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Decoherence is one of the most important obstacles that must be overcome in quantum information
processing. It depends on the qubit-environment coupling strength, but also on the spectral composition
of the noise generated by the environment. If the spectral density is known, fighting the effect of de-
coherence can be made more effective. Applying sequences of inversion pulses to the qubit system, we
generate effective filter functions that probe the environmental spectral density. Comparing different pulse
sequences, we recover the complete spectral density function and distinguish different contributions to the
overall decoherence.
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Introduction.— Quantum information processing relies
on the robust control of quantum systems. A quantum sys-
tem is always influenced by external degrees of freedom,
the environment, that disturb the quantum information by
a process called decoherence [1]. Many strategies were
developed to fight this degradation of information. These
methods are based on correction of errors [2, 3] and decou-
pling the environment [4–7]. Fighting decoherence suc-
cessfully requires knowledge of the noise spectral density
to design suitable quantum processes [8–11].

Within the decoupling methods, one simple strategy is
called dynamical decoupling (DD) [7, 12]. It is based on
the application of a sequence of control pulses to the sys-
tem to effectively isolate it from the environment. Differ-
ent DD sequences were developed [7, 12–14] and tested
experimentally [15–20]. Different sources modify the per-
formance of DD sequences. Once pulse errors are small,
the spectral density of the system-environment (SE) inter-
action becomes the main factor [8, 14, 15, 19, 21–24]. Con-
sequently a DD sequence has to be judiciously designed
according to the particular noise spectral density to be de-
coupled [14, 15, 21–24].

In this paper, we present a method to determine the spec-
tral density of the SE interaction. The method is based on
previous results that the decay rate of a qubit during DD
is given by the overlap of the bath spectral density func-
tion and a filter function generated by the DD sequence
[14, 15, 19, 21–24]. The filter function is given by the
Fourier transform of the SE interaction modified by the
control pulses: each π-pulse changes the sign of the SE
coupling. When many DD cycles are applied to the sys-
tem, the filter functions become a sum of δ−functions [19].
Consequently, the decoherence time is given by a discrete
sum of spectral densities. A judicious choice of the DD se-
quence thus allows one to probe the environmental spectral
density at selected frequencies. Combining several mea-
surements, it is possible to obtain a detailed picture of the
noise spectral distribution.

A qubit as the noise probe.— We consider a single qubit
Ŝ as the probe. It is coupled to the bath to be studied with
a purely dephasing interaction. In a resonantly rotating
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Figure 1: The top panel shows a two pulse sequence with M
repetitions of the cycle (duration τc) and the bottom panel the
resulting modulating function f .

frame of reference [6], the free evolution Hamiltonian is
Ĥf = ĤSE + ĤE , where ĤE is the environment Hamil-
tonian and ĤSE = bSEŜzÊ, is a general pure dephasing
system-environment (SE) interaction. Ê is some operator
of the environment and bSE the SE coupling strength. This
type of interaction is encountered in a wide range of solid-
state spin systems, as for example nuclear spin systems in
NMR [4, 5, 17, 19], electron spins in diamonds [18], elec-
tron spins in quantum dots [25], donors in silicon [26], etc.

We consider the application of a sequence of short,
strong pulses that invert the probe qubit [7, 12]. As shown
in Fig. 1, we assume N instantaneous pulses at times
ti, with delays τi = ti − ti−1 between the pulses for
i = 2, .., N + 1 and τ1 = t1 − t0, where t0 = 0 and
tN+1 = τc.

While such a sequence can refocus a static system-
environment interaction completely, any time-dependence
reduces its efficiency. We calculate the remaining de-
cay rate for the case where the environment can be well
described by a stochastic noise. This results are also
valid for a quantum second order approximation of the
time-dependent SE interaction [6]. We now eliminate the
environment-Hamiltonian ĤE by using an interaction rep-
resentation with respect to the evolution of the isolated en-
vironment. The system-environment Hamiltonian then be-
comes

Ĥ(E)
SE (t) = bSEŜze

−iĤEtÊeiĤEt. (1)

Since ĤE does not commute with ĤSE , the effective
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system-environment interaction Ĥ(E)
SE is time-dependent

and the system experiences a fluctuating coupling with
the environment.Tracing over the bath variables replaces
bSEe

−iĤEtÊeiĤEt by the stochastic function bSEE(t).
For simplicity we assume that this random field has a Gaus-
sian distribution with zero average, 〈E(t)〉 = 0. The auto-
correlation function is 〈E(t)E(t+ τ)〉 = g (τ) and the
spectral density S(ω) of the system-bath interaction is the
Fourier transform of b2

SEg (τ).
The free evolution operator for a given realization of

the random noise is exp
{
−iφ(t)Ŝz

}
, where φ(t) =

bSE
∫ t

0
dt1E(t1) is the phase accumulated by the probe

spin during the evolution. Considering now the effect
of the pulses, they generate reversals of ĤSE(t). If the
pulses are applied during the interval τc as described above,
the accumulated phase after M cycles φ(Mτc) becomes
φ(Mτc) = bSE

∫Mτc
0

dt′fN(t′,Mτc)E(t′), where the
modulating function fN(τ ′,Mτc) switches between±1 at
the position of every pulse [21]. This is depicted in Fig.
1. It was shown that if the initial state of the probe spin is
ρ̂0 = Ŝx,y, its normalized magnetization under the effects
of DD taking the average over the random fluctuations is
〈sx,y(t)〉 = e−

1
2〈φ2(t)〉, and its decay can be quantified by

the exponential’s argument 1
2
〈φ2(t)〉

R(t)t =

√
2π

2

∫ ∞
−∞

dωS(ω) |FN(ω,Mτc)|2 , (2)

where FN(ω,Mτc) is the Fourier transform of
fN(t′,Mτc) [21]. The decay function R(t)t is thus
equal to the product of the spectral density S(ω) of
the system-environment coupling and the filter trans-
fer function FN(ω,Mτc). Examples of this filter
function are shown in Fig. 2a for a CPMG sequence
(τ2 = 2τ1 = 2τ3 = τ ) [4, 5] with M = 1 and M = 40.
We have recently shown that considering the infinite
extension of the modulating function, fN(t′,∞), by a
convolution this provides a FN(ω,Mτc) that is a sum
of sinc functions centered at the harmonic frequencies
kω0 = 2πk/τc of the Fourier series of fN(t′,∞) [19].
As schematized in Fig. 2a, the maxima of the filter
function |FN(ω,Mτc)| at ω = 2πk/τc have amplitudes
given by the filter function FN(ω, τc) of a single cycle.
Between two harmonics are (M − 2) secondary maxima.
Their amplitudes with respect to the relevant harmonic
fall off ∝ M−1 [19]. Hence for t = Mτc � τB , the
filter function |FN(ω, τM)| becomes an almost discrete
spectrum given by the Fourier transform of fN(t′,∞), i.e.
F (ω, t) is represented by a series of δ-functions centered
at kω0 neglecting the contributions from the secondary
maxima [In Eq. (2), |FN |2 appears]. This is shown by the
circles in Fig. 2a. Thus, the decay is exponential with a
constant rate

R =
∞∑
k=1

A2
kS (kω0) , (3)
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Figure 2: (Color online) (a) The filter function of a CPMG se-
quence for M = 1 (black curve) and M = 40 (red curve).
The green line shows a Gaussian spectral density which can be
probe at the DD harmonics frequencies marked by circles. (b)
Filter functions for CPMG sequences with different pulse delays
τ = 2π/(nωmin).
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Figure 3: (Color online) Experimental signal decays of the probe
spin as a function of the evolution time under CPMG dynamical
decoupling. Different curves correspond to different pulse de-
lays. The straight lines represent exponential fits.

with A2
k =

√
2π
τ2
c
|FN (kω0, τc)|2, where for a CPMG se-

quence Ak ∝ 1/k for odd k and 0 otherwise. This is
the basis for the DD noise spectroscopy methodology pre-
sented in this letter. Examples of the probe spin signal de-
cay are shown in Fig. 3.

Noise spectroscopy.— Assuming for the moment that the
sum in Eq. (3) collapses to the k = 1 term, we can clearly
trace out the bath spectral density by varying the delay be-
tween the pulses [10]. However, for real DD sequences,
we always have an infinite series, where all harmonics con-
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tribute to the decay rate with the weight Ak. Determining
the spectral density function therefore requires the inver-
sion of Eq. (3). The main difficulty here is that a single
measurement depends on an infinite number of unknown
spectral density values. We solve this problem by a two-
step procedure: in the first step, we combine m measure-
ments with different pulse delays, which we choose such
that they probe the spectral density function at a discrete
set of harmonic frequencies with different sensitivity am-
plitudesAk. In this step, we neglect contributions from the
tail of S(ω > mωmin). This yields a square matrix that
we can invert to obtain the values of S(jωmin), j = 1..m.
From the resulting spectral density function, we estimate
a functional form for the tail of the distribution and cor-
rect the data for the contributions from the tail. Inverting
the matrix again, with the corrected values, gives the final
spectral density distribution.

A natural choice for the probing sequence is the CPMG
or equidistant sequence, which has harmonics at frequen-
cies ω0 = π/τ (circles in Fig. 2a). To simplify inverting
equation (3), we choose the pulse delays in the different
measurements such that all relevant frequencies, including
all harmonics, are multiples of a minimal frequency ωmin.
We therefore start with a maximum delay τmax = π/ωmin,
which determines the frequency resolution with which we
probe the spectral density function. If the maximum fre-
quency at which we want to probe the spectral density func-
tion directly is mωmin, then we need to apply sequences
with delays τn = τmax/n = τminm/n. Figure 2b shows
the relevant filter functions for the first ten sequences. If
we neglect the contribution from frequencies > mωmin,
the relaxation rates Rn for the different experiments are
given by a system of m linear equations

Rn =

[m/n]∑
k=1

A2
kS(nkωmin) =

m∑
j=1

UnjSj, (4)

where [m/n] denotes the integer part ofm/n and j = nk.
The elements A2

k form an upper triangular matrix Unj =∑[m/n]
k=1 A2

kδj,nk, and Sj = S(jωmin) represent the un-
known spectral density values, which can formally be cal-
culated as Sj =

∑m
n=1 (U−1)jnRn

We now correct for the omitted contributions from the
high-frequency tail of the infinite sum by approximating it
with a suitable functional form, which depends on the sys-
tem being studied. Typical examples include a power law
decay, lorentzian or gaussian decay, or a sudden cut off like
in an ohmic bath. In the system that we used as an exam-
ple (see below), the experimental data can be approximated
very well by a power law dependence, as shown in Fig. 4.

If the tail satisfies a power law Sj = C
jα

for j > np, then

Rn>np =
∞∑
k=1

A2
kC

(nk)
α =

C

nα

∞∑
k=1

A2
k

kα
=
CΛα

nα
. (5)
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Figure 4: (Color online) Experimental relaxation times of the
probe spin under the application of CPMG (blue squares) and
KDD (red circles) sequences. The black solid line represents a
power law fitting to the CPMG data and the green dotted line the
asymptotic free evolution decay rate. The black dashed line is a
fitting to the KDD data with an expression (R13C + C′τα)−1,
where α = 3.0 ± 0.1 and R13C = (74± 1) µs−1 represents the
13C-13C relaxation rate.

This relation is represented by the black solid line in Fig.
4. We can now modify Eq. (4) adding the neglected terms
and then the relaxation rates satisfy

Rn =
m∑
j=1

UnjSj +

(
ΛαC

nα
−

m∑
j=1

Unj
C

jα

)
,

where
(

ΛαC
nα
−
∑m

j=1 Unj
C
jα

)
= C

nα

∑
k>m−n+1

A2
k

kα
rep-

resents the effective spectral density summing the con-
tribution from all harmonics k > m − n + 1.
The spectral density is now determined from Sj =∑m

n=1 (U−1)jn
(
Rn − ΛαC

nα

)
+ C

jα
.

Experimental determination of S(ω).— For the exper-
imental test, we chose 13C nuclear spins (S = 1/2) as
probe qubits. We used polycrystalline adamantane where
the carbon nuclear spins are coupled to an environment of
1H nuclear spins (I = 1/2) that act as a spin-bath. The
natural abundance of the 13C nuclei is about 1%, and to a
good approximation each 13C nuclear spin is surrounded
by about 150 1H nuclear spins. The interaction with the
environment is thus dominated by the 13C-1H magnetic
dipole coupling [6]. To determine the bath spectral density
we applied the equidistant sequences CPMG and KDD [20]
to the probe spin for different delays between pulses τn =
τmax/n, with n = 1..40 and τmax = 2ms. For CPMG,
we chose an initial state longitudinal to the pulses because
then pulse error effects can be neglected [5, 17]. Figure 3
shows examples of the 13C signal decays. The lines in the
figure show the fitted exponential decays, which agree very
well with the data points in this range. This demonstrates
that we are in the regime where the filter functions are dis-
crete. KDD was shown to be robust against pulse errors,
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independent of the initial condition [20]. For ideal pulses,
both sequences have the same filter function. As shown in
Fig. 4 the observed relaxation times for this system depend
on the pulse spacing like ∝ τ−3 for the CPMG sequence
over the range τ =[50µs, 110µs]. We only used the data
points for τ > 50µs to determine the parameters C and α,
since Fig. 4 indicates that other processes contribute to the
relaxation at shorter delays. From the fitting process, we
found α = 3.01±0.05 and Λα ≈ 1.004. Thus, the contri-
bution of the infinite series is only 4 · 10−3 and thus almost
negligible. Figure 4 also shows that the dependence of the
decoherence rates changes at τ & 100µs. This agrees with
the value that we determined earlier for the correlation time
of the bath [17].

We observe in the KDD case that the relaxation time sat-
urates for τ shorter than 50µs and in general is lower than
the CPMG cases (Fig. 4). This difference can be attributed
to the effect of 13C-13C couplings. Because in the CPMG
sequence all pulses generate the same rotation, the over-
all effect of the pulse cycle is to first order equivalent to
a constant effective field, which stabilizes the observable
magnetization against the effect of 13C-13C couplings [27].
In the KDD case, the state is not longitudinal to the pulses
and no spin-lock effect is observed. The saturation of the
relaxation time for the CPMG case for τ < 50µs can be
attributed to the finite rf field strength or, equivalently, to
the finite duration of the pulses. Pulse errors may also con-
tribute in this regime.

Because in the KDD case, the 13C-13C interaction
eclipses the spectral density of the proton bath, assum-
ing a 13C-13C relaxation rate independent of the pulse
delays we fit an expression (R13C + C ′τα)−1 over the
range [50µs, 110µs] where the CPMG data behave as a
power law (dashed line in Fig 4). We obtained R13C =
(74± 1) µs−1 for the 13C-13C relaxation rate and α =
3.0 ± 0.1 which perfectly matches with the CPMG result.
If we subtract theR13C contribution, we obtain the spectral
density represented by the empty circles in Fig. 5, which
are almost identical to the result obtained with the CPMG
sequence (solid squares). For shorter τ in the KDD case,
the relaxation time starts to increase faster because of the
effective spin lock generated by the composite Knill pulses
that constitute the KDD sequence [20].

Conclusions.— We have developed a method to deter-
mine the noise spectral density generated by a bath. It is
based on modulating the system-environment interaction
by applying sequences of inversion pulses to the system. If
the sequence consists of many repetitions of a basic cy-
cle, the resulting decays are exponentials and the decay
rates are given by the spectral density at discrete frequen-
cies. This allows one to build a linear system of equations
that can be inverted to obtain the unknown spectral den-
sity function. We applied the method to obtain the spectral
density of the 13C- 1H interaction in adamantane. Apply-
ing this method to other systems will help fighting deco-
herence, e.g. by optimizing DD sequences by reducing the
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Figure 5: (Color online) Experimentally determined noise spec-
tral density. The inset shows in a linear scale the low frequency
regime. The green dotted line represents the free evolution decay
rate of the probe spin, i.e. S(0).

overlap of their filter functions with the noise spectral den-
sity [14, 15, 21–24].
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