in non-dimensional variables, by the
following boundary value problem

ut + uux + vuz = −px
δ2(vt + uvx + vvz) = −pz

ux + vz = 0
v = ǫ(ηt + uηx) on z = 1 + ǫη(x, t)

p = ǫ
[

η −
(

Γ
gλ2

)

ηxx

(1+ǫ2δ2η2
x)

3/2

]

on z = 1 + ǫη(x, t)

v = 0 on z = 0

(6)

where we have introduced the amplitude parameter ǫ = a
h0

and the shallowness

parameter δ = h0

λ .
For irrotational flows the vorticity equation (3) writes in non-dimensional vari-
ables (4) as

uz = δ2vx (7)

We observe now that, on z = 1 + ǫη, both v and p are proportional to ǫ. Thus,
with the following scaling of the non-dimensional variables, (avoiding again the
introduction of a new notation),

p 7→ ǫp, (u, v) 7→ ǫ(u, v) (8)

the problem (6) becomes

ut + ǫ(uux + vuz) = −px
δ2[vt + ǫ(uvx + vvz)] = −pz

ux + vz = 0
v = ηt + ǫuηx on z = 1 + ǫη(x, t)

p = η −
(

Γ
gλ2

)

ηxx

(1+ǫ2δ2η2
x)

3/2 on z = 1 + ǫη(x, t)

v = 0 on z = 0

(9)

and the equation (7) keeps the same form. Therefore, the system which describes
the full problem in the irrotational case is given by (9 )+(7).
It is conventional to write Γ

ρgλ2 = δ2We, with We = Γ
ρgh2

0

a Weber number.

This parameter is used to measure the size of the surface tension contribution.
By letting ǫ → 0, δ and We being fixed, we obtain a linear approximation of
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the scaled version (9)+(7) of our problem, that is,

ut + px = 0
δ2vt + pz = 0
ux + vz = 0
uz − δ2vx = 0

v = ηt on z = 1
p = η − δ2Weηxx on z = 1

v = 0 on z = 0

(10)

From the first three equations in (10), we get that

vzzt = −uxzt = pxxz = −δ2vxxt (11)

Therefore,
vzzt + δ2vxxt = 0 (12)

and thus
vzz + δ2vxx = f(x, z) (13)

where f is an arbitrary function. Taking into account the forth equation in (10),
we obtain that

δ2vxx = uzx (14)

Introducing (14) into (13), we have

(vz + ux)z = f(x, z) (15)

and in view of the third equation in (10), we get that

f(x, z) = 0 (16)

The equation (13) becomes

vzz + δ2vxx = 0 (17)

We apply the method of separation of variables, seeking a solution of this equa-
tion in the form

v(x, z, t) = F (x, t)G(z, t) (18)

Substituting (18) into the equation (17), we find

F
∂2G

∂z2
+ δ2G

∂2F

∂x2
= 0 (19)

thus,
1

G

∂2G

∂z2
= −δ2

1

F

∂2F

∂x2
(20)

We observe in the above equation that the left hand side does not depend on z

and the right hand side does not depend on x. Therefore, each side must be a
constant, say

1

F

∂2F

∂x2
= −k2,

1

G

∂2G

∂z2
= k2δ2 (21)
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where k ≥ 0 is a constant that might depend on time. With the above choice,
the solutions of the equations in (21) are

F (x, t) = A sin(kx) +B cos(kx)

G(x, t) = Cekδz +De−kδz , (22)

where A, B, C, D are constants depending on time. We made this choice of
the sign of the constant in the equations (21), in order to obtain this wave-like
solution (22) propagating in the x-direction. On the bed z = 0, by the last
equation in (10), we have v = 0, thus C = −D. Therefore,

v(x, z, t) = sinh(kδz) (A sin(kx) + B cos(kx)) (23)

where we introduced C = −D into the constants A and B.
Taking now into the account the fifth equation in (10), on z = 1 we get

sinh(kδ) (A sin(kx) + B cos(kx)) = ηt (24)

which implies

(A sin(kx) + B cos(kx)) =
ηt

sinh(kδ)
(25)

Hence,

v(x, z, t) =
1

sinh(kδ)
sinh(kδz)ηt (26)

For the component u of the velocity field, taking into account (26) and the
fourth equation of the system (10), we obtain

u(x, z, t) =
δ

k sinh(kδ)
cosh(kδz)ηtx + F(x, t) (27)

where F(x, t) is an arbitrary function. The components u and v of the velocity
have to fulfill also the third equation in (10), hence, in view of (26) and (27),

δ

k sinh(kδ)
cosh(kδz)ηtxx +

∂F(x, t)

∂x
= − kδ

sinh(kδ)
cosh(kδz)ηt (28)

The above relation must hold for all values of x ∈ R, and 0 ≤ z ≤ 1. It follows

∂F(x, t)

∂x
= 0 (29)

and
ηtxx + k2ηt = 0 (30)

We seek periodic travelling wave solutions, thus, for the equation (30) with

k = 2π (31)

we choose the following solution

η(x, t) = cos(2π(x − ct)) (32)



3 Exact solutions to the nonlinear equations of the motion of fluid particles 7

where c represents the non-dimensional speed of propagation of the linear wave
and is to be determined.
From (29) the function F(x, t) is independent of x, therefore we will denote this
function by F(t).
We return now to the systems (10) in order to find the the expressions of the
pressure. Taking into account the first two equations in (10) and the expressions
of the velocity field from above, we obtain

p(x, z, t) =
2πδc2

sinh(2πδ)
cosh(2πδz) cos(2π(x − ct)) + xF ′(t) (33)

On the free surface z = 1 the pressure (33) has to fulfill the sixth equation of
the system (10). Hence, in view of (32), we get

2πδc2 coth(2πδ) cos(2π(x− ct)) + xF ′(t) = (1+ 4π2δ2We) cos(2π(x− ct)) (34)

The above relation must hold for all values x ∈ R, therefore, we get

F(t) = constant := c0 (35)

and we provide the non-dimensional speed of the linear wave

c2 =
tanh(2πδ)

2πδ
(1 + 4π2δ2We) =

λ

2πh0

(

1 +
4π2Γ

gλ2

)

tanh

(

2πh0

λ

)

(36)

We observe thus, that the speed of propagation of the wave varies with the
wavelength λ, with the undisturbed depth h0 and with the coefficient of surface
tension Γ.

Summing up, the solution of the linear system (10) is

η(x, t) = cos(2π(x− ct))

p(x, z, t) = 2πδc2

sinh(2πδ) cosh(2πδz) cos(2π(x− ct))

u(x, z, t) = 2πδc
sinh(2πδ) cosh(2πδz) cos(2π(x − ct)) + c0

v(x, z, t) = 2πc
sinh(2πδ) sinh(2πδz) sin(2π(x− ct))

(37)

with c given by (36).

3 Exact solutions to the nonlinear equations of the motion of

fluid particles

Let (x(t), z(t)) be the path of a particle in the fluid domain, with location
(x(0), z(0)) := (x0, z0) at time t = 0. Taking into account (37), the motion
of the particle is described by the following system of nonlinear differential
equations

{

dx
dt = u(x, z, t) = 2πδc

sinh(2πδ) cosh(2πδz) cos(2π(x − ct)) + c0
dz
dt = v(x, z, t) = 2πc

sinh(2πδ) sinh(2πδz) sin(2π(x− ct))
(38)
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The right-hand side of the differential system (38) is smooth and bounded,
therefore, the unique solution of the Cauchy problem with initial data (x0, z0)
is defined globally in time.
Notice that the constant c0 is the average of the horizontal fluid velocity over
any horizontal segment of length 1, that is,

c0 =
1

1

∫ x+1

x

u(s, z, t)ds, (39)

representing therefore the strength of the underlying uniform current. Thus,
c0 = 0 will correspond to a region of still water with no underlying current,
c0 > 0 will characterize a favorable uniform current and c0 < 0 will characterize
an adverse uniform current.
To study the exact solution of the system (38) it is more convenient to re-write
it in the following moving frame

X = 2π(x− ct), Z = 2πδz (40)

This transformation yields

{

dX
dt = 4π2δc

sinh(2πδ) cosh(Z) cos(X) + 2π(c0 − c)
dZ
dt = 4π2δc

sinh(2πδ) sinh(Z) sin(X)
(41)

I) c0 = c
In this case, differentiating with respect to t, the system (41) can be written in
the following form:

{

d2X
dt2 = − 8π4δ2c2

sinh2(2πδ)
sin(2X)

d2Z
dt2 = 8π4δ2c2

sinh2(2πδ)
sinh(2Z)

(42)

This system integrates to

{

(

dX
dt

)2
= 8π4δ2c2

sinh2(2πδ)
cos(2X) + c1

(

dZ
dt

)2
= 8π4δ2c2

sinh2(2πδ)
cosh(2Z) + c2

(43)

c1, c2 being the integration constants.
For the first equation in (43) we use the substitution

tan(X) = y , cos(2X) =
1− y2

1 + y2
, sin(2X) =

2y

1 + y2
, dX =

1

1 + y2
dy (44)

In the new variable, the first equation in (43) takes the form

(

dy

dt

)2

=
8π4δ2c2

sinh2(2πδ)
(1− y4) + c1(1 + y2)2 (45)

We denote by

a2 :=
8π4δ2c2

sinh2(2πδ)
(46)
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The solution of the equation (45) involves an elliptic integral of first kind:

±
∫

dy
√

(c1 − a2)y4 + 2c1y2 + c1 + a2
= t (47)

The elliptic integral of first kind from (47) may by reduced to Legendre’s normal
form. In order to do this we consider first the substitution

y2 = s (48)

Therefore, the left hand side in (47) becomes

±
∫

dy
√

(c1 − a2)y4 + 2c1y2 + c1 + a2
= ±

∫

ds

2

√

(c1 − a2)s(s+ 1)
(

s+ c1+a2

c1−a2

)

(49)
Further, we introduce a new variable ϕ. The definition of this variable depends
on the sign of c1 − a2 and c1 + a2. There are three possibilities:
c1 − a2 > 0,
c1 − a2 < 0 and c1 + a2 > 0,
c1 − a2 < 0 and c1 + a2 < 0.
We present below only the second case, the investigation of the others will be
presented in a future paper.
If

c1 − a2 < 0 and c1 + a2 > 0 (50)

then, we introduce the variable ϕ by (see [31] Ch. VI, §4, page 602)

s =
a2 + c1

a2 − c1
cos2 ϕ (51)

and we get

(c1 − a2)s(s+ 1)

(

s+
c1 + a2

c1 − a2

)

=
2a2(a2 + c1)

2

(a2 − c1)2
sin2 ϕ cos2 ϕ

[

1− k21 sin
2 ϕ
]

ds = −2(a2 + c1)

a2 − c1
sinϕ cosϕdϕ

where the constant 0 < k21 < 1 is given by

k21 =
a2 + c1

2a2
(52)

Therefore we obtain the Legendre normal form of the integral in (47), that is,

± 1√
2 a

∫

dϕ
√

1− k21 sin
2 ϕ

= t (53)
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The inverse of the integral in (53) is the Jacobian elliptic function sine amplitude

(see, for example, [1]), an odd periodic function of order two,

sn
(

±
√
2a t; k1

)

:= sinϕ (54)

In view of the notations (48), (51), we get that

y(t) = ±
√

a2 + c1

a2 − c1
cn
(

±
√
2a t; k1

)

= ±
√

a2 + c1

a2 − c1
cn
(√

2a t; k1

)

(55)

cn being the Jacobian elliptic function cosine amplitude, an even periodic func-
tion of order two.
For the second equation in (43) we use the substitution

tanh(Z) = w , cosh(2Z) =
1 + w2

1− w2
, dX =

1

1− w2
dw (56)

In the new variable, the second equation in (43) takes the form

(

dw

dt

)2

=
8π4δ2c2

sinh2(2πδ)
(1− w4) + c2(1− w2)2 (57)

The solution of the equation (57) involves an elliptic integral of first kind:

±
∫

dw
√

(c2 − a2)w4 − 2c2w2 + c2 + a2
= t (58)

where a2 is the constant from (46). The elliptic integral of first kind from (58)
may by reduced to Legendre’s normal form. In order to do this we consider first
the substitution

w2 = r (59)

The left hand side in (58) becomes

±
∫

dw

2
√

(c2 − a2)w4 − 2c2w2 + c2 + a2
= ±

∫

ds

2
√

(c2 − a2)r(r − 1)(r − c2+a2

c2−a2 )

(60)
As in the case of the integral in (49), we introduce a new variable φ. The
definition of φ depends on the sign of c2 − a2 and c2 + a2. There are three
possibilities:
c2 − a2 > 0,
c2 − a2 < 0 and c2 + a2 > 0,
c2 − a2 < 0 and c2 + a2 < 0.
We present below only the last case, the investigation of the others will be
presented in detail in a future paper.
If

c2 − a2 < 0 and c2 + a2 < 0 (61)
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then, we introduce the variable φ by (see [31] Ch. VI, §4, page 602)

r = 1 +
2a2

c2 − a2
sin2 φ (62)

and we get

(c2 − a2)r(r − 1)

(

r − c2 + a2

c2 − a2

)

=
4a4

(a2 − c2)
sin2 φ cos2 φ

(

1− k22 sin
2 φ
)

ds =
4a2

c2 − a2
sinφ cosφdφ

where the constant 0 < k22 < 1 is given by

k22 =
2a2

a2 − c2
(63)

Therefore we obtain the Legendre normal form of the integral in (58), that is,

± 1√
a2 − c2

∫

dφ
√

1− k22 sin
2 φ

= t (64)

The inverse of the integral in (64) is

sn
(

±
√

a2 − c2t; k2

)

:= sinφ (65)

In view of the notations (59), (62), we get that

w(t) = ±
√

1− 2a2

a2 − c2
sn 2

(

√

a2 − c2t; k2

)

(66)

Therefore, from (44) and (56), the solution of the system (43) has the following
expression

X(t) = arctan [y(t)]

Z(t) = arctanh [w(t)] = 1
2 ln

1+w(t)
1−w(t)

(67)

with y(t) given by (55) and w(t) given by (66). From (40) and (67), the solution
of the system (38) with the constant c0 equals the speed of propagation of the
linear wave c, have the following expressions:

x(t) = ct± 1
2πarctan

[√

a2+c1
a2−c1

cn
(√

2a t; k1
)

]

z(t) = ± 1
2πδ arctanh

[√

1− 2a2

a2−c2
sn 2

(√
a2 − c2t; k2

)

] (68)

We remark that the curve in (68) is not a closed curve. This result is in the line
with the results obtained in [4], [5], [10], [14], [15], [17], [18], [19], [22], [23].
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II) c0 6= c
Differentiating with respect to t the system (41) we get

d2X

dt2
+ b tan(X)

dX

dt
+ a2 sin(2X)− b2 tan(X) = 0 (69)

where a2 is the constant from (46 ) and

b := 2π(c0 − c) (70)

Using the substitution (44), the equation (69) takes the form

d2y

dt2
− 2y

1 + y2

(

dy

dt

)2

+ by
dy

dt
+ 2a2y − b2y(1 + y2) = 0 (71)

For (see [25], 6.54, page 554)

p(y) =
dy

dt
, (72)

the equation (71) becomes an Abel differential equation of the second kind

p
dp

dy
=

2y

1 + y2
p2 − byp− 2a2y + b2y(1 + y2) (73)

The substitution (see [25], 4.11, pages 26-27)

u(y) = p(y)E(y), where E(y) = exp

(

−
∫

2y

1 + y2
dy

)

=
1

1 + y2
, (74)

brings this equation to the simpler form

u
du

dy
= −b

y

1 + y2
u− 2a2

y

(1 + y2)2
+ b2

y

1 + y2
(75)

The equation (75) with the substitution

ξ =

∫
(

− by

1 + y2

)

dy = − b

2
ln(1 + y2) (76)

can be written in the canonical form:

u
du

dξ
− u =

2a2

b
exp

(

2ξ

b

)

− b (77)

The equation (77) is solvable (see [29], 8., page 111), its solution can be written
out in the following parametric form

u(τ) = τ
C−b ln |τ+

√
τ2−2a2|√

τ2−2a2
+ b

ξ(τ) = −b ln
∣

∣

∣

√
τ2−a2

C−b ln |τ+
√
τ2−2a2|

∣

∣

∣

(78)
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C being a constant. From (76) and (78) we get the expression of y

y(τ) = ±
√

τ2 − 2a2
(

C − b ln |τ +
√
τ2 − 2a2|

)2 − 1, (79)

By (72) and (74), we have dt
dτ = 1

(1+y2)u

(

dy
dτ

)

and therefore, from (78) and (79),

the relation between t and τ is the following:

t =

∫

1
√
τ2 − 2a2

√

τ2 − 2a2 − (C − b ln |τ +
√
τ2 − 2a2|)2

dτ (80)

Thus, taking into account (44), we obtain

X(t) = arctan [y(t)], (81)

with y(τ) given by (79) and τ given implicitly by (80).
In order to determine Z(t) from the system (41), with (81) in view, we write
the second equation of this system in the form

dZ

sinh(Z)
=

4π2δc

sinh(2πδ)
sin(arctan [y(t)]) dt =

4π2δc

sinh(2πδ)

y(t)
√

1 + y2(t)
dt (82)

Integrating, we get

ln

[

tanh

(

Z

2

)]

=

∫

4π2δc

sinh(2πδ)

y(t)
√

1 + y2(t)
dt+ const (83)

If
∫

4π2δc

sinh(2πδ)

y(t)
√

1 + y2(t)
dt+ const < 0 (84)

then

Z(t) = 2arctanh

[

exp

(

∫

4π2δc

sinh(2πδ)

y(t)
√

1 + y2(t)
dt+ const

)]

(85)

From (40), (81) and (85), the solution of the system (38) is written now as

x(t) = ct+ 1
2πarctan [y(t)]

z(t) = 1
πδ arctanh

[

exp

(

∫

4π2δc
sinh(2πδ)

y(t)√
1+y2(t)

dt+ const

)]

(86)

with y(τ) given by (79) and τ given implicitly by (80).
We remark that the curve in (86) is not a closed curve. This result is in the line
with the results obtained in [4], [5], [10], [14], [15], [17], [18], [19], [22], [23].
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