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Abstract

In a recent article [1], FEAST has been presented as a general purpose eigenvalue algorithm

which is ideally suited for addressing the numerical challenges in electronic structure calculations.

Here, FEAST is presented furthermore as a fundamental modeling framework which can naturally

address the original numerical complexity of the electronic structure problem as formulated by

Slater in 1937 [2]. In doing so, the FEAST framework is capable of bypassing the motivations and

needs for the approximation techniques used in first-principle calculations nowadays.
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Since the 1930’s, progress in electronic structure calculations has always been tied to-

gether with advances in numerical strategies for addressing the eigenvalue problem. In

particular, several attempts have been undertaken to reduce the complexity of the eigen-

value problem in self-consistent calculations by dissociating, removing or screening the effect

of the core electrons. Most used techniques include [3]: muffin-tin approximations along

with augmented plane wave (APW) [2] and linearized APW, muffin-tin orbitals (MTO) and

linearized MTO, KKR methods and pseudopotential approaches [4, 5]. The conceptual ap-

proach of the former consists in partitioning the real space into spheres around each atom,

allowing different discretization and solving strategies to take place in separate regions in

space. Therefore, the atom-centered regions can benefit from specific discretization schemes

(i.e. basis sets) that are both suitable to capture the highly localized core states around

the nuclei and considerably reduce the effective size of the resulting eigenvalue problem in

the interstitial region. This approach can be cast as a domain decomposition method in

modern days which is most suitable for parallel computing since calculations on all these

sub-domains can also be performed independently. Once the eigenvalue problem is refor-

mulated using domain decomposition strategies, however, the resulting (and still exact)

problem takes now the form of a non-linear one in the interstitial region (i.e. H(E)ψ = Eψ)

since the boundary conditions at the interface with the atom-centered regions are energy

dependent. The major difficulty of solving this non-linear eigenvalue problem has been

largely avoided by the mainstream approaches to electronic structure calculations to rely

most entirely on approximations ranging from direct linearization techniques (e.g. LAPW,

LMTO, etc.) to pseudopotential techniques. Linear eigenvalue problems can indeed be ob-

tained alternatively from pseudopotential techniques using smooth but non-local potential

in atom-centered regions that eliminate the core states.

This paper presents a fundamental strategy for performing electronic structure calcula-

tions which bypasses the need for the traditional approximation techniques above by relying

entirely on the capabilities of the new FEAST algorithm framework for solving the eigen-

value problem. Using FEAST, solving the original eigenvalue problem within a given search

interval is mainly reformulated into solving a set of well-defined independent linear systems

along a complex energy contour [1]. As a result, we show here that FEAST can naturally

address two main fundamental issues for electronic structure calculations: (i) muffin-tin do-

main decomposition type approaches used to partition the real-space can act directly on the
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linear systems; therefore, the eigenvalue problem does not need to be explicitly formulated

into a non-linear one. Stated otherwise, the choice of “pivot energies”, needed to evaluate

the Green’s function in the interstitial region using linearization techniques, becomes now a

well-defined choice which follows a mathematically sounded approach for solving the elec-

tronic structure problem in the entire system; (ii) several FEAST algorithms can operate in

parallel to obtain core and valence electrons independently spanning different energy ranges.

I. FROM LINEAR TO NON-LINEAR EIGENVALUE PROBLEM

In electronic structure calculations, one considers solving the Schrodinger-type equation

in an entire domain Ω which can be finite, periodic or Bloch periodic:

HΨ(x) = EΨ(x), x ∈ Ω (1)

where {Ei,Ψi} are the resulting eigenpairs (also parametrized by k in the case of bandstruc-

ture calculation using a Bloch periodic system). Thereafter, any discretization schemes in

Ω would give rise to the generalized and linear eigenvalue problem:

HΨ = ESΨ, (2)

where S is a positive definite matrix (mass matrix) obtained using non-orthogonal basis

functions (S = I otherwise), and Ψ contains the unknown components of the wave function

(e.g. basis set coefficients, nodal values, etc.). Without any loss of generality, Figure 1

illustrates the essence of the muffin-tin domain decomposition strategy.

Formally, the solutions {Ei,Ψi} that satisify the continuum model (1), can also be ob-

tained from a Schrödinger equation in the interstitial region Ω0 alone provided that appro-

priate boundary conditions are imposed at the interfaces Γj with the atom-centered region

Ωj i.e.

H0Ψ(x) = EΨ(x), x ∈ Ω0 (3)

where H0 is the Hamiltonian in Ω0. A general mathematical form for these boundary

conditions on Γj supplies a relation between the normal derivative of the solution and their

boundary values (∀j):

~
2

2m

∂Ψ(x)

∂ηj
=

∫

Γj

dx
′

Σj(E,x,x
′

) Ψ(x
′

), x ∈ Γj , (4)
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FIG. 1: Using a muffin-tin domain-decomposition method, the whole simulation domain Ω is sep-

arated into multiple atom-centered regions Ωj (j = 1, . . . ) and one large interstitial region Ω0.

Different basis-sets can be used independently to describe the different regions. The figures repre-

sent a 2D cross-section of local finite element discretization using a coarse mesh for Ω0 connecting

all of the atoms of a Benzene molecule, and a much finer mesh for the Ωj regions suitable to capture

the highly localized core states around the nuclei.

where ηj represents here the external normal at Γj, and Σj is a non-local and energy depen-

dent operator (i.e. self-energy) which can be derived from the the atom-centered Green’s

function Gj in Ωj . This later is given by (∀j):

(

E −Hj

)

Gj(E,x,x
′

) = δ(x− x
′

), x,x
′

∈ Ωj , (5)

where Hj is the Hamiltonian in Ωj , and Gj can be constructed with arbitrary boundary

conditions at Γj . For instance, by choosing the Green’s function Gj to have zero derivative

on Γj (i.e. homogeneous Neumann boundary conditions), one can obtain from the Green’s
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identity, a simple expression for Σj (inverse of the surface Green’s function):

Σj(E,x,x
′

) = G−1
j (E,x,x

′

), x,x
′

∈ Γj . (6)

This derivation was originally introduced in [6] as an embedding potential technique for the

Schrödinger equation. Alternatively, another simple expression for Σj has been derived in

[7] using homogeneous Dirichlet boundary conditions for Gj on Γj . After discretization of

(3) using the condition (4) (and usually performed on the variational form of the problem),

the resulting non-linear eigenvalue problem in Ω0 takes the general form

(

H0 −
∑

j

Σj(E)
)

Ψ0 = ES0Ψ0, (7)

where S0 is the mass matrix in Ω0, andΨ0 contains the unknown components of the solution

in Ω0 as well.

In the specific case of real-space mesh discretization (see Figure 1), Σj(E) is non-zero

only for a small number of matrix elements coupling all the nj unknowns on Γj . Using (5)

and (6), and assuming a particular ordering of the matrix elements (for clarity), it results

(∀j):

Σ̂j(E) =
(

[Inj
0 . . .0] (ESj −Hj)

−1 [Inj
0 . . .0]T

)−1
, (8)

where Sj is the mass matrix in Ωj , and the matrix Σ̂j of size nj contains all the non-zero

elements of Σj.

Alternatively to a continuum treatment of the problem (1), one could directly replace

the unknown components of Ψj belonging to the interior subdomains Ωj from the system

matrix (2) by the following self-energy [8]

Σj(E) = τj Gj τ
†
j , (9)

where τj describes the interaction between Ω0 and the atom-centered region Ωj . In linear al-

gebra, this non-overlapping domain decomposition procedure gives rise to a reduced coupled

system identical to (7) which is known as the Schur complement.

II. FEAST FRAMEWORK

FEAST is both a new numerical algorithm [1] and a new general purpose high-

performance numerical library [9] for solving the standard or generalized eigenvalue problem
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of type (2), and obtaining all the eigenvalues and eigenvectors within a given search interval

[Emin, Emax]. The algorithm offers many important and unique capabilities for achieving

accuracy, robustness, high-performance and scalability on parallel computing architectures.

The FEAST basic computing steps for solving the system (2) of size N , are briefly summa-

rized in the following.

Starting from a set of M0 linearly independent random vectors Y
N×M0

= {y1,y2, ..yM0
},

where M0 is chosen greater than the number of the eigenvalues M in the search interval

(i.e. M0 represents then an over-estimation of M which is not known a priori), a new set of

vectors Q
N×M0

= {q1,q2, ..qM0
} is obtained as follows:

Q
N×M0

= −
1

2πı

∫

C

dZ G(Z)Y
N×M0

, (10)

where C represents a complex contour from Emin to Emax. In practice, the vectors Q in

(10) can be computed using a high-order numerical integration where only very few linear

systems G(Z)Y need to be solved along the complex contour C i.e.

(ZS−H)Q(Z) = Y, (11)

whereQ(Z) denotes the set of responses at a given pivot energy Z for a given set of excitations

Y in Ω.

Thereafter, by computing

HQ
M0×M0

= Q†HQ and SQ
M0×M0

= Q†SQ, (12)

a projected reduced dense eigenvalue problem of size M0 can be formed:

HQΦ = ǫSQΦ, (13)

This reduced problem can be solved using standard eigenvalue routines for dense sys-

tems to obtain all the eigenpairs (ǫm,Φm). By setting Em = ǫm and computing

Ψ
N×M0

= Q
N×M0

Φ
M0×M0

, it follows that if Em lies inside the contour, it is an eigenvalue

solution and its eigenvector is Ψm (the mth column of Ψ). The eigenvectors Ψ are also

naturally S-orthonormal, if the eigenvectors of the reduced problem are SQ-orthonormal. In

order to improve the accuracy, a new set of initial guess vectors Y = SΨ can also be used

iteratively up until convergence.

6



Finally, efficient parallel implementations for FEAST can be addressed at three different

levels: (i) many search intervals can be run independently (no overlap), (ii) each linear

system (11) can be solved independently along the complex contour C, and (iii) the linear

system can also be solved in parallel (the multiple right sides can be parallelized as well).

Consequently, one can show that if enough parallel computing power is available at hand,

the main computational cost of FEAST for solving the eigenvalue problem and even for

capturing millions of eigenpairs, can be ultimately reduced to solving only one linear system

(11).

III. IMPLICIT TREATMENT OF THE NON-LINEAR PROBLEM

Using the muffin-tin domain decomposition framework, solving explicitly the non-linear

eigenvalue problem (7) could be possible but very challenging (difficulties would include in

particular: absence of orthogonality for Ψ0 in Ω0, and a non-linear reduced system (13)

using FEAST).

All these issues, however, can be addressed implicitly within the FEAST framework. At

first, starting from a set of excitations Y (x) in the continuum domain, the set of responses

Q(Z) can also be obtained by solving the Schrödinger equation (3) in Ω0 alone:

(z −H0)Q
(Z)(x) = Y (x), x ∈ Ω0, (14)

where the boundary condition for Q(Z) on Γj should formally satisfy (4) but augmented

by a source term F
(Z)
j (x) (to add to the right hand side) which accounts for the effects of

the excitations Y (x) within the atom-centered regions Ωj . For instance, using Neumann

boundary condition for Gj , the self-energy Σj are defined in (6) and one can show that (∀j):

F
(Z)
j (x) =

∫

Γj

dx′ G−1
j (z,x,x′)∗

[

∫

Ωj

dx′′ Gj(z,x
′,x′′) Y (x′′)

]

, x ∈ Γj. (15)

Once Q(Z) is known in Ω0 and hence on all the Γj interfaces, the solution in the Ωj can be

independently retrieved for ∀j by solving the linear systems

(z −Hj)Q
(Z)(x) = Y (x), x ∈ Ωj , (16)

with Dirichlet boundary conditions.
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After discretization of (14), (4) and (15), solving (11) in the entire domain Ω can then be

replaced by solving the following linear system for the unknown components of the solutions

Q
(Z)
0 in Ω0

(

ZS0 −H0 +
∑

j

Σj(Z)
)

Q
(Z)
0 = Y0 +

∑

j

F
(Z)
j , (17)

and a series of independent sub-problems (16) to obtain the unknown components of the

solutions Q
(Z)
j in the atom-centered regions Ωj . Using Neumann boundary conditions for

Gj, in particular, Σj is given in (6) and from the discretization of (15), it comes:

F
(Z)
j = Σj(Z)Gj(Z)Yj. (18)

Thereafter, the subspace Q (10) is obtained by integration of the set of solutions Q
(Z)
0 and

all the Q
(Z)
j over the complex contour C. In practice, it is possible to construct Hq and Sq

in (12) directly from the projection of H0 and S0 for Ω0 and Hj and Sj for all Ωj .

As a result of (17) which is solved only for specific complex pivot energies Z, the non-

linearity of the Schrödinger equation (7) in Ω0 is then explicitly removed. It is also important

to mention that the additional computational costs by pivot energy Z for obtaining F
(Z)
j and

retrieving the solution Q
(Z)
j in Ωj , can be made minimal. Indeed, most of the efforts that

have been devoted for obtaining Σj(Z) do not need to be repeated (e.g. factorization of the

matrix (ZSj −Hj), computations of some key elements of Gj). For instance, in the specific

case of real-space mesh discretization (see Figure 1), only nj columns of Gj associated to

the nodes at the boundary Γj are needed to compute both Σj(Z) in (8) and F
(Z)
j in (18)

and this independently on the number of nodes inside Ωj . Alternatively, F
(Z)
j can also be

obtained using the Schur complement technique used to construct Σj in (9).

IV. DISCUSSIONS

In 1937, Slater originally derived a non-linear electronic structure problem by introducing

the APW method using a muffin-tin domain decomposition, he then stated [2] “Of course,

we cannot solve this exactly, and we must look for methods of approximations”. Indeed, the

non-linear type problem (7) cannot be handled by traditional linear eigenvalue algorithms

and its explicit treatment would appear very challenging. These limitations have historically

motivated the development of a wide spectrum of approximation techniques ranging from

direct linearization to pseudopotential methods.
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Within the framework of the FEAST algorithm, however, this problem benefits now from

a numerical exact treatment which consists of removing the non-linearity of the Schrödinger

equation (7) in the interstitial region Ω0, by considering only certain complex pivot energies Z

(17). In contrast to linear approximations (including LAPW, LMTO, linearized embedding

method [6], etc.), these pivot energies are explicitly provided by FEAST to guaranteed

convergence of the solutions of the Schrödinger equation in the whole simulation domain

Ω. The approach that has been presented here, is free from any particular form for the

potential in the atom-centered regions (such as spherically symmetric potential, etc.). Since

the size of linear system (17) in the interstitial region Ω0 is independent of the discretization

schemes for the atom-centered regions Ωj , the approach can ideally deal with full potential

within self-consistent calculations (i.e. all-electron calculations).

The development of techniques such as pseudopotential have also been originally moti-

vated to ease several numerical difficulties that one can encounter with all-electron calcula-

tions in the atom-centered regions [4, 5]. Let us then outline how some of these main issues

are naturally addressed within the FEAST all-electron framework:

(i) Since FEAST can act independently on different energy ranges, the number of states

in a search interval can be narrowed as desired, and the frozen-core approximation does not

need to be considered within self-consistent iterations.

(ii) In contrast to pseudopotential, a much finer level of discretization for the FEAST all-

electron framework is indeed needed to capture the (true) wave functions in Ωj . The linear

eigenvalue system obtained using pseudopotential can either be seen as a much smaller

size system as compared to (2), or a linearized version of (7) where Σj represents then the

pseudopotential which is now fully non-local over Ωj . This pseudopotential system can also

ideally be solved using the FEAST algorithm; however, the resulting system matrix (11)

would end up (paradoxically) being larger and much less scalable than (17). As mentioned

above, the extra-arithmetic costs for obtaining the vectors Fj and retrieving the solution

Qj on each subdomain are minimal. Moreover, these computations along with the ones for

obtaining the self-energy Σj, can be fully parallelized ∀j. Alternatively and similarly to

the development of the atomic pseudopotential databases, one can envision precomputed

spectral decomposition for the Green’s function Gj built using all-electron self-consistent

calculations for each atomic configuration. As a result, one could obtain very good and

inexpensive preconditioner for computing Σj, Fj andQj using iterative linear system solvers.
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Finally, the FEAST fundamental framework for first-principle electronic structure cal-

culations can be used independently of the choice for the physical model (e.g. Density-

Functional Theory or Hartree-Fock), the nature of the atomistic system (e.g. isolated or

Bloch periodic), or the choice for the basis set (e.g. PW, atomic orbitals, real-space mesh).
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