GEOMETRY OF THE HOMOLOGY CURVE COMPLEX

INGRID IRMER

Abstract

Suppose S is a closed, oriented surface of genus $g \geq 2$. This paper investigates the geometry of the "homology multicurve complex", $\mathcal{H C}(S, \alpha)$, of S; a complex closely related to complexes studied by Bestvina-Bux-Margalit and Hatcher. A path in $\mathcal{H C}(S, \alpha)$ corresponds to a homotopy class of immersed surfaces in $S \times I$. This observation is used to devise a simple algorithm for constructing quasi-geodesics connecting any two vertices in $\mathcal{H C}(S, \alpha)$. It is proven that for $g \geq 3$ the best possible bound on the distance between two vertices in $\mathcal{H C}(S, \alpha)$ depends linearly on their intersection number, in contrast to the logarithmic bound obtained in the standard curve complex. For $g \geq 4$ it is shown that $\mathcal{H C}(S, \alpha)$ is not δ-hyperbolic.

1. Introduction

Suppose S is a closed oriented surface with genus $g \geq 2$. A curve c in S is a piecewise smooth, injective map of S^{1} into S that is not null homotopic. A multicurve is a union of pairwise disjoint curves on S. When convenient, a curve is confused with its image in S.

Fix a nontrivial element α of $H_{1}(S, \mathbb{Z})$. The homology curve complex, $\mathcal{H C}(S, \alpha)$, is a simplicial complex whose vertex set is the set of all isotopy classes of oriented multicurves in S in the homology class α. A set of vertices $m_{1} \ldots m_{k}$ spans a simplex if the representatives of the isotopy classes can all be chosen to be disjoint.

The distance, $d_{\mathcal{H}}\left(v_{1}, v_{2}\right)$, between two vertices v_{1} and v_{2} is defined to be the distance in the path metric of the one-skeleton, where all edges have length one.

The Torelli group is the subgroup of the mapping class group that acts trivially on homology. $\mathcal{H C}(S, \alpha)$ is closely related to a complex defined in [1] that was used for calculating cohomological properties of the Torelli group.

Metric properties of curve complexes have been used for example for studying mapping class groups and the structure of 3-manifolds, for example [4], [14] and [9]. The aim of this paper is to study some basic geometric properties of $\mathcal{H C}(S, \alpha)$.

In [13] and [2] it was shown that the standard curve complex, $\mathcal{C}(S)$, is δ-hyperbolic. In contrast, in section 6 it will be shown that

Theorem. For $g>3$ and $\alpha \neq 0, \mathcal{H C}(S, \alpha)$ is not δ-hyperbolic.
It is also well known (for example [12]) that in $\mathcal{C}(S)$, the distance between two vertices representing the curves a and b is less than or equal to $\log _{2}(i(a, b))+1$. However, in section 6 it will be shown that

Theorem. $d_{\mathcal{H}}\left(m_{1}, m_{2}\right) \leq \frac{i\left(m_{1}, m_{2}\right)}{2}+1$, where $i\left(m_{1}, m_{2}\right)$ is the geometric intersection number. This bound is sharp.

An edge in $\mathcal{H C}(S, \alpha)$ connecting two vertices representing the multicurves γ_{i} and γ_{i+1} is called simple if $\gamma_{1+1}-\gamma_{i}$ is the oriented boundary of an embedded subsurface of S. A simple path is a path that only traverses simple edges. In proposition 3 an algorithm for constructing simple paths (hereafter referred to as the "path construction algorithm") is given.

Let I be a closed interval. In section 2.1 a path in $\mathcal{H C}(S, \alpha)$ connecting the vertices representing m_{1} and m_{2} is shown to correspond to an oriented, immersed surface H in $S \times I$ with ∂H homotopic to the multicurves $m_{2}-m_{1}$ in $S \times 0$. The geometry of $\mathcal{H C}(S, \alpha)$ is thus related to the topology of surfaces in $S \times I$. In a later paper it will be shown that, modulo a uniformly bounded multiplicative constant, the distance between two vertices in $\mathcal{H C}(S, \alpha)$ representing the multicurves m_{1} and m_{2} is equal to the smallest possible genus of an orientable surface in $S \times I$ with boundary $m_{2}-m_{1}$. In order to show that the path construction algorithm is optimal in some sense, the geometry of $\mathcal{H C}(S, \alpha)$ is related to the topology of immersed surfaces in $S \times I$ by defining two functions from $S \backslash\left(m_{1} \cup m_{2}\right) \rightarrow \mathbb{Z}$: the "overlap" and the "pre-image function". These functions will now be briefly described.

Intersection numbers. There are two types of intersection numbers used in this work. The intersection number, also known as the geometric intersection number, is denoted by $i\left(m_{1}, m_{2}\right)$, and the algebraic intersection number by $\hat{i}\left(m_{1}, m_{2}\right)$. The algebraic intersection number of an oriented arc a with an oriented representative m_{1} of the isotopy class $\left[m_{1}\right.$] is also written as $\hat{i}\left(a, m_{1}\right)$. Multicurves in $S \times I$ and their intersections with other multicurves are defined by projecting onto $S \times 0$.

Let π be the projection of $S \times I$ onto $S \times 0$ given by $(s, r) \mapsto s \times 0$. Informally, given an oriented, immersed surface H in $S \times I$, the pre-image function, $g_{H}: S \times 0 \backslash \pi(\partial H) \rightarrow \mathbb{Z}$ is given by $g_{H}(s)=\hat{i}\left(\pi^{-1}(s), H\right)$ (See Section 4 for a more precise definition). It is shown that, modulo an
additive constant, the pre-image function does not depend on H but only on its boundary (lemma 4).

The overlap function, and the homological distance. The overlap f of two homologous multicurves m_{1} and m_{2} is the locally constant, upper semicontinuous function defined on S with minimum value zero and such that, for any two points x and y in $S \backslash\left(m_{1} \cup m_{2}\right)$, $f(x)-f(y)$ is the algebraic intersection number of $m_{2}-m_{1}$ with an oriented arc with starting point y and endpoint x. The overlap of a null homologous multicurve n with itself is defined analogously. f is not dependent on the choice of oriented arc, because the algebraic intersection number of any closed loop with $m_{2}-m_{1}$ is zero. The overlap does however depend on the choice of representatives of the isotopy classes $\left[m_{1}\right]$ and $\left[m_{2}\right]$. It will be assumed that the representatives of the free homotopy classes are chosen so that the maximum, M, of f is as small as possible. M will be called the homological distance, $\delta\left(m_{1}, m_{2}\right)$, between m_{1} and m_{2}.

If H is a surface constructed from a simple path connecting m_{1} and m_{2}, as described in subsection 2.1, the relation between g_{H} and the overlap of m_{1} and m_{2} shown in lemma 6 is used to show that the path construction algorithm constructs the shortest possible simple paths.

Theorem 7. Let m_{1} and m_{2} be two multicurves corresponding to vertices of $\mathcal{H C}(S, \alpha)$. Then the shortest simple path connecting the vertices has length equal to $\delta\left(m_{1}, m_{2}\right)$. Recall that by definition α is non trivial.

The path construction algorithm is similar to a construction in [8] for showing contractibility of the cyclic cycle complex, and can also be used to construct paths in this complex. It will be shown in corollary 8 that the paths so constructed in the cyclic cycle complex are geodesics.

A nice property of the path construction algorithm is that, as shown in theorem 3, it constructs the same unoriented path from m_{1} to m_{2} as from m_{2} to m_{1}.

One reason for being interested in simple paths is that they are a simple means of estimating distance.

Theorem 9. If m_{1} and m_{2} do not contain null homologous submulticurves or homotopic curves, $d\left(m_{1}, m_{2}\right)<-3 \chi(S) \delta\left(m_{1}, m_{2}\right)$.
1.1. The Case $\alpha=0$. The case in which α is allowed to be null homologous is quite different. For example, in this case the complex admits an action of the full mapping class group, and when alpha is nontrivial, it does not. In the latter case, the natural group that acts is the subgroup of the mapping class group preserving alpha. Various complexes of null homologous (multi)curves, have been studied, for example the complex of separating curves and the Torelli geometry. Some of the methods discussed in this paper generalise, however the main problem seems to be that performing surgeries on null homologous multicurves could give trivial curves.

Acknowledgements. I would like to thank Ursula Hamenstädt for her supervision of this project. Also, without the advice and enthusiasm of many people, the writing of this paper could have dragged on into infinity. Thanks to Joan Birman, Benson Farb, Andrew Putman and Kasra Rafi. I am particularly grateful to Dan Margalit for his patience in teaching me how to write papers, and to Alan Hatcher for his detailed comments and improvements.

2. Simple Paths

The notion of a "simple path" is introduced in order to be able to perform counting arguments that relate surfaces in $S \times I$ to paths in $\mathcal{H C}(S, \alpha)$.

If n bounds an embedded subsurface of S, the union of the components of $S \backslash n$ whose boundary orientation coincides with the orientation of n will be called the subsurface of S bounded by n.

Figure 1. An edge that is not simple. The multicurve drawn in grey represents one vertex and the multicurve drawn in black represents the other.

The next lemma is used to decompose null homologous multicurves up into boundaries of subsurfaces, i.e. given a path in $\mathcal{H C}(S, \alpha)$, a simple path can easily be obtained by adding more edges where necessary.

Lemma 1. If a null homologous multicurve n does not contain a nontrivial null homologous submulticurve, it bounds a subsurface of S.

Proof. Consider the subsurface of S on which the overlap function of n has its maximum. This boundary is a null homologous submulticurve of n. By assumption on n it must be all of n.

Corollary 2. Every path in $\mathcal{H C}(S, \alpha)$ can be made simple by adding extra vertices where necessary.

Proof. Suppose m_{1} and m_{2} are connected by an edge that is not simple. By the previous lemma, $m_{2}-m_{1}$ can be decomposed into k null homologous submulticurves $n_{1}, n_{2}, \ldots n_{k}$, each of which bounds a aubsurface of S. Then a simple path connecting m_{1} and m_{2} is determined by the vertices $m_{1}, m_{1}-n_{1}, m_{1}-n_{1}-n_{2}, \ldots m_{1}-n_{1}-n_{2}-\ldots-n_{k-1}, m_{2}$.
2.1. Constructing an Immersed Surface in $S \times I$ from a Path in $\mathcal{H C}(S, \alpha)$. All curves, surfaces, and manifolds discussed here are assumed to be piecewise smooth.

Suppose γ is a simple path in $\mathcal{H C}(S, \alpha)$ passing through the vertices corresponding to the multicurves $\gamma_{0}, \gamma_{1}, \ldots \gamma_{j}$. A surface T_{γ} contained in $S \times j$ is constructed inductively. Given γ_{0}, isotope γ_{1} such that there is a subsurface S_{1} of S with boundary $\gamma_{1}-\gamma_{0}$. Let T_{1} be the surface in $S \times[0,1]$ given by $\gamma_{0} \times\left[0, \frac{1}{2}\right] \cup S_{1} \times\left\{\frac{1}{2}\right\} \cup \gamma_{1} \times\left[\frac{1}{2}, 1\right]$. Next, isotope γ_{2} so that there is a subsurface S_{2} of S with $\partial S_{2}=\gamma_{2}-\gamma_{1}$ and let $T_{2}=\gamma_{1} \times\left[1, \frac{3}{2}\right] \cup S_{2} \times\left\{\frac{3}{2}\right\} \cup \gamma_{2} \times\left[\frac{3}{2}, 2\right]$. Repeat this successively for each of the γ_{i} until an embedded surface $T_{\gamma}=T_{1} \cup T_{2} \cup \ldots \cup T_{j}$ in $S \times[0, j]$ is obtained.
T_{γ} is called the trace of the path γ. Note that the trace of a path depends on the orientation on S.

Remark Similarly, if $\gamma_{0}, \gamma_{1}, \ldots \gamma_{j}$ is not simple, it can be used to construct a cell complex with boundary $\gamma_{j}-\gamma_{0}$. It is not difficult to show that such cell complexes are homotopic to immersed surfaces in $S \times[0, j]$.
2.2. Extrema of f. In order to construct paths in $\mathcal{H C}(S, \alpha)$, it is necessary to use some properties of the level sets, in particular the

Figure 2. When the overlap f is thought of as a height function, a horizontal arc is horizontal with respect to f, and a vertical arc vertical.
local extrema, of f. These are used to define the surgeries used in the path construction algorithm.

Given an oriented multicurve a with a regular neighbourhood $\mathcal{N}(a)$ and an orientation on S, the left and right component of $\mathcal{N} \backslash a$ can be defined. If b is an oriented multicurve that intersects a transversely at a point p, it therefore makes sense to say that b crosses over a from left to right (or right to left) at p. Similarly, if b is an oriented arc with an endpoint on a, a notion in which b leaves or approaches a from the left or right can be defined.

Given two multicurves a and b on an oriented surface S, a horizontal arc of a is a component of $a \cap(S \backslash b)$ that leaves and approaches b from the same side. A vertical arc of $a \cap(S \backslash b)$ leaves and approaches b from opposite sides. An "innermost" arc in [8] is an example of a horizontal arc. Horizontal arcs are used to perform surgeries.

If a horizontal arc of $a \cap(S \backslash b)$ leaves and approaches b from the right, then this arc is to the right of b and vice versa.

Suppose a and b are multicurves in S in general position. Two arcs of $a \cap(S \backslash b)$ will be called homotopic if they are homotopic relative to b. Two oriented arcs will be said to be homotopic and oriented in the same way if one can be homotoped into the other in such a way that the orientations coincide.

It is not difficult to see that "verticalness" and "horizontalness" are properties of homotopy classes of arcs. Also, if $S \backslash(a \cup b)$ does not contain any bigons, a horizontal arc of $a \cap(S \backslash b)$ to the right of b can't be homotopic to a horizontal arc of $a \cap(S \backslash b)$ to the left of b, and an oriented arc of $a \cap(S \backslash b)$ is not homotopic to itself with the opposite orientation.

Figure 3. Examples of $f_{\max }$.

Given m_{1} and m_{2}, the overlap is bounded and has a maximum. Call the subsurface of S on which f takes on its maximum $f_{\text {max }} . f_{\text {max }}$ has at least one connected component. The boundary of $f_{\max }$ consists of arcs of m_{1} and m_{2} such that $f_{\max }$ is to the right of any arc of m_{1} on its boundary and to the left of any arc of m_{2} on its boundary. In other words, the boundary of $f_{\max }$ is a null homologous multicurve made up of horizontal arcs of m_{1} to the left of m_{2} and horizontal arcs of m_{2} to the right of m_{1}.

Similarly, the subsurface of $S, f_{\text {min }}$, on which f takes on its minimal value is disjoint from $f_{\max }$ and is on the left of any arc of m_{1} on its boundary and to the right of any arc of m_{2} on its boundary.
2.3. Minimising Overlap. A difficulty is that vertices of $\mathcal{H C}(S, \alpha)$ are only defined up to isotopy, whereas some of the quantities, such as overlap, used to describe distance also depend on the representative of the homotopy classes. For this reason it is necessary to work with representatives of the free homotopy class that minimise the overlap.

Two multicurves m_{1} and m_{2} will be said to be in minimal position if

- m_{1} and m_{2} are in general position
- the number of times m_{1} intersects m_{2} is equal to $i\left(m_{1}, m_{2}\right)$, and
- whenever $m_{2}-m_{1}$ contains homotopic curves, these homotopic curves are positioned in such a way that f is minimised. An example is illustrated in figure 4.

Figure 4. On the left, m_{1} and m_{2} are not in minimal position, because the overlap could be made smaller, as shown on the right.

Figure 5. Surgering a multicurve along a horizontal arc.

3. A path constructing algorithm

In this section an algorithm for constructing a simple path $m_{1}, \gamma_{1}, \gamma_{2}, \ldots m_{2}$ of length $\delta\left(m_{1}, m_{2}\right)$ will be constructed.

Figure 6. How to construct γ_{1}

A basic surgery construction. Let R be an oriented embedded rectangle in S whose interior is contained in $S \backslash(a \cup b)$. Suppose that one side of R lies along the arc a_{i}, the opposite side is homotopic to a_{i} with opposite orientation, and the two remaining sides are subarcs b_{1} and b_{2} of b, as shown in figure 3. Since a_{i} is a horizontal arc, it is possible to choose R such that the orientation of R induces an orientation on the $\operatorname{arcs} b_{1}$ and b_{2} on its boundary opposite to the orientation of b_{1} and b_{2} as subarcs of b. Surgering an oriented multicurve b along a horizontal arc a_{i} of $a \cap(S \backslash b)$ involves adding ∂R to b as a chain. The arcs b_{1} and b_{2} on the boundary of R cancel out subarcs of b and are replaced by the arcs a_{i} and $-a_{i}$. Since ∂R is null homologous, the resulting multicurve is homologous to b.

Recall that the boundary of $f_{\max }$ is oriented in such a way that $f_{\max }$ is on its left, and let $a_{1}, a_{2} \ldots$ be the arcs of m_{2} on $\partial f_{\text {max }}, b_{1}, b_{2}, \ldots$ be the arcs of m_{1} on $\partial f_{\text {max }}$. Then $\partial f_{\max }=\sum_{i} a_{i}-\sum_{j} b_{j}$ (arcs are chains, and so they can be added and subtracted). Consider the one dimensional cell complex $m_{1} \cup m_{2}$ on S. Subtract the oriented arcs b_{i} from the oriented subcomplex m_{1} and add the oriented arcs a_{j}. This defines γ_{1}. Subtracting the arcs b_{i} from m_{1} and adding the $\operatorname{arcs} a_{j}$ will be called performing the surgery or surgeries corresponding to $f_{\text {max }}$, depending on the number of connected components of $f_{\text {max }}$. Up to free homotopy on the boundary, $f_{\max }$ can be thought of as "that piece of S that is bounded by m_{1} and γ_{1} ".

Figure 7. A point of intersection forces the overlap to have maximum at least two.
$\partial f_{\max }$ is disjoint from m_{1} and each connected component of $f_{\max }$ intersects an annular neighbourhood of m_{1} on the right side of m_{1} (i.e. every component of $f_{\max }$ is "on the same side" of m_{1}). Therefore $i\left(\gamma_{1}, m_{1}\right)=0$.
γ_{1} might contain trivial curves that bound disks, and might not be in minimal position with m_{2}. This point is ignored at the moment, and only once all the multicurves γ_{i} are constructed are the trivial curves discarded. It follows from the arguments in lemma 6 that despite trivial curves and nonminimal position, none of surgery steps are trivial, i.e. γ_{i+1} is never isotopic to γ_{i}.

The multicurve γ_{2} is constructed in the same way as γ_{1} only with the multicurve m_{1} replaced by γ_{1}. It is not difficult to see that the overlap, f_{1}, of γ_{1} and m_{2} is one less than the overlap of m_{1} and m_{2}. Cutting out the arcs b_{i} make it possible to connect the subsurface of S, $f_{1 \text { min }}$, on which f_{1} takes on its minimum, to $f_{1 \max }$ (defined similarly), by an arc that crosses $m_{2}-\gamma_{1}$ from right to left once less than any arc connecting $f_{\min }$ with $f_{\max }$. In other words, $\delta\left(\gamma_{1}, m_{2}\right)=\delta\left(m_{1}, m_{2}\right)-1$.

This process ends with the multicurve γ_{j} when $\delta\left(\gamma_{j}, m_{2}\right)=1$. This can only be happen if γ_{j} and m_{2} don't intersect, because as shown in figure 7, an intersection forces the maximum of f_{j} to be at least two.

If $\delta\left(\gamma_{j}, m_{2}\right)=1$, then the subsurface of S on which $f_{j}=1$ is the subsurface bounded by $m_{2}-\gamma_{j}$.

This completes the construction of the promised algorithm. A simple path constructed in this way will be called a topdown path, and the algorithm itself will be referred to as the path construction algorithm.

The choice to use $f_{\text {max }}$ instead of $f_{\min }$ was arbitrary, but it is not possible to simultaneously reduce the intersection number further at each step by requiring that the subsurface of S bounded by γ_{1} and m_{1} be $f_{\max } \cup f_{\min }$ because $f_{\min }$ is to the left of m_{1} and $f_{\max }$ is to the right of m_{1}, so this would not give a simple path.
3.1. Path Construction in the Cyclic Cycle Complex. The Cyclic Cycle Complex $\mathcal{C C}(S)$ from [8] is the simplicial complex whose vertices are the isotopy classes of oriented, reduced multicurves, where a multicurve m is said to be reduced if it does not contain a submulticurve that bounds a complementary region of m in S (using either orientation of the region). A set of $k+1$ vertices spans a simplex in $\mathcal{C C}(S)$ if these vertices are represented by disjoint multicurves $m_{0}, m_{1}, m_{2} \ldots m_{k}$ that cut S into $k+1$ embedded subsurfaces $E_{0}, E_{1}, \ldots E_{k}$ such that the oriented boundary of E_{i} is $m_{i+1}-m_{i}$. In particular, all edges are by definition simple.

It follows that each connected component of $\mathcal{C C}(S)$ represents multicurves in a fixed homology class. Every connected component of $\mathcal{C C}(S)$ can therefore be embedded in a $\mathcal{H C}(S, \alpha)$ for appropriate α.

The path construction algorithm can be easily modified to construct paths in $\mathcal{C C}(S)$. This involves removing all null homologous submulticurves that are forbidden by the definition. It is therefore necessary to check that this can be done without violating the condition that a path in $\mathcal{C C}(S)$ has to satisfy. In particular, if a null homologous submulticurve n is to be removed from γ_{i+1}, it is necessary to check that there is a subsurface N of S (with either orientation) with $\partial N=n$ and such that N is disjoint from the subsurface of S bounded by $\gamma_{i+1}-\gamma_{i}$.

Suppose γ_{i+1} contains a forbidden null homologous submulticurve b_{1} i.e. $\pm b_{1}$ bounds a subsurface B of S, where $\gamma_{i+1}-\gamma_{i}$ is contained in $S \backslash B$. Whenever this happens, by construction $f_{\text {imax }}$ and $\gamma_{i+1}-\gamma_{i}$ have to be to the left of b_{1}. Also, whenever γ_{i} does not contain a forbidden null homologous submulticurve, it follows from the arguments given in the proof of theorem 9 that γ_{i+1} can't contain a second null homologous submulticurve b_{2} that lies between b_{1} and the other curves in $\gamma_{i+1}-\gamma_{i}$.
b_{1} can therefore be capped off from the right by a subsurface disjoint from $f_{\text {imax }}$. That this path is a geodesic follows from theorem 7 .

More General Position. When proving theorems about simple paths, it is convenient to work with multicurves in S that are not in general position. Representatives of the homotopy classes can be chosen to make the intuitive picture of $f_{\max }$ clearer. Suppose m_{1} and m_{2} are in minimal position. Choose the representatives γ_{i+1} and γ_{i} of $\left[\gamma_{i+1}\right]$ and $\left[\gamma_{i}\right]$ such that $\gamma_{i+1}-\gamma_{i}=\partial f_{\text {imax }}$. The boundary of $f_{\text {imax }}$ is an embedded subcomplex of the one dimensional cell complex $m_{2} \cup m_{1}$ for every i, and has zero intersection number with γ_{i} and γ_{i+1}. γ_{i+1} is obtained from γ_{i} by subtracting the arcs of $\gamma_{i} \cap\left(S \backslash m_{2}\right)$ on $\partial f_{\text {imax }}$ and adding the arcs of $m_{2} \cap\left(S \backslash \gamma_{i}\right)$ on $\partial f_{\text {imax }}$. Also, no arc of $m_{2} \cap m_{1}$ will be on the boundary of $f_{\text {imax }}$ for more than one i, so each arc can only be added or subtracted at most once. Each of the multicurves γ_{i} is therefore an oriented subcomplex of $m_{1} \cup m_{2}$. From figure 7, it is easy to verify that $f_{\text {imax }}$ can not meet itself at a vertex, because if four components of $S \backslash\left(\gamma_{i} \cup \gamma_{k}\right)$ come together at a point and f is equal on two of them, it must be larger on a third component and smaller on the fourth. Therefore, if γ_{i} doesn't meet or cross over itself at a vertex, neither will γ_{i+1}. The γ_{i} chosen in this way are therefore also embedded. The main advantage of doing this is that the overlap functions $f, f_{1}, f_{2} \ldots$ are related in an obvious way. In section 6 it will be shown that there does not always exist tight geodesic paths, so geodesic paths can't in general be constructed by adding and subtracting arcs within the cell complex $m_{1} \cup m_{2}$.

A nice property of the path construction algorithm is that it constructs the same path in reverse.

Theorem 3. If m_{1} and m_{2} had been interchanged in the path construction algorithm, the same unoriented path would have been obtained.

Proof. Suppose the representatives $m_{1}, \gamma_{1}, \ldots \gamma_{j}, m_{2}$ of the free homotopy classes $\left[m_{1}\right],\left[\gamma_{1}\right], \ldots\left[\gamma_{j}\right],\left[m_{2}\right]$ are chosen as outlined in the previous paragraph. In particular, each of the γ_{i} are oriented subcomplexes of the cell complex $m_{1} \cup m_{2}$ such that $\gamma_{i+1}-\gamma_{i}$ is the boundary of the subsurface of f on which f is no less than its maximum value minus i. Let h be the overlap of $m_{1}-m_{2}$. It is easy to check that h has its maximum where the overlap f of $m_{2}-m_{1}$ has its minimum, and vice versa. By definition, γ_{j} is the multicurve chosen such that $m_{2}-\gamma_{j}$ bounds the subsurface of S given by $S \backslash f_{\text {min }}$. In other words, $\gamma_{j}-m_{2}$ is the boundary of $f_{\min }$ or $h_{\max }$, i.e. γ_{j} satisfies the definition of the first multicurve in the path $m_{2}, \ldots m_{1}$. Similarly for $\gamma_{j-1}, \gamma_{j-2}$, etc.

4. The Overlap Function and the Pre-image Function

Let H be an oriented, immersed surface H in $S \times I$ with $\pi(\partial H)=$ $m_{2}-m_{1}$. In this section, theorem 7 is proven by relating the overlap of ∂H to the pre-image function g_{H}.

The pre-image function $g_{H}: S \times 0 \backslash \pi(\partial H) \rightarrow \mathbb{Z}$ is defined as follows: Suppose $P:=S \times I$ and ∂P is decomposed into the union of two subsurfaces A and B, where A is a neighbourhood in ∂P of ∂H and B is the closure of $P \backslash A$. Algebraic intersection number provides a map $H_{2}(P, A) \times H_{1}(P, B) \mapsto \mathbb{Z}$. For x in $(S \times 0) \cap B, g_{H}(x)$ is equal to the algebraic intersection number of $[H]$ with the class in $H_{1}(P, B)$ represented by the arc $\{x\} \times I$. Since this definition works for any choice of $A, g_{H}(x)$ is defined for all x in $(S \times 0) \backslash \pi(\partial H)$.

Lemma 4. Given any two oriented, immersed surfaces H_{1} and H_{2} with $\partial H_{1}=\partial H_{2}=m_{2}-m_{1}$, there is a constant integer c such that for all $s \in(S \times 0) \backslash\left(m_{2}-m_{1}\right), g_{H_{1}}=g_{H_{2}}+c$.

Proof. Clearly, $g_{H_{1}}$ and $g_{H_{2}}$ both increase by one when crossing over an arc of $m_{2}-m_{1}$ from right to left. This lemma is proven by showing that $g_{H_{1}}$ and $g_{H_{2}}$ can't change anywhere else. Suppose $\{y\} \times I$ is homologous to $\{x\} \times I$ relative to B, using the same notation as in the definition of the pre-image function. In other words, y and x are in the same component of $(S \times 0) \backslash\left(m_{2}-m_{1}\right)$. Then $g_{H_{1}}(x)=g_{H_{2}}(y)$, i.e. $g_{H_{1}}$ is constant on each component of $S \backslash\left(m_{2}-m_{1}\right)$. The same argument applies to $g_{H_{2}}$, from which the lemma follows.

Two surfaces F_{1} and F_{2} in $S \times I$ with boundary $m_{2}-m_{1}$ are defined to be homotopic if they are homotopic as surfaces with boundaries contained in $m_{1} \times I \cup m_{2} \times I$. Suppose $m_{2}-m_{1}$ is a multicurve that bounds a subsurface of S and H is any orientable surface in $S \times I$ with boundary $m_{2}-m_{1}$. It follows from the previous lemma that g_{H} has to be constant on any component of $S \times 0 \backslash\left(m_{2}-m_{1}\right)$. From this it follows that if H has smallest possible genus, it has to be homotopic to a subsurface of $S \times 0$.

Corollary 5 (Corollary of lemma 4). Suppose that $m_{2}-m_{1}$ is a multicurve, where m_{1} and m_{2} are homologous multicurves in $S \times 0$. Then any orientable surface in $S \times I$ with smallest possible genus whose boundary is homotopic to $m_{2}-m_{1}$ has to be homotopic to a subsurface of $S \times 0$.

Figure 8. Points of intersection that could be removed by a homotopy.

Lemma 6. Given m_{1} and m_{2}, let γ be the topdown path connecting m_{1} and m_{2}, and let T_{γ} be its trace. Then the overlap of m_{1} and m_{2} is equal to $g_{T_{\gamma}}$.

Proof. The reason this is not immediately clear is that the multicurve γ_{i+1}, obtained from γ_{i} and m_{2} by performing the surgery corresponding to $f_{\text {imax }}$, might contain curves that bound disks or points of intersection with m_{2} that can be removed by a homotopy. The overlap f_{i+1} depends on the representative of the free homotopy class $\left[\gamma_{i+1}\right]$. In order to define f_{i+1}, it was assumed that the multicurves γ_{i+1} and m_{2} were in minimal position.

Whenever a and b are multicurves that are not in general position, i.e. a and b coincide along some subarc or point, this subarc or point will be counted as a (single) point of intersection if b crosses from one side of a to the other. If b does not cross over a this is not counted as an intersection.

Let $R_{a_{i}}$ be the rectangle in S consisting of the closure of the union of rectangles in $S \backslash\left(m_{1} \cup m_{2}\right)$, each of which have two opposite sides made up of arcs of $m_{2} \cap\left(S \backslash m_{1}\right)$ in the homotopy class a_{i}, where each of the $a_{1} \ldots a_{n}$ are homotopy classes of arcs with representatives on $\partial f_{\max }$. Let $R:=R_{a_{1}} \cup R_{a_{2}} \cup \ldots R_{a_{n}}$, and γ_{1}^{\prime} be the multicurve homotopic to γ_{1} constructed such that γ_{1}^{\prime} coincides with m_{1} outside of R and is a representative of the homotopy class with the smallest possible number of points of intersection with m_{2}, according to the definition in the previous paragraph. $\gamma_{1}^{\prime}-m_{1}$ therefore bounds the subsurface $f_{\max } \cup R$ of S.

Figure 9. $\gamma_{1}, \gamma_{1}^{\prime}, R$ and r.

Let f_{1} be the overlap of γ_{1} and m_{2}, and let f_{1}^{\prime} be the overlap of γ_{1}^{\prime} and m_{2}. γ_{1} and $-\gamma_{1}^{\prime}$ bound the subsurface R of S. For a point $s \in S$,

$$
f_{1}(s)= \begin{cases}f_{1}^{\prime}(s)+1 & \text { if } s \in \text { the interior of } R \tag{1}\\ f_{1}^{\prime}(s) & \text { otherwise }\end{cases}
$$

In other words, the homotopy that takes γ_{1} to γ_{1}^{\prime} reduces the overlap by one on the subsurface R and enlarges the subsurface of S bounded by $\gamma_{1}-m_{1}$ to obtain the subsurface of S bounded by $\gamma_{1}^{\prime}-m_{1}, f_{\max } \cup R$.

Any components of $S \backslash\left(m_{1} \cup m_{2}\right)$ with one edge along $f_{\max }$ are contained in $f_{1 \text { max }}$, and since these components aren't all contained in R, it follows that f_{1} has the same maximum as f_{1}^{\prime}. $f_{1 \text { max }}$ is the union of $f_{1 \text { max }}^{\prime}$ with a union r of rectangles of $S \backslash\left(m_{1} \cup m_{2}\right)$ in R, as shown in figure 9. The surgeries of γ_{1} corresponding to rectangles in r reduce the number of points of intersection with m_{2}. Homotoping γ_{1} to γ_{1}^{\prime} has the same effect as performing the surgery corresponding to each rectangle in R and discarding contractible curves. If r is not the whole of R, when passing from γ_{2} to γ_{3}, surgeries corresponding to further rectangles in R are performed. This is continued until for large enough $i, f_{\text {imax }}$ contains all of R and γ_{i+1} has no points of intersection with m_{2} on ∂R. If γ_{1} is used in place of γ_{1}^{\prime} to construct γ_{2}, the same multicurve will therefore be obtained up to homotopy, despite the fact that γ_{1} and m_{2} might not be in minimal position. The same argument applies for all γ_{i} in place of γ_{1}, from which the lemma follows.

It is now possible to give a proof of theorem 7 .
Theorem 7. The shortest simple paths connecting m_{1} and m_{2} have length $\delta\left(m_{1}, m_{2}\right)$.

Proof. Suppose γ is a simple path connecting m_{1} and m_{2} of length less than $\delta\left(m_{1}, m_{2}\right)$. Let T_{γ} be the the trace of γ. Then T_{γ} can be constructed by connecting up $\delta\left(m_{1}, m_{2}\right)-1$ or fewer pieces, each of which projects one to one onto a subsurface of $S \times 0$ with the induced subsurface orientation. By construction, $g_{T_{\gamma}}$ is everywhere ≥ 0. It follows from lemmas 4 and 6 that the maximum of $g_{T_{\gamma}}$ minus the minimum of $g_{T_{\gamma}}$ is equal to $\delta\left(m_{1}, m_{2}\right)$, i.e $\hat{i}\left(\pi^{-1}(s), H\right) \geq \delta\left(m_{1}, m_{2}\right)$ for some s. This is a contradiction.

From the algortihm given in section 3 it is clear that this minimum length path can always be achieved.

Corollary 8 (Corollary of Theorem 7 and Proposition 3.1). Suppose m_{1} and m_{2} are two vertices in the Cyclic Cycle Complex. The distance between these two vertices in this complex is equal to $\delta\left(m_{1}, m_{2}\right)$.

5. Distances and Simple Paths

Theorem 7 determines the length of the shortest simple paths connecting two vertices, however this has not yet been related to the distance between the vertices. There are two minor points that need to be considered at this point. Firstly, if m_{1} contains a null homologous submulticurve $b, m_{1} \backslash b$ has the same distance in $\mathcal{H C}(S, \alpha)$ from m_{2} as m_{1}, but $\delta\left(m_{1}, m_{2}\right)$ could be larger. Secondly, if α is not a primitive homology class, for example, if α is homologous to $n m_{1}, \delta\left(n m_{1}, n m_{2}\right)=n \delta\left(m_{1}, m_{2}\right)$, but the distance between $n m_{1}$ and $n m_{2}$ in $\mathcal{H C}\left(S,\left[n m_{1}\right]\right)$ is equal to the distance between m_{1} and m_{2} in $\mathcal{H C}\left(S,\left[m_{1}\right]\right)$.

A path between two vertices will be called a quasi-geodesic (segment) if it is a subpath of a quasi-geodesic. All quasi-geodesics considered here are uniform quasi-geodesics, in the sense that, for any two vertices v_{1} and v_{2} on the quasi-geodesic, the length of the quasi-geodesic segment jointing them is no more than $k d\left(v_{1}, v_{2}\right)$, where k is a uniformly bounded constant. Therefore, no distinction between quasi-geodesics and quasi-geodesics segments is made.

Note that, since $\mathcal{H C}(S, \alpha)$ is not δ-hyperbolic (in fact, it is not even nonpositively curved), no geodesic stability should be expected. The quasi-geodesics constructed here do not globally stay close to geodesics, although they can be shown to be piecewise geodesic. Despite this, families of geodesics connecting two vertices in $\mathcal{H C}(S, \alpha)$ can be easily described and constructed due to a high level of rigidity, however this is the subject of a future paper.

Theorem 9. If m_{1} and m_{2} do not contain null homologous submulticurves or homotopic curves, the path connecting m_{1} and m_{2} constructed by the path construction algorithm is a quasi-geodesic, where the constant in the definition of quasi-geodesic is less than $-3 \chi(S)$.

Proof. In the path construction algorithm, the maximum of the overlap was increased by one at each step. This decrease is due to discarding the null homologous submulticurve $\partial f_{\max }$ that was created by the surgeries. This theorem is proven by obtaining a bound on the decrease in the maximum of the overlap at each step, by bounding the number of null homologous submulticurves that can created (and therefore potentially discarded) at each step.

It is implicit in the proof of proposition 3 that a path in $\mathcal{H C}(S, \alpha)$ between any two vertices can be constructed by surgering along horizontal arcs and adding/discarding null homologous submulticurves. If a multicurve m does not contain homotopic submulticurves, it follows from the topological invariance of the Euler characteristic that there exists a bound of $-3 \chi(S)$ on the number of pairwise disjoint homotopy classes (relative to m) of horizontal arcs with endpoints on m.

Firstly, a proof of the theorem is given in the case that there is a geodesic path $m_{1}, \gamma_{1}, \gamma_{2}, \ldots m_{2}$ such that none of the γ_{i} represent multicurves with homotopic curves. This is done by showing that γ_{i+1} can be obtained from γ_{i} by surgering along no more than $-3 \chi(S)$ horizontal arcs. Since each surgery can increase the number of curves in the multicurve, and hence the number of null homologous submulticurves, by no more than one, the theorem then follows.

Let I be an oriented arc in S that intersects γ_{i} for some i. There are a certain number of homotopy classes of arcs of $\gamma_{i} \cap(S \backslash I)$ relative to I. The orientations on I and γ_{i} makes it possible to define an ordering of the starting points of the arcs of $\gamma_{i} \cap(S \backslash I)$ along I. Let h be a homotopy of γ_{i} that changes this ordering without moving any arcs over ∂I. Since γ_{i} does not contain homotopic curves, h has to introduce self intersections of γ_{i}. Similarly, if γ_{i+1} also intersects I, then any homotopy of γ_{i} and/or γ_{i+1} that changes the ordering of the starting points of $\gamma_{i} \cup \gamma_{i+1}$ along I without moving any arcs over ∂I has to either create (nonessential) points of intersection or move one curve past another curve in the same free homotopy class.

Let γ_{i+1}^{\prime} be the multicurve obtained from γ_{i} by surgering along the horizontal arcs $a_{1}, a_{2} \ldots a_{k} \ldots a_{n} . \gamma_{i+1}$ is obtained by discarding null homologous submulticurves from γ_{i+1}^{\prime}. Since the path is not assumed to be simple, arbitrarily many null homologous submulticurves might be discarded from γ_{i+1}^{\prime}. Assume that at least one of the a_{i} is of the form

Figure 10. If λ_{i} could contain homotopic curves, the points of intersection of λ_{i} with the horizontal arc shown in the figure can be removed by a homotopy that changes the ordering of the points of intersection of λ_{i} with the interval I, without creating points of self-intersection of λ_{i}.
$v_{1} \circ a_{k} \circ v_{2}$ for vertical arcs v_{1} and v_{2}. A contradiction will be obtained, from which it follows that the number of surgeries needed to obtain γ_{i+1} from γ_{i} is uniformly bounded. Without loss of generality it can also be assumed that none of the surgeries is trivial, i.e. for all $i, S \backslash\left(\gamma_{i} \cup a_{i}\right)$ is not allowed to contain any bigons. For example, γ_{i} is not surgered along any two arcs in the same homotopy class. In h there are one or two curves that were created by surgering along a horizontal arc of the form $v_{1} \circ a_{k} \circ v_{2}$. If γ_{i+1} does not contain at least one of these curves, there was no need to attach the handle corresponding to $v_{1} \circ a_{k} \circ v_{2}$ at all.

Call a curve in γ_{i+1} new if it was created by one of the surgeries in which γ_{i+1} is obtained from γ_{i}. Either
(1) all new curves in γ_{i+1} are homotopic to other curves in γ_{i+1} i.e. γ_{i+1} contains homotopic curves,
(2) all new curves are homotopic to curves in γ_{i}, i.e. γ_{i+1} is a submulticurve of γ_{i}, or
(3) neither 1 nor 2.

Let I be a compact arc in S chosen to pass through an arc in the homotopy class v_{1} or v_{2}. In this third case, if the order of the arcs along I is altered to remove the points of intersection with γ_{i} of the attached handle corresponding to $v_{1} \circ a_{k} \circ v_{2}$, it has to induce points

Figure 11. A multicurve m homologous to a simple curve (drawn in grey). The multicurve m contains homotopic curves and no null homologous submulticurves.
of intersection elsewhere. In other words, $i\left(\gamma_{i+1}, \gamma_{i}\right) \neq 0$, which is not possible by definition. Since γ_{i+1} is not a submulticurve of γ_{i}, and by assumption does not contain homotopic curves, the promised contradiction is obtained for a path that doesn't pass through vertices that represent multicurves containing freely homotopic curves.

As shown in figure 11, it is not always possible to get rid of all these homotopic curves by working with multicurves that don't contain null homologous submulticurves.

If the geodesic path $m_{1}, \gamma_{1}, \gamma_{2}, \ldots m_{2}$ passes through vertices representing multicurves with homotopic curves, since the γ_{i} do not contain null homologous multicurves, and m_{2} does not contain homotopic or null homologous multicurves, $m_{2}-\gamma_{i}$ does not contain homotopic multicurves that separate $f_{\text {imax }}$ from $f_{\text {imin }}$. In other words, there exists an arc connecting a component of $f_{\text {imax }}$ to a component of $f_{\text {imin }}$ that avoids all homotopic curves of γ_{i}. Therefore, although arbitrarily many surgeries may be performed on γ_{i} to obtain γ_{i+1}, this arc constitutes a "bottleneck", to which the same arguments as in the previous case (no homotopic curves) apply.

6. Quasi-flats and Distance Bounds

This section gives a few simple examples to illustrate key geometric properties of $\mathcal{H C}(S, \alpha)$.

Distances in $\mathcal{H C}(S, \alpha)$ were shown to be related the homological distance. The next question is, how does this relate to intersection number? At each step of the path construction algorithm, the intersection

Figure 12. Example demonstrating that the best possible upper bound on the distance between c_{1} and c_{2} in $\mathcal{H C}(S, \alpha)$ is given by $\frac{i\left(c_{2}, c_{1}\right)}{2}+1$.
number with m_{2} is decreased. Recall that the arcs of $m_{2} \cap\left(S \backslash m_{1}\right)$ on $\partial f_{\max }$ were denoted $a_{1} \ldots a_{n}$. Let $k_{a_{i}}$ be the number of arcs of $m_{2} \cap\left(S \backslash m_{1}\right)$ in the same homotopy class as a_{i} for $1 \leq i \leq n$. Then the intersection number of γ_{1} with m_{2} is at least $2 \sum_{i} k_{a_{i}}$ less than the intersection number of m_{1} with m_{2}.

It is well known that the distance between two curves c_{1} and c_{2} in the curve complex is either 1 if $i\left(c_{1}, c_{2}\right)=0$ or is bounded from above by $\log _{2}\left(i\left(c_{1}, c_{2}\right)\right)+1$. The next example shows that the distance between two curves in $\mathcal{H C}(S, \alpha)$ can be as much as $\frac{i\left(c_{1}, c_{2}\right)}{2}+1$.

Example 10 (Dehn twisting around bounding pairs). Let c_{1} and c_{2} be the curves shown in figure 12. c_{2} is obtained by Dehn twisting c_{1} n times around a bounding pair, where $n=5$ in figure 12. A simple calculation shows that $\delta\left(c_{1}, c_{2}\right)$ is equal to $\frac{i\left(c_{1}, c_{2}\right)}{2}+1$. In this case, it is also clear that $\frac{i\left(c_{1}, c_{2}\right)}{2}+1$ is the distance between c_{2} and c_{1} in $\mathcal{H C}(S, \alpha)$. To see why, note that any multicurve in α has to have nonzero algebraic intersection number with each of the curves in the bounding pair. Also, it is not possible to Dehn twist more than once around the bounding pair when passing from γ_{i} to γ_{i+1}. From this it follows that $i\left(\gamma_{i+1}, c_{2}\right) \geq i\left(\gamma_{i}, c_{2}\right)-2$, i.e. a shorter path than the path obtained from the path construction algorithm can not exist.

Unlike the curve complex, which is known to be δ-hyperbolic ([13] and [2]), this observation can be used to provide an example to show that $\mathcal{H C}(S, \alpha)$ is not δ-hyperbolic.

Theorem 12. $\mathcal{H C}(S, \alpha)$ is not δ-hyperbolic for $g>3$.
Proof. For $g>3$ there exist two pairs of bounding pairs $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$; each of the t_{i} representing distinct isotopy classes. Suppose

Example 11 (Dehn twisting around pairs of bounding pairs).

v_{1} is a multicurve with nonzero algebraic intersection number with each of t_{1}, t_{2}, t_{3} and t_{4}, as in example 11. Let v_{2} be the multicurve v_{1} Dehn twisted around $\left(t_{1}, t_{2}\right) n$ times, and v_{3} be the multicurve v_{1} Dehn twisted around $\left(t_{3}, t_{4}\right) n$ times. v_{1}, v_{2} and v_{3} represent the vertices of a geodesic triangle in $\mathcal{H C}(S, \alpha)$. Since the distance between two vertices on the boundary of the triangle is equal to the number of Dehn twists around the bounding pairs $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$ necessary to get from one vertex to the other, for n even, the midpoints of the sides of the geodesic triangle are each a distance $\frac{n}{2}$ from the other two sides of the triangle. For any fixed δ, n can therefore be chosen large enough so that this triangle is not δ-thin. In this example, the triangle is contained in a so-called quasi-flat.

Example 11 also shows that, unlike in the curve complex, there does not always exist a tight geodesic connecting any two vertices. A geodesic $c_{1}, \gamma_{1}, \gamma_{2}, \ldots, c_{2}$ has to be constructed such that for each i, γ_{i+1} is obtained from γ_{i} by performing four Dehn twists. It is not hard to check that this is only possible if γ_{1} is obtained from c_{1} by performing a surgery that cuts c_{1} into two curves; one that intersects t_{1} and t_{2}, and another one that intersects t_{3} and t_{4}. All curves contained in the one dimensional cell complex $c_{1} \cup c_{2}$ are either null homologous, c_{1}, c_{2}, $t_{1}, t_{2}, t_{3}, t_{4}$ or they intersect all of t_{1}, t_{2}, t_{3} and t_{4}. It follows that a geodesic connecting c_{1} and c_{2} can't be tight.

References

[1] Bestvina, M. Bux, K. and Margalit, M. (2007) 'The dimension of the Torelli group' arXiv:0709.0287.
[2] Bowditch, B. (2006), 'Intersection numbers and hyperbolicity of the curve complex' J. reine angew. Math 598, 105-129
[3] Bowditch, B. (2008), 'Tight geodesics in the curve complex’ Invent. math. 171, 281-300.
[4] Brock, J., Canary, R. and Minsky, Y. (2004), 'The classification of Kleinian groups, II: The ending lamination conjecture' arXiv:math/0412006v1.
[5] Farb, B. and Margalit, D. (2009) A Primer on Mapping Class Groups version 3.1 available at www.math.uchicago.edu/ margalit/mcg/mcgv31.pdf
[6] Farb, B. and Ivanov, N. (2003) 'The Torelli geometry and its applications' Research Announcement.
[7] Harvey, W. (1981), 'Boundary structure of the modular group' Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (I. Kra and B. Maskit, eds), Ann. of Math. Stud. 97, Princeton
[8] Hatcher, A. (2008), 'The cyclic cycle complex of a surface', available at http://www.math.cornell.edu/ hatcher/Papers/cycles
[9] Hempel, J. (2001), '3-manifolds as viewed from the curve complex' Topology 40(3), pp. 631-657.
[10] Irmer, I. (2010),'The curve graph and surface construction in $S \times \mathbb{R}^{\prime}, \mathrm{PhD}$ Thesis.
[11] Leasure, J. (2002), 'Geodesics in the complex of curves of a surface' PhD Thesis. Available at http://hdl.handle.net/2152/1700
[12] Lickorish, W. (1964), 'A finite set of generators for the homeotopy type of a 2-manifold' Math. Proc. Cambridge Phil. soc. 60.
[13] Masur, H., Minsky, Y.(1999), 'Geometry of the complex of curves I: Hyperbolicity' Invent. Math.138, 103-149.
[14] Masur, H., Minsky, Y. (2000), 'Geometry of the complex of curves II: Hierarchical Structure' Geometric and Functional Analysis10(4)
[15] Shackelton, J. 'Tightness and computing distances in the curve complex' arXiv:math/0412078v3 14 Apr 2005
E-mail address: irmer@cs.uni-bonn.de

