
GEOMETRY OF THE HOMOLOGY CURVE COMPLEX

INGRID IRMER

Abstract. Suppose S is a closed, oriented surface of genus g ≥ 2.
This paper investigates the geometry of the “homology multic-
urve complex”, HC(S, α), of S; a complex closely related to com-
plexes studied by Bestvina-Bux-Margalit and Hatcher. A path in
HC(S, α) corresponds to a homotopy class of immersed surfaces in
S×I. This observation is used to devise a simple algorithm for con-
structing quasi-geodesics connecting any two vertices in HC(S, α).
It is proven that for g ≥ 3 the best possible bound on the distance
between two vertices in HC(S, α) depends linearly on their inter-
section number, in contrast to the logarithmic bound obtained in
the standard curve complex. For g ≥ 4 it is shown that HC(S, α)
is not δ-hyperbolic.

1. Introduction

Suppose S is a closed oriented surface with genus g ≥ 2. A curve c
in S is a piecewise smooth, injective map of S1 into S that is not null
homotopic. A multicurve is a union of pairwise disjoint curves on S.
When convenient, a curve is confused with its image in S.

Fix a nontrivial element α of H1(S,Z). The homology curve complex,
HC(S, α), is a simplicial complex whose vertex set is the set of all
isotopy classes of oriented multicurves in S in the homology class α.
A set of vertices m1...mk spans a simplex if the representatives of the
isotopy classes can all be chosen to be disjoint.

The distance, dH(v1, v2), between two vertices v1 and v2 is defined to
be the distance in the path metric of the one-skeleton, where all edges
have length one.

The Torelli group is the subgroup of the mapping class group that
acts trivially on homology. HC(S, α) is closely related to a complex
defined in [1] that was used for calculating cohomological properties of
the Torelli group.

Metric properties of curve complexes have been used for example for
studying mapping class groups and the structure of 3-manifolds, for
example [4], [14] and [9]. The aim of this paper is to study some basic
geometric properties of HC(S, α).
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In [13] and [2] it was shown that the standard curve complex, C(S),
is δ-hyperbolic. In contrast, in section 6 it will be shown that

Theorem. For g > 3 and α 6= 0, HC(S, α) is not δ-hyperbolic.

It is also well known (for example [12]) that in C(S), the distance
between two vertices representing the curves a and b is less than or
equal to log2(i(a, b)) + 1. However, in section 6 it will be shown that

Theorem. dH(m1,m2) ≤ i(m1,m2)
2

+1, where i(m1,m2) is the geometric
intersection number. This bound is sharp.

An edge in HC(S, α) connecting two vertices representing the multi-
curves γi and γi+1 is called simple if γ1+1− γi is the oriented boundary
of an embedded subsurface of S. A simple path is a path that only tra-
verses simple edges. In proposition 3 an algorithm for constructing sim-
ple paths (hereafter referred to as the “path construction algorithm”)
is given.

Let I be a closed interval. In section 2.1 a path in HC(S, α) con-
necting the vertices representing m1 and m2 is shown to correspond
to an oriented, immersed surface H in S × I with ∂H homotopic to
the multicurves m2 −m1 in S × 0. The geometry of HC(S, α) is thus
related to the topology of surfaces in S × I. In a later paper it will
be shown that, modulo a uniformly bounded multiplicative constant,
the distance between two vertices in HC(S, α) representing the multic-
urves m1 and m2 is equal to the smallest possible genus of an orientable
surface in S × I with boundary m2 − m1. In order to show that the
path construction algorithm is optimal in some sense, the geometry of
HC(S, α) is related to the topology of immersed surfaces in S × I by
defining two functions from Sr(m1 ∪m2)→ Z: the “overlap” and the
“pre-image function”. These functions will now be briefly described.

Intersection numbers. There are two types of intersection num-
bers used in this work. The intersection number, also known as the geo-
metric intersection number, is denoted by i(m1,m2), and the algebraic

intersection number by î(m1,m2). The algebraic intersection number
of an oriented arc a with an oriented representative m1 of the isotopy
class [m1] is also written as î(a,m1). Multicurves in S× I and their in-
tersections with other multicurves are defined by projecting onto S×0.

Let π be the projection of S×I onto S×0 given by (s, r) 7→ s×0. In-
formally, given an oriented, immersed surface H in S×I, the pre-image
function, gH : S×0rπ(∂H)→ Z is given by gH(s) = î(π−1(s), H) (See
Section 4 for a more precise definition). It is shown that, modulo an
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additive constant, the pre-image function does not depend on H but
only on its boundary (lemma 4).

The overlap function, and the homological distance. The
overlap f of two homologous multicurves m1 and m2 is the locally
constant, upper semicontinuous function defined on S with minimum
value zero and such that, for any two points x and y in Sr(m1 ∪m2),
f(x)−f(y) is the algebraic intersection number of m2−m1 with an ori-
ented arc with starting point y and endpoint x. The overlap of a null
homologous multicurve n with itself is defined analogously. f is not
dependent on the choice of oriented arc, because the algebraic intersec-
tion number of any closed loop with m2−m1 is zero. The overlap does
however depend on the choice of representatives of the isotopy classes
[m1] and [m2]. It will be assumed that the representatives of the free
homotopy classes are chosen so that the maximum, M , of f is as small
as possible. M will be called the homological distance, δ(m1,m2), be-
tween m1 and m2.

If H is a surface constructed from a simple path connecting m1 and
m2, as described in subsection 2.1, the relation between gH and the
overlap of m1 and m2 shown in lemma 6 is used to show that the path
construction algorithm constructs the shortest possible simple paths.

Theorem 7. Let m1 and m2 be two multicurves corresponding to
vertices of HC(S, α). Then the shortest simple path connecting the
vertices has length equal to δ(m1,m2). Recall that by definition α is
non trivial.

The path construction algorithm is similar to a construction in [8]
for showing contractibility of the cyclic cycle complex, and can also be
used to construct paths in this complex. It will be shown in corollary 8
that the paths so constructed in the cyclic cycle complex are geodesics.

A nice property of the path construction algorithm is that, as shown
in theorem 3, it constructs the same unoriented path from m1 to m2

as from m2 to m1.

One reason for being interested in simple paths is that they are a
simple means of estimating distance.
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Theorem 9. If m1 and m2 do not contain null homologous submul-
ticurves or homotopic curves, d(m1,m2) < −3χ(S)δ(m1,m2).

1.1. The Case α = 0. The case in which α is allowed to be null
homologous is quite different. For example, in this case the complex
admits an action of the full mapping class group, and when alpha is
nontrivial, it does not. In the latter case, the natural group that acts
is the subgroup of the mapping class group preserving alpha. Various
complexes of null homologous (multi)curves, have been studied, for
example the complex of separating curves and the Torelli geometry.
Some of the methods discussed in this paper generalise, however the
main problem seems to be that performing surgeries on null homologous
multicurves could give trivial curves.

Acknowledgements. I would like to thank Ursula Hamenstädt for
her supervision of this project. Also, without the advice and enthusi-
asm of many people, the writing of this paper could have dragged on
into infinity. Thanks to Joan Birman, Benson Farb, Andrew Putman
and Kasra Rafi. I am particularly grateful to Dan Margalit for his
patience in teaching me how to write papers, and to Alan Hatcher for
his detailed comments and improvements.

2. Simple Paths

The notion of a “simple path” is introduced in order to be able to
perform counting arguments that relate surfaces in S × I to paths in
HC(S, α).

If n bounds an embedded subsurface of S, the union of the compo-
nents of Srn whose boundary orientation coincides with the orienta-
tion of n will be called the subsurface of S bounded by n.

Figure 1. An edge that is not simple. The multicurve
drawn in grey represents one vertex and the multicurve
drawn in black represents the other.
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The next lemma is used to decompose null homologous multicurves
up into boundaries of subsurfaces, i.e. given a path in HC(S, α), a sim-
ple path can easily be obtained by adding more edges where necessary.

Lemma 1. If a null homologous multicurve n does not contain a non-
trivial null homologous submulticurve, it bounds a subsurface of S.

Proof. Consider the subsurface of S on which the overlap function of n
has its maximum. This boundary is a null homologous submulticurve
of n. By assumption on n it must be all of n.

�

Corollary 2. Every path in HC(S, α) can be made simple by adding
extra vertices where necessary.

Proof. Suppose m1 and m2 are connected by an edge that is not simple.
By the previous lemma, m2−m1 can be decomposed into k null homol-
ogous submulticurves n1, n2, ...nk, each of which bounds a aubsurface
of S. Then a simple path connecting m1 and m2 is determined by the
vertices m1,m1− n1,m1− n1− n2, ...m1− n1− n2− ...− nk−1,m2. �

2.1. Constructing an Immersed Surface in S × I from a Path
in HC(S, α). All curves, surfaces, and manifolds discussed here are
assumed to be piecewise smooth.

Suppose γ is a simple path in HC(S, α) passing through the vertices
corresponding to the multicurves γ0, γ1, ...γj. A surface Tγ contained in
S × j is constructed inductively. Given γ0, isotope γ1 such that there
is a subsurface S1 of S with boundary γ1 − γ0. Let T1 be the surface
in S × [0, 1] given by γ0 × [0, 1

2
] ∪ S1 × {12} ∪ γ1 × [1

2
, 1]. Next, isotope

γ2 so that there is a subsurface S2 of S with ∂S2 = γ2 − γ1 and let
T2 = γ1× [1, 3

2
]∪S2×{32}∪γ2× [3

2
, 2]. Repeat this successively for each

of the γi until an embedded surface Tγ = T1 ∪ T2 ∪ ... ∪ Tj in S × [0, j]
is obtained.

Tγ is called the trace of the path γ. Note that the trace of a path
depends on the orientation on S.

Remark Similarly, if γ0, γ1, ...γj is not simple, it can be used to
construct a cell complex with boundary γj − γ0. It is not difficult to
show that such cell complexes are homotopic to immersed surfaces in
S × [0, j].

2.2. Extrema of f . In order to construct paths in HC(S, α), it is
necessary to use some properties of the level sets, in particular the
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Horizontal Arc

f = x f = x+ 1 f = x

Vertical Arc

f = x f = x+ 1 f = x

Figure 2. When the overlap f is thought of as a height
function, a horizontal arc is horizontal with respect to f ,
and a vertical arc vertical.

local extrema, of f . These are used to define the surgeries used in the
path construction algorithm.

Given an oriented multicurve a with a regular neighbourhood N (a)
and an orientation on S, the left and right component of Nra can be
defined. If b is an oriented multicurve that intersects a transversely at
a point p, it therefore makes sense to say that b crosses over a from
left to right (or right to left) at p. Similarly, if b is an oriented arc with
an endpoint on a, a notion in which b leaves or approaches a from the
left or right can be defined.

Given two multicurves a and b on an oriented surface S, a horizontal
arc of a is a component of a∩ (Srb) that leaves and approaches b from
the same side. A vertical arc of a∩(Srb) leaves and approaches b from
opposite sides. An “innermost” arc in [8] is an example of a horizontal
arc. Horizontal arcs are used to perform surgeries.

If a horizontal arc of a ∩ (Srb) leaves and approaches b from the
right, then this arc is to the right of b and vice versa.

Suppose a and b are multicurves in S in general position. Two arcs
of a∩ (Srb) will be called homotopic if they are homotopic relative to
b. Two oriented arcs will be said to be homotopic and oriented in the
same way if one can be homotoped into the other in such a way that
the orientations coincide.

It is not difficult to see that “verticalness” and “horizontalness” are
properties of homotopy classes of arcs. Also, if Sr(a ∪ b) does not
contain any bigons, a horizontal arc of a∩ (Srb) to the right of b can’t
be homotopic to a horizontal arc of a ∩ (Srb) to the left of b, and an
oriented arc of a ∩ (Srb) is not homotopic to itself with the opposite
orientation.
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m1

m2
fmax

fmax

Figure 3. Examples of fmax.

Given m1 and m2, the overlap is bounded and has a maximum. Call
the subsurface of S on which f takes on its maximum fmax. fmax has
at least one connected component. The boundary of fmax consists of
arcs of m1 and m2 such that fmax is to the right of any arc of m1 on
its boundary and to the left of any arc of m2 on its boundary. In other
words, the boundary of fmax is a null homologous multicurve made up
of horizontal arcs of m1 to the left of m2 and horizontal arcs of m2 to
the right of m1.

Similarly, the subsurface of S, fmin, on which f takes on its minimal
value is disjoint from fmax and is on the left of any arc of m1 on its
boundary and to the right of any arc of m2 on its boundary.

2.3. Minimising Overlap. A difficulty is that vertices of HC(S, α)
are only defined up to isotopy, whereas some of the quantities, such
as overlap, used to describe distance also depend on the representative
of the homotopy classes. For this reason it is necessary to work with
representatives of the free homotopy class that minimise the overlap.

Two multicurves m1 and m2 will be said to be in minimal position
if

• m1 and m2 are in general position
• the number of times m1 intersects m2 is equal to i(m1,m2), and
• whenever m2−m1 contains homotopic curves, these homotopic

curves are positioned in such a way that f is minimised. An
example is illustrated in figure 4.
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1
0

1

0

1
0

m2

3

21
0

1 2

m1

Figure 4. On the left, m1 and m2 are not in minimal
position, because the overlap could be made smaller, as
shown on the right.

R

a

Figure 5. Surgering a multicurve along a horizontal arc.

3. A path constructing algorithm

In this section an algorithm for constructing a simple pathm1, γ1, γ2, ...m2

of length δ(m1,m2) will be constructed.
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m2

m1

γ1

fmax

Figure 6. How to construct γ1

A basic surgery construction. Let R be an oriented embedded
rectangle in S whose interior is contained in Sr(a ∪ b). Suppose that
one side of R lies along the arc ai, the opposite side is homotopic to
ai with opposite orientation, and the two remaining sides are subarcs
b1 and b2 of b, as shown in figure 3. Since ai is a horizontal arc, it is
possible to choose R such that the orientation of R induces an orienta-
tion on the arcs b1 and b2 on its boundary opposite to the orientation
of b1 and b2 as subarcs of b. Surgering an oriented multicurve b along
a horizontal arc ai of a ∩ (Srb) involves adding ∂R to b as a chain.
The arcs b1 and b2 on the boundary of R cancel out subarcs of b and
are replaced by the arcs ai and −ai. Since ∂R is null homologous, the
resulting multicurve is homologous to b.

Recall that the boundary of fmax is oriented in such a way that fmax
is on its left, and let a1, a2... be the arcs of m2 on ∂fmax, b1, b2, ... be the
arcs of m1 on ∂fmax. Then ∂fmax =

∑
i ai−

∑
j bj (arcs are chains, and

so they can be added and subtracted). Consider the one dimensional
cell complex m1 ∪ m2 on S. Subtract the oriented arcs bi from the
oriented subcomplex m1 and add the oriented arcs aj. This defines γ1.
Subtracting the arcs bi from m1 and adding the arcs aj will be called
performing the surgery or surgeries corresponding to fmax, depending
on the number of connected components of fmax. Up to free homotopy
on the boundary, fmax can be thought of as “that piece of S that is
bounded by m1 and γ1”.
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f = x

f = x+ 1

f = x+ 2

m2

m1

f = x+ 1

Figure 7. A point of intersection forces the overlap to
have maximum at least two.

∂fmax is disjoint from m1 and each connected component of fmax
intersects an annular neighbourhood of m1 on the right side of m1

(i.e. every component of fmax is “on the same side” of m1). Therefore
i(γ1,m1) = 0.
γ1 might contain trivial curves that bound disks, and might not be

in minimal position with m2. This point is ignored at the moment, and
only once all the multicurves γi are constructed are the trivial curves
discarded. It follows from the arguments in lemma 6 that despite trivial
curves and nonminimal position, none of surgery steps are trivial, i.e.
γi+1 is never isotopic to γi.

The multicurve γ2 is constructed in the same way as γ1 only with
the multicurve m1 replaced by γ1. It is not difficult to see that the
overlap, f1, of γ1 and m2 is one less than the overlap of m1 and m2.
Cutting out the arcs bi make it possible to connect the subsurface of S,
f1min, on which f1 takes on its minimum, to f1max (defined similarly),
by an arc that crosses m2− γ1 from right to left once less than any arc
connecting fmin with fmax. In other words, δ(γ1,m2) = δ(m1,m2)− 1.

This process ends with the multicurve γj when δ(γj,m2) = 1. This
can only be happen if γj and m2 don’t intersect, because as shown in
figure 7, an intersection forces the maximum of fj to be at least two.

If δ(γj,m2) = 1, then the subsurface of S on which fj = 1 is the
subsurface bounded by m2 − γj.
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This completes the construction of the promised algorithm. A sim-
ple path constructed in this way will be called a topdown path, and the
algorithm itself will be referred to as the path construction algorithm.

The choice to use fmax instead of fmin was arbitrary, but it is not
possible to simultaneously reduce the intersection number further at
each step by requiring that the subsurface of S bounded by γ1 and m1

be fmax∪ fmin because fmin is to the left of m1 and fmax is to the right
of m1, so this would not give a simple path.

3.1. Path Construction in the Cyclic Cycle Complex. The Cyclic
Cycle Complex CC(S) from [8] is the simplicial complex whose vertices
are the isotopy classes of oriented, reduced multicurves, where a mul-
ticurve m is said to be reduced if it does not contain a submulticurve
that bounds a complementary region of m in S (using either orienta-
tion of the region). A set of k + 1 vertices spans a simplex in CC(S) if
these vertices are represented by disjoint multicurves m0, m1, m2...mk

that cut S into k+ 1 embedded subsurfaces E0, E1,...Ek such that the
oriented boundary of Ei is mi+1 −mi. In particular, all edges are by
definition simple.

It follows that each connected component of CC(S) represents multi-
curves in a fixed homology class. Every connected component of CC(S)
can therefore be embedded in a HC(S, α) for appropriate α.

The path construction algorithm can be easily modified to construct
paths in CC(S). This involves removing all null homologous submul-
ticurves that are forbidden by the definition. It is therefore necessary
to check that this can be done without violating the condition that a
path in CC(S) has to satisfy. In particular, if a null homologous sub-
multicurve n is to be removed from γi+1, it is necessary to check that
there is a subsurface N of S (with either orientation) with ∂N = n and
such that N is disjoint from the subsurface of S bounded by γi+1 − γi.

Suppose γi+1 contains a forbidden null homologous submulticurve b1
i.e. ±b1 bounds a subsurface B of S, where γi+1 − γi is contained in
SrB. Whenever this happens, by construction fimax and γi+1−γi have
to be to the left of b1. Also, whenever γi does not contain a forbidden
null homologous submulticurve, it follows from the arguments given in
the proof of theorem 9 that γi+1 can’t contain a second null homologous
submulticurve b2 that lies between b1 and the other curves in γi+1− γi.
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b1 can therefore be capped off from the right by a subsurface disjoint
from fimax. That this path is a geodesic follows from theorem 7.

More General Position. When proving theorems about simple
paths, it is convenient to work with multicurves in S that are not
in general position. Representatives of the homotopy classes can be
chosen to make the intuitive picture of fmax clearer. Suppose m1 and
m2 are in minimal position. Choose the representatives γi+1 and γi of
[γi+1] and [γi] such that γi+1 − γi = ∂fimax. The boundary of fimax is
an embedded subcomplex of the one dimensional cell complex m2∪m1

for every i, and has zero intersection number with γi and γi+1. γi+1

is obtained from γi by subtracting the arcs of γi ∩ (Srm2) on ∂fimax
and adding the arcs of m2∩ (Srγi) on ∂fimax. Also, no arc of m2∩m1

will be on the boundary of fimax for more than one i, so each arc can
only be added or subtracted at most once. Each of the multicurves
γi is therefore an oriented subcomplex of m1 ∪ m2. From figure 7, it
is easy to verify that fimax can not meet itself at a vertex, because
if four components of Sr(γi ∪ γk) come together at a point and f is
equal on two of them, it must be larger on a third component and
smaller on the fourth. Therefore, if γi doesn’t meet or cross over itself
at a vertex, neither will γi+1. The γi chosen in this way are therefore
also embedded. The main advantage of doing this is that the overlap
functions f, f1, f2... are related in an obvious way. In section 6 it will be
shown that there does not always exist tight geodesic paths, so geodesic
paths can’t in general be constructed by adding and subtracting arcs
within the cell complex m1 ∪m2.

A nice property of the path construction algorithm is that it con-
structs the same path in reverse.

Theorem 3. If m1 and m2 had been interchanged in the path construc-
tion algorithm, the same unoriented path would have been obtained.

Proof. Suppose the representatives m1, γ1, ...γj,m2 of the free homo-
topy classes [m1], [γ1], ...[γj], [m2] are chosen as outlined in the previous
paragraph. In particular, each of the γi are oriented subcomplexes of
the cell complex m1 ∪ m2 such that γi+1 − γi is the boundary of the
subsurface of f on which f is no less than its maximum value minus
i. Let h be the overlap of m1 − m2. It is easy to check that h has
its maximum where the overlap f of m2 − m1 has its minimum, and
vice versa. By definition, γj is the multicurve chosen such that m2−γj
bounds the subsurface of S given by Srfmin. In other words, γj −m2

is the boundary of fmin or hmax, i.e. γj satisfies the definition of the
first multicurve in the path m2, ...m1. Similarly for γj−1, γj−2, etc.
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�

4. The Overlap Function and the Pre-image Function

Let H be an oriented, immersed surface H in S × I with π(∂H) =
m2 −m1. In this section, theorem 7 is proven by relating the overlap
of ∂H to the pre-image function gH .

The pre-image function gH : S×0rπ(∂H)→ Z is defined as follows:
Suppose P := S × I and ∂P is decomposed into the union of two
subsurfaces A and B, where A is a neighbourhood in ∂P of ∂H and
B is the closure of PrA. Algebraic intersection number provides a
map H2(P,A) × H1(P,B) 7→ Z. For x in (S × 0) ∩ B, gH(x) is equal
to the algebraic intersection number of [H] with the class in H1(P,B)
represented by the arc {x} × I. Since this definition works for any
choice of A, gH(x) is defined for all x in (S × 0)rπ(∂H).

Lemma 4. Given any two oriented, immersed surfaces H1 and H2 with
∂H1 = ∂H2 = m2 −m1, there is a constant integer c such that for all
s ∈ (S × 0)r(m2 −m1), gH1 = gH2 + c.

Proof. Clearly, gH1 and gH2 both increase by one when crossing over an
arc of m2−m1 from right to left. This lemma is proven by showing that
gH1 and gH2 can’t change anywhere else. Suppose {y}×I is homologous
to {x} × I relative to B, using the same notation as in the definition
of the pre-image function. In other words, y and x are in the same
component of (S × 0)r(m2 − m1). Then gH1(x) = gH2(y), i.e. gH1

is constant on each component of Sr(m2 −m1). The same argument
applies to gH2 , from which the lemma follows.

�

Two surfaces F1 and F2 in S× I with boundary m2−m1 are defined
to be homotopic if they are homotopic as surfaces with boundaries
contained in m1 × I ∪m2 × I. Suppose m2 −m1 is a multicurve that
bounds a subsurface of S and H is any orientable surface in S× I with
boundary m2 − m1. It follows from the previous lemma that gH has
to be constant on any component of S × 0r(m2 −m1). From this it
follows that if H has smallest possible genus, it has to be homotopic
to a subsurface of S × 0.

Corollary 5 (Corollary of lemma 4). Suppose that m2−m1 is a multic-
urve, where m1 and m2 are homologous multicurves in S×0. Then any
orientable surface in S×I with smallest possible genus whose boundary
is homotopic to m2−m1 has to be homotopic to a subsurface of S × 0.
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Figure 8. Points of intersection that could be removed
by a homotopy.

Lemma 6. Given m1 and m2, let γ be the topdown path connecting
m1 and m2, and let Tγ be its trace. Then the overlap of m1 and m2 is
equal to gTγ .

Proof. The reason this is not immediately clear is that the multicurve
γi+1, obtained from γi and m2 by performing the surgery corresponding
to fimax, might contain curves that bound disks or points of intersection
with m2 that can be removed by a homotopy. The overlap fi+1 depends
on the representative of the free homotopy class [γi+1]. In order to
define fi+1, it was assumed that the multicurves γi+1 and m2 were in
minimal position.

Whenever a and b are multicurves that are not in general position,
i.e. a and b coincide along some subarc or point, this subarc or point
will be counted as a (single) point of intersection if b crosses from one
side of a to the other. If b does not cross over a this is not counted as
an intersection.

Let Rai be the rectangle in S consisting of the closure of the union
of rectangles in Sr(m1 ∪ m2), each of which have two opposite sides
made up of arcs of m2∩(Srm1) in the homotopy class ai, where each of
the a1...an are homotopy classes of arcs with representatives on ∂fmax.
Let R := Ra1 ∪ Ra2 ∪ ...Ran , and γ

′
1 be the multicurve homotopic to

γ1 constructed such that γ
′
1 coincides with m1 outside of R and is a

representative of the homotopy class with the smallest possible number
of points of intersection with m2, according to the definition in the
previous paragraph. γ

′
1−m1 therefore bounds the subsurface fmax ∪R

of S.
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m1
m2
γ1
γ

′
1

r
R

Figure 9. γ1, γ
′
1, R and r.

Let f1 be the overlap of γ1 and m2, and let f
′
1 be the overlap of γ

′
1

and m2. γ1 and −γ′
1 bound the subsurface R of S. For a point s ∈ S,

(1) f1(s) =

{
f

′
1(s) + 1 if s ∈ the interior of R,

f
′
1(s) otherwise.

In other words, the homotopy that takes γ1 to γ
′
1 reduces the overlap

by one on the subsurface R and enlarges the subsurface of S bounded
by γ1−m1 to obtain the subsurface of S bounded by γ

′
1−m1, fmax∪R.

Any components of Sr(m1 ∪m2) with one edge along fmax are con-
tained in f1max, and since these components aren’t all contained in R,
it follows that f1 has the same maximum as f

′
1. f1max is the union of

f
′
1max with a union r of rectangles of Sr(m1 ∪m2) in R, as shown in

figure 9. The surgeries of γ1 corresponding to rectangles in r reduce
the number of points of intersection with m2. Homotoping γ1 to γ

′
1

has the same effect as performing the surgery corresponding to each
rectangle in R and discarding contractible curves. If r is not the whole
of R, when passing from γ2 to γ3, surgeries corresponding to further
rectangles in R are performed. This is continued until for large enough
i, fimax contains all of R and γi+1 has no points of intersection with m2

on ∂R. If γ1 is used in place of γ
′
1 to construct γ2, the same multicurve

will therefore be obtained up to homotopy, despite the fact that γ1 and
m2 might not be in minimal position. The same argument applies for
all γi in place of γ1, from which the lemma follows.

�

It is now possible to give a proof of theorem 7.

Theorem 7. The shortest simple paths connecting m1 and m2 have
length δ(m1,m2).
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Proof. Suppose γ is a simple path connecting m1 and m2 of length less
than δ(m1,m2). Let Tγ be the the trace of γ. Then Tγ can be con-
structed by connecting up δ(m1,m2)− 1 or fewer pieces, each of which
projects one to one onto a subsurface of S × 0 with the induced sub-
surface orientation. By construction, gTγ is everywhere ≥ 0. It follows
from lemmas 4 and 6 that the maximum of gTγ minus the minimum

of gTγ is equal to δ(m1,m2), i.e î(π−1(s), H) ≥ δ(m1,m2) for some s.
This is a contradiction.

From the algortihm given in section 3 it is clear that this minimum
length path can always be achieved.

�

Corollary 8 (Corollary of Theorem 7 and Proposition 3.1). Suppose
m1 and m2 are two vertices in the Cyclic Cycle Complex. The distance
between these two vertices in this complex is equal to δ(m1,m2).

5. Distances and Simple Paths

Theorem 7 determines the length of the shortest simple paths con-
necting two vertices, however this has not yet been related to the dis-
tance between the vertices. There are two minor points that need
to be considered at this point. Firstly, if m1 contains a null ho-
mologous submulticurve b, m1rb has the same distance in HC(S, α)
from m2 as m1, but δ(m1,m2) could be larger. Secondly, if α is
not a primitive homology class, for example, if α is homologous to
nm1, δ(nm1, nm2) = nδ(m1,m2), but the distance between nm1 and
nm2 in HC(S, [nm1]) is equal to the distance between m1 and m2 in
HC(S, [m1]).

A path between two vertices will be called a quasi-geodesic (segment)
if it is a subpath of a quasi-geodesic. All quasi-geodesics considered
here are uniform quasi-geodesics, in the sense that, for any two vertices
v1 and v2 on the quasi-geodesic, the length of the quasi-geodesic seg-
ment jointing them is no more than kd(v1, v2), where k is a uniformly
bounded constant. Therefore, no distinction between quasi-geodesics
and quasi-geodesics segments is made.

Note that, since HC(S, α) is not δ-hyperbolic (in fact, it is not even
nonpositively curved), no geodesic stability should be expected. The
quasi-geodesics constructed here do not globally stay close to geodesics,
although they can be shown to be piecewise geodesic. Despite this,
families of geodesics connecting two vertices in HC(S, α) can be easily
described and constructed due to a high level of rigidity, however this
is the subject of a future paper.
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Theorem 9. If m1 and m2 do not contain null homologous submultic-
urves or homotopic curves, the path connecting m1 and m2 constructed
by the path construction algorithm is a quasi-geodesic, where the con-
stant in the definition of quasi-geodesic is less than −3χ(S).

Proof. In the path construction algorithm, the maximum of the overlap
was increased by one at each step. This decrease is due to discarding the
null homologous submulticurve ∂fmax that was created by the surgeries.
This theorem is proven by obtaining a bound on the decrease in the
maximum of the overlap at each step, by bounding the number of null
homologous submulticurves that can created (and therefore potentially
discarded) at each step.

It is implicit in the proof of proposition 3 that a path in HC(S, α)
between any two vertices can be constructed by surgering along hori-
zontal arcs and adding/discarding null homologous submulticurves. If
a multicurve m does not contain homotopic submulticurves, it follows
from the topological invariance of the Euler characteristic that there
exists a bound of −3χ(S) on the number of pairwise disjoint homotopy
classes (relative to m) of horizontal arcs with endpoints on m.

Firstly, a proof of the theorem is given in the case that there is a
geodesic path m1, γ1, γ2, ...m2 such that none of the γi represent multi-
curves with homotopic curves. This is done by showing that γi+1 can
be obtained from γi by surgering along no more than −3χ(S) horizon-
tal arcs. Since each surgery can increase the number of curves in the
multicurve, and hence the number of null homologous submulticurves,
by no more than one, the theorem then follows.

Let I be an oriented arc in S that intersects γi for some i. There
are a certain number of homotopy classes of arcs of γi ∩ (SrI) relative
to I. The orientations on I and γi makes it possible to define an
ordering of the starting points of the arcs of γi ∩ (SrI) along I. Let
h be a homotopy of γi that changes this ordering without moving any
arcs over ∂I. Since γi does not contain homotopic curves, h has to
introduce self intersections of γi. Similarly, if γi+1 also intersects I,
then any homotopy of γi and/or γi+1 that changes the ordering of the
starting points of γi ∪ γi+1 along I without moving any arcs over ∂I
has to either create (nonessential) points of intersection or move one
curve past another curve in the same free homotopy class.

Let γ
′
i+1 be the multicurve obtained from γi by surgering along the

horizontal arcs a1, a2...ak...an. γi+1 is obtained by discarding null ho-
mologous submulticurves from γ

′
i+1. Since the path is not assumed to

be simple, arbitrarily many null homologous submulticurves might be
discarded from γ

′
i+1. Assume that at least one of the ai is of the form
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I
γi

Figure 10. If λi could contain homotopic curves, the
points of intersection of λi with the horizontal arc shown
in the figure can be removed by a homotopy that changes
the ordering of the points of intersection of λi with the
interval I, without creating points of self-intersection of
λi.

v1 ◦ak ◦v2 for vertical arcs v1 and v2. A contradiction will be obtained,
from which it follows that the number of surgeries needed to obtain γi+1

from γi is uniformly bounded. Without loss of generality it can also be
assumed that none of the surgeries is trivial, i.e. for all i, Sr(γi ∪ ai)
is not allowed to contain any bigons. For example, γi is not surgered
along any two arcs in the same homotopy class. In h there are one or
two curves that were created by surgering along a horizontal arc of the
form v1 ◦ ak ◦ v2. If γi+1 does not contain at least one of these curves,
there was no need to attach the handle corresponding to v1 ◦ ak ◦ v2 at
all.

Call a curve in γi+1 new if it was created by one of the surgeries in
which γi+1 is obtained from γi. Either

(1) all new curves in γi+1 are homotopic to other curves in γi+1 i.e.
γi+1 contains homotopic curves,

(2) all new curves are homotopic to curves in γi, i.e. γi+1 is a
submulticurve of γi, or

(3) neither 1 nor 2.

Let I be a compact arc in S chosen to pass through an arc in the
homotopy class v1 or v2. In this third case, if the order of the arcs
along I is altered to remove the points of intersection with γi of the
attached handle corresponding to v1 ◦ ak ◦ v2, it has to induce points
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Figure 11. A multicurve m homologous to a simple
curve (drawn in grey). The multicurve m contains ho-
motopic curves and no null homologous submulticurves.

of intersection elsewhere. In other words, i(γi+1, γi) 6= 0, which is
not possible by definition. Since γi+1 is not a submulticurve of γi,
and by assumption does not contain homotopic curves, the promised
contradiction is obtained for a path that doesn’t pass through vertices
that represent multicurves containing freely homotopic curves.

As shown in figure 11, it is not always possible to get rid of all these
homotopic curves by working with multicurves that don’t contain null
homologous submulticurves.

If the geodesic path m1, γ1, γ2, ...m2 passes through vertices repre-
senting multicurves with homotopic curves, since the γi do not contain
null homologous multicurves, and m2 does not contain homotopic or
null homologous multicurves, m2−γi does not contain homotopic mul-
ticurves that separate fimax from fimin. In other words, there exists
an arc connecting a component of fimax to a component of fimin that
avoids all homotopic curves of γi. Therefore, although arbitrarily many
surgeries may be performed on γi to obtain γi+1, this arc constitutes a
“bottleneck”, to which the same arguments as in the previous case (no
homotopic curves) apply.

�

6. Quasi-flats and Distance Bounds

This section gives a few simple examples to illustrate key geometric
properties of HC(S, α).

Distances in HC(S, α) were shown to be related the homological dis-
tance. The next question is, how does this relate to intersection num-
ber? At each step of the path construction algorithm, the intersection
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Figure 12. Example demonstrating that the best pos-
sible upper bound on the distance between c1 and c2 in

HC(S, α) is given by i(c2,c1)
2

+ 1.

number with m2 is decreased. Recall that the arcs of m2 ∩ (Srm1)
on ∂fmax were denoted a1...an. Let kai be the number of arcs of
m2 ∩ (Srm1) in the same homotopy class as ai for 1 ≤ i ≤ n. Then
the intersection number of γ1 with m2 is at least 2

∑
i kai less than the

intersection number of m1 with m2.
It is well known that the distance between two curves c1 and c2 in the

curve complex is either 1 if i(c1, c2) = 0 or is bounded from above by
log2(i(c1, c2)) + 1. The next example shows that the distance between

two curves in HC(S, α) can be as much as i(c1,c2)
2

+ 1.

Example 10 (Dehn twisting around bounding pairs). Let c1 and c2
be the curves shown in figure 12. c2 is obtained by Dehn twisting c1
n times around a bounding pair, where n = 5 in figure 12. A simple

calculation shows that δ(c1, c2) is equal to i(c1,c2)
2

+ 1. In this case,

it is also clear that i(c1,c2)
2

+ 1 is the distance between c2 and c1 in
HC(S, α). To see why, note that any multicurve in α has to have
nonzero algebraic intersection number with each of the curves in the
bounding pair. Also, it is not possible to Dehn twist more than once
around the bounding pair when passing from γi to γi+1. From this it
follows that i(γi+1, c2) ≥ i(γi, c2)− 2, i.e. a shorter path than the path
obtained from the path construction algorithm can not exist.

Unlike the curve complex, which is known to be δ-hyperbolic ([13]
and [2]), this observation can be used to provide an example to show
that HC(S, α) is not δ-hyperbolic.

Theorem 12. HC(S, α) is not δ-hyperbolic for g > 3.

Proof. For g > 3 there exist two pairs of bounding pairs (t1, t2) and
(t3, t4); each of the ti representing distinct isotopy classes. Suppose
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Example 11 (Dehn twisting around pairs of bounding pairs).

t4

t3

t2

t1

v1 is a multicurve with nonzero algebraic intersection number with
each of t1, t2, t3 and t4, as in example 11. Let v2 be the multicurve v1
Dehn twisted around (t1, t2) n times, and v3 be the multicurve v1 Dehn
twisted around (t3, t4) n times. v1, v2 and v3 represent the vertices of a
geodesic triangle in HC(S, α). Since the distance between two vertices
on the boundary of the triangle is equal to the number of Dehn twists
around the bounding pairs (t1, t2) and (t3, t4) necessary to get from
one vertex to the other, for n even, the midpoints of the sides of the
geodesic triangle are each a distance n

2
from the other two sides of the

triangle. For any fixed δ, n can therefore be chosen large enough so that
this triangle is not δ-thin. In this example, the triangle is contained in
a so-called quasi-flat. �

Example 11 also shows that, unlike in the curve complex, there does
not always exist a tight geodesic connecting any two vertices. A ge-
odesic c1, γ1, γ2, ..., c2 has to be constructed such that for each i, γi+1

is obtained from γi by performing four Dehn twists. It is not hard to
check that this is only possible if γ1 is obtained from c1 by performing
a surgery that cuts c1 into two curves; one that intersects t1 and t2,
and another one that intersects t3 and t4. All curves contained in the
one dimensional cell complex c1 ∪ c2 are either null homologous, c1, c2,
t1, t2, t3, t4 or they intersect all of t1, t2, t3 and t4. It follows that a
geodesic connecting c1 and c2 can’t be tight.
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