THE α-CALCULUS-CUM-α-ANALYSIS OF $\frac{\partial^r}{\partial s^r} \zeta(s, \alpha)$

V.V.RANE

A-3/203, ANAND NAGAR,

DAHISAR , MUMBAI-400 068,

INDIA

v v rane@yahoo.co.in

<u>Abstract</u>: For Hurwitz zeta function $\zeta(s,\alpha)$, as a function of α , we discuss the location and the nature of singularities of $\zeta^{(r)}(s,\alpha) = \frac{\partial^r}{\partial s^r} \zeta(s,\alpha)$, the formulae for the derivatives and the primitives of $\zeta^{(r)}(s,\alpha)$, the Riemann-integrability of $\zeta^{(r)}(s,\alpha)$ on the intervals [0,1] and $[1,\infty)$; and the evaluation of integrals $\int_{0}^{1} \zeta(-m_1,\alpha) \cdot \zeta(-m_2,\alpha) \dots \zeta(-m_k,\alpha) \cdot \zeta^{(r)}(s,\alpha) d\alpha$, where $m_1,m_2,\dots,m_k \ge 0$ are integers and Re s<1.

Keywords : Hurwitz zeta function , Bernoulli polynomials /numbers .

THE α -CALCULUS-CUM- α -ANALYSIS OF $\frac{\partial^r}{\partial s^r} \zeta(s, \alpha)$

V.V.RANE

A-3/203, ANAND NAGAR ,

DAHISAR , MUMBAI-400 068,

INDIA

v v rane@yahoo.co.in

Let $r \ge 0$ be an integer and for the complex variables s, α , let $\zeta(s, \alpha)$ be the Hurwitz zeta function and let $\zeta^{(r)}(s, \alpha) = \frac{\partial^r}{\partial s^r} \zeta(s, \alpha)$. The object of this paper is to bring out the behaviour of $\zeta^{(r)}(s, \alpha)$ as an analytic function of the complex variable α ; to determine the location and the nature of the singularities of $\zeta^{(r)}(s, \alpha)$; to determine the Riemann integrability of $\zeta^{(r)}(s, \alpha)$ on intervals [0,1] and $[1, \infty)$; to obtain the formulae for its derivatives and primitives with respect to α ; to evaluate the integrals $\int_0^1 \zeta(-m_1, \alpha)\zeta(-m_2, \alpha) \dots \zeta(-m_r, \alpha)\zeta(s, \alpha)$ and $\int_0^1 \zeta(-m_1, \alpha) \cdot \zeta(-m_2, \alpha) \dots \zeta(-m, \alpha) \cdot \zeta^*(s, \alpha) d\alpha$, where $m_1, m_2, \dots, m_r \ge 0$ are integers and Re s<1.

Next, we formally introduce our notation and terminology. For complex $\alpha \neq 0,-1,-2,...$, and for the complex variable s, let $\zeta(s,\alpha)$ be the Hurwitz zeta function defined by $\zeta(s,\alpha) = \sum_{n\geq 0} (n+\alpha)^{-s}$ for Re s>1 and its analytic continuation. Let $\zeta(s,1) = \zeta(s)$, the Riemann zeta function. In what follows, $\Gamma(s)$ stands for gamma function . $B_n(\alpha) = \sum_{i=0}^n {n \choose i} B_{n-i} \alpha^i$ stands for Bernoulli polynomial of degree n . Here $B_n = B_n(0)$ are Bernoulli numbers , which are known to be rational numbers . We note that if $n \ge 0$ is an integer , then $\zeta(-n,\alpha) = -\frac{B_{n+1}(\alpha)}{n+1}$ and $B_n(1-\alpha) = (-1)^n B_n(\alpha)$. We write $\psi(\alpha) = \frac{\Gamma'}{\Gamma}(\alpha)$. Note that $\frac{d}{d\alpha}\zeta'(0,\alpha) = \frac{d}{d\alpha}\log\frac{\Gamma(\alpha)}{\sqrt{2\pi}} = \frac{\Gamma'}{\Gamma}(\alpha) = \psi(\alpha)$. Thus $\frac{d}{d\alpha}\zeta'(0,\alpha) = \psi(\alpha)$. We shall see that $\frac{d}{d\alpha}\psi(\alpha) = \zeta(2,\alpha)$. In view of the fact $\frac{d}{d\alpha}\zeta(s,\alpha) = -s\zeta(s+1,\alpha)$, we have $\frac{d^r}{d\alpha^r}\psi(\alpha) = (-1)^{r-1}r!\zeta(r+1,\alpha)$. We also note that if s_1, s_2 are complex numbers , then $\int_0^1 \zeta(s_1,\alpha) \cdot \zeta(s_2,\alpha) d\alpha = 2(2\pi)^{s_1+s_2-2} \cdot \Gamma(1-s_1)\Gamma(1-s_2) \cdot \cos\frac{\pi}{2}(s_1-s_2) \cdot \zeta(2-s_1-s_2)$,

barring the singularities of either side. In author [3], we study evaluation of Tornheim double zeta function $T(s_1, s_2, s_3)$ for various values of the complex

variables s_1, s_2, s_3 in terms of integrals of the type $\int_0^1 \zeta(s_1, \alpha) \zeta(s_2, \alpha) \zeta^{(r)}(s_3, \alpha) d\alpha$

for r = 0 or 1. In view of this, we shall find some integrals of the type $\int_{0}^{1} \zeta(s_{1}, \alpha) \zeta(s_{2}, \alpha) \zeta^{(r)}(s_{3}, \alpha) d\alpha$, which are explicitly computable in terms of values of Riemann zeta function and its derivatives. Apart from several other facts, in particular, we prove the following.

Proposition : For any integer $r \ge 0$ and for Re s<0 , $\zeta^{(r)}(s, \alpha)$ is a continuous function of α in the whole complex α – plane and we have the following .

1)
$$\zeta^{(r)}(s,0) = \zeta^{(r)}(s) = \zeta^{(r)}(s,1)$$
 for Re s<0 and $\lim_{s \to 0^-} \zeta^{(r)}(s,0) = \zeta^{(r)}(0)$,

where $s \rightarrow 0$ through real values from the left of 0.

2)
$$\frac{\partial}{\partial \alpha} \zeta^{(r)}(s,\alpha) = -r \cdot \zeta^{(r-1)}(s+1,\alpha) - s \zeta^{(r)}(s+1,\alpha)$$
 for $s \neq 0$ and for $r \ge 0$.

3) We have
$$\frac{\partial}{\partial \alpha} \zeta^{(r)}(0,\alpha) = -r! \gamma_{r-1}(\alpha)$$
 for $r \ge 0$,

where
$$s\zeta(s+1,\alpha) = \sum_{n\geq 0} \gamma_{n-1}(\alpha)s^n$$
 with $\gamma_{-1}(\alpha) = 1$.

4) We have
$$\frac{\partial}{\partial \alpha} \gamma_{r-1}(\alpha) = -\frac{1}{r!} \frac{\partial^2}{\partial \alpha^2} \zeta^{(r)}(0,\alpha) = -\frac{1}{r!} \cdot \frac{\partial^r}{\partial s^r} (s(s+1)\zeta(s+2,\alpha)) \Big|_{s=0}$$
 for $r \ge 1$.

Note : 1) of Proposition follows from the fact $\zeta(s,\alpha) - \zeta(s,\alpha+1) = \alpha^{-s}$ and consequently, $\zeta^{(r)}(s,\alpha) - \zeta^{(r)}(s,\alpha+1) = \alpha^{-s}(-\log \alpha)^r$ for an integer $r \ge 0$, after letting $\alpha \to 0$.

Corollaries of Proposition :

1) For $s \neq 1$, the primitives (or the indefinite integrals) of $\zeta(s,\alpha), \zeta'(s,\alpha)$ and $\zeta''(s,\alpha)$ are as follows : $\int \int \zeta(s-1,\alpha) ds = \zeta(s-1,\alpha)$

a)
$$\int \zeta(s,\alpha)d\alpha = \frac{\zeta(s-1,\alpha)}{1-s}$$

b) $\int \zeta'(s,\alpha)d\alpha = \frac{\zeta(s-1,\alpha)}{(1-s)^2} + \frac{\zeta'(s-1,\alpha)}{1-s}$
c) $\int \zeta''(s,\alpha)d\alpha = 2\frac{\zeta(s-1,\alpha)}{(1-s)^3} + 2\frac{\zeta'(s-1,\alpha)}{(1-s)^2} + \frac{\zeta''(s-1,\alpha)}{1-s}$
d) $\int \zeta(s,1-\alpha)d\alpha = \frac{\zeta(s-1,1-\alpha)}{s-1}$
e) $\int \zeta'(s,1-\alpha)d\alpha = -\left(\frac{\zeta(s-1,1-\alpha)}{(1-s)^2} + \frac{\zeta'(s-1,1-\alpha)}{1-s}\right)$

f) In general, for an integer $r \ge 0$,

$$\int \zeta^{(r)}(s,\alpha) d\alpha = \sum_{\ell=0}^{r} c_{\ell} \quad \frac{\zeta^{(\ell)}(s-1,\alpha)}{(1-s)^{r+1-\ell}}$$

for some absolute constants $\,c_\ell \, 's\,$.

2) Under the action of the operator $\frac{\partial}{\partial \alpha}$, we have the following diagram

where c_{ℓ} 's are absolute constants as in f) of Corollary 1) above .

Note :This is so, because for Re s>1 ,as $\alpha \rightarrow \infty$,

$$\zeta^{(r)}(s,\alpha) = (-1)^r \sum_{n \ge 0} (n+\alpha)^{-s} \log^r (n+\alpha) = 0$$

4) We have
$$\int_0^1 \zeta^{(r)}(s,\alpha) d\alpha = 0 \text{ for Re s<1.}$$

Note : This follows from f) of corollary 1) and 1) of Proposition above .

5) For Re s_1 , Re s_2 <0 and for real s, we have

$$\lim_{s \to 1^{-}} \int_{0}^{1} \zeta(s_{1}, \alpha) \cdot \zeta(s_{2}, \alpha) \cdot (s - 1) \zeta(s, \alpha) d\alpha = \int_{0}^{1} \zeta(s_{1}, \alpha) \cdot \zeta(s_{2}, \alpha) d\alpha - \zeta(s_{1}) \cdot \zeta(s_{2}) d\alpha = 2(2\pi)^{s_{1}+s_{2}-2} \cdot \Gamma(1-s_{1}) \Gamma(1-s_{2}) \cos \frac{\pi}{2} (s_{1}-s_{2}) \cdot \zeta(2-s_{1}-s_{2}) - \zeta(s_{1}) \cdot \zeta(s_{2}) ,$$

where $s \rightarrow 1$ from left through real values .

6) Let
$$m_1, m_2, \dots, m_r \ge 1$$
 be integers and let $N = \sum_{i=1}^r m_i$. Then

$$\int_0^1 \zeta(1-m_1, \alpha) \cdot \zeta(1-m_2, \alpha) \dots \cdot \zeta(1-m_r, \alpha) d\alpha$$

$$= \frac{(-1)^r}{m_1 m_2 \dots m_r} \int_0^1 B_{m_1}(\alpha) \cdot B_{m_2}(\alpha) \dots \dots B_{m_r}(\alpha) d\alpha \text{ is explicitly computable as}$$

a rational number , which equals zero when N is odd .

Remark : Note that $\prod_{\ell=1}^{r} B_{m_2}(\alpha)$ is a polynomial with rational coefficients .

Hence
$$\int_{0}^{1} \prod_{\ell=1}^{r} B_{m_{2}}(\alpha) d\alpha$$
 is a rational number .
Note that $\int_{0}^{1} B_{m_{1}}(\alpha) B_{m_{2}}(\alpha) \dots B_{m_{r}}(\alpha) d\alpha$

$$= \int_{0}^{1} B_{m_{1}}(1-\alpha) \cdot B_{m_{2}}(1-\alpha) \dots B_{m_{r}}(1-\alpha) d\alpha = (-1)^{N} \int_{0}^{1} B_{m_{1}}(\alpha) \cdot B_{m_{2}}(\alpha) \dots B_{m_{r}}(\alpha) d\alpha$$

$$= 0 \text{, when N is odd .}$$

7) If
$$m_1, m_2, \dots, m_r \ge 0$$
 are integers and Re s<1, then

$$\int_{0}^{1} \zeta(-m_1, \alpha) \cdot \zeta(-m_2, \alpha) \dots \cdot \zeta(-m_r, \alpha) \zeta(s, \alpha) d\alpha$$

is explicitly computable as a linear combination of

 $\zeta(s-1), \zeta(s-2), \ldots, \zeta(s-N)$ with coefficients dependent on s,

where $N = \sum_{i=1}^{r} (m_i + 1)$ is the degree of the product polynomial $\zeta(-m_1, \alpha) \cdot \zeta(-m_2, \alpha)$ $\zeta(-m_r, \alpha)$.

8) If $m_1, m_2, \dots, m_r \ge 0$ are integers and Re s<1 ,

then
$$\int_{0}^{1} \zeta(-m_1, \alpha) \cdot \zeta(-m_2, \alpha) \dots \zeta(-m_r, \alpha) \cdot \zeta'(s, \alpha) d\alpha$$

is explicitly computable as a linear combination of

$$\zeta'(s-1), \zeta'(s-2), \dots, \zeta'(s-N)$$
; $\zeta(s-1), \zeta(s-2), \dots, \zeta(s-N)$

with coefficients dependent upon s , where $N = \sum_{i=1}^{r} (m_i + 1)$.

9) We have for Re s>1,

$$\int_{0}^{1} \zeta(0,\alpha)\zeta(1-s,\alpha)\cdot\zeta(2-s,\alpha)d\alpha = \frac{1}{2(s-1)} \Big(2(2\pi)^{-2s}\cdot\Gamma^{2}(s)\zeta(2s) - \zeta^{2}(1-s) \Big)$$

Assuming Proposition, we shall prove the corollaries.

Proof of Corollary 2): We shall sketch the proof of

$$\begin{split} \frac{\partial}{\partial \alpha}(-\gamma_0(\alpha)) &= \frac{\partial^2}{\partial \alpha^2} \zeta'(0,\alpha) = \zeta(2,\alpha) \,. \\ \text{We have } \frac{\partial^2}{\partial \alpha^2} \zeta'(0,\alpha) &= \frac{\partial^2}{\partial \alpha^2} \frac{\partial}{\partial s} \zeta(s,\alpha) |_{s=0} \\ &= \frac{\partial}{\partial s} \frac{\partial^2}{\partial \alpha^2} \zeta(s,\alpha) |_{s=0} = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} (-s\zeta(s+1,\alpha)) |_{s=0} = \frac{\partial}{\partial s} (s(s+1)\zeta(s+2,\alpha)) |_{s=0} \\ &= ((s+1)\zeta(s+2,\alpha) + s\zeta(s+2,\alpha) + s(s+1)\zeta'(s+2,\alpha))_{s=0} = \zeta(2,\alpha) \,. \\ \text{Next , we show } \frac{\partial}{\partial \alpha} \zeta''(0,\alpha) = -2\gamma_1(\alpha) \\ \text{and } \frac{\partial}{\partial \alpha} (-2\gamma_1(\alpha)) = \frac{\partial^2}{\partial \alpha^2} \zeta''(0,\alpha) = 2(\zeta'(2,\alpha) + \zeta(2,\alpha)) \,. \\ \text{We have } \frac{\partial}{\partial \alpha} \zeta'''(0,\alpha) = \frac{\partial}{\partial \alpha} \frac{\partial^2}{\partial s^2} \zeta(s,\alpha) |_{s=0} \\ &= \frac{\partial^2}{\partial s^2} \frac{\partial}{\partial \alpha} \zeta(s,\alpha) |_{s=0} = \frac{\partial^2}{\partial s^2} (-s\zeta(s+1,\alpha)) |_{s=0} = -(s\zeta(s+1,\alpha))^{"} |_{s=0} = -2\gamma_1(\alpha) \,. \end{split}$$

Next,
$$\frac{\partial}{\partial \alpha} \left(-2\gamma_1(\alpha) \right) = \frac{\partial^2}{\partial \alpha^2} \zeta''(0,\alpha) = \frac{\partial^2}{\partial \alpha^2} \frac{\partial^2}{\partial s^2} \zeta(s,\alpha) |_{s=0}$$
$$= \frac{\partial^2}{\partial s^2} \frac{\partial^2}{\partial \alpha^2} \zeta(s,\alpha) |_{s=0} = \frac{\partial^2}{\partial s^2} \left(s(s+1)\zeta(s+2,\alpha) \right) |_{s=0}$$
$$= \frac{\partial}{\partial s} \left\{ s \cdot \zeta(s+2,\alpha) + (s+1)\zeta(s+2,\alpha) + s(s+1)\zeta'(s+2,\alpha) \right\}_{s=0}$$
$$= \left\{ \frac{\zeta(s+2,\alpha) + s\zeta'(s+2,\alpha) + \zeta(s+2,\alpha) + (s+1)\zeta'(s+2,\alpha)}{(s+1)\zeta'(s+2,\alpha) + s\zeta'(s+2,\alpha) + s\zeta'(s+2,\alpha) + s(s+1)\zeta''(s+2,\alpha)} \right\}_{s=0} = 2 \left(\zeta(2,\alpha) + \zeta'(2,\alpha) \right).$$

Proof of Corollary 5) : For Res₁ , Res₂ <0 and for real s with s<1 ,

$$\int_{0}^{1} \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) \cdot (s-1)\zeta(s,\alpha) d\alpha = -\int_{0}^{1} \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) \frac{\partial}{\partial \alpha} \zeta(s-1,\alpha) d\alpha$$

$$= -\left\{ \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) \cdot \zeta(s-1,\alpha) \right|_{\alpha=0}^{1} - \int_{0}^{1} \zeta(s-1,\alpha) \cdot \frac{\partial}{\partial \alpha} (\zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha)) d\alpha \right\}$$

$$= 0 + \int_{0}^{1} \zeta(s-1,\alpha) \cdot \frac{\partial}{\partial \alpha} (\zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha)) d\alpha .$$
Thus
$$\lim_{s \to 1^{-}} \int_{0}^{1} \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) (s-1) \zeta(s,\alpha) d\alpha$$

$$= \lim_{s \to 1^{-}} \int_{0}^{1} \zeta(s-1,\alpha) \cdot \frac{\partial}{\partial \alpha} (\zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha)) d\alpha = \int_{0}^{1} \zeta(0,\alpha) \cdot \frac{\partial}{\partial \alpha} (\zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha)) d\alpha$$

$$= \int_{0}^{1} (\frac{1}{2} - \alpha) \frac{\partial}{\partial \alpha} (\zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha)) d\alpha = (\frac{1}{2} - \alpha) \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) \left|_{\alpha=0}^{1} + \int_{0}^{1} \zeta(s_{1},\alpha) \cdot \zeta(s_{2},\alpha) d\alpha ,$$

on integration by parts .

This, in turn,
$$= \int_{0}^{1} \zeta(s_{1}, \alpha) \cdot \zeta(s_{2}, \alpha) d\alpha - \zeta(s_{1}) \cdot \zeta(s_{2})$$
$$= 2(2\pi)^{s_{1} + s_{2} - 2} \cdot \Gamma(1 - s_{1})\Gamma(1 - s_{2}) \cos \frac{\pi}{2}(s_{1} - s_{2}) \cdot \zeta(2 - s_{1} - s_{2}) - \zeta(s_{1}) \cdot \zeta(s_{2}).$$

Proof of Corollary 7) : We have

$$\zeta(-m_1,\alpha) \cdot \zeta(-m_2,\alpha) \dots \zeta(-m_r,\alpha) = \left(-\frac{B_{m+1}(\alpha)}{m_1+1}\right) \left(-\frac{B_{m_2+1}(\alpha)}{m_2+1}\right) \dots \left(-\frac{B_{m_r+1}(\alpha)}{m_r+1}\right)$$

= $P_N(\alpha)$, say, where $P_N(\alpha)$ is a polynomial of degree N = $\sum_{i=1}^r (m_i + 1)$.

Let $P_N(\alpha) = \sum_{\ell=0}^N a_i \alpha^i$, where a_i 's are rational numbers.

Thus
$$\int_{0}^{1} P_{N}(\alpha)\zeta(s,\alpha)d\alpha = \sum_{i=0}^{N} a_{i}\int_{0}^{1} \alpha^{i}\zeta(s,\alpha)d\alpha$$
.

Note that for each i, $\int_{0}^{1} \alpha^{i} \zeta(s,\alpha) d\alpha = \int_{0}^{1} \alpha^{i} d\left(\frac{\zeta(s-1,\alpha)}{1-s}\right)$

$$= \alpha^{i} \frac{\zeta(s-1,\alpha)}{1-s} \Big|_{\alpha=0}^{1} - \int_{0}^{1} \frac{\zeta(s-1,\alpha)}{1-s} i\alpha^{i-1} d\alpha = \frac{\zeta(s-1)}{1-s} + \frac{i}{s-1} \int_{0}^{1} \alpha^{i-1} \zeta(s-1,\alpha) d\alpha$$

We write $\int_{0}^{1} \alpha^{i-1} \zeta(s-1,\alpha) d\alpha = \int_{0}^{1} \alpha^{i-1} d\left(\frac{\zeta(s-2,\alpha)}{2-s}\right)$ and continue the process of integration by parts till we reach the stage , when we come across the integral

$$\int_{0}^{1} \zeta(s-i,\alpha) d\alpha$$
, which is equal to zero.

Thus
$$\int_{0}^{1} \alpha^{i} \zeta(s,\alpha) d\alpha$$
 is a linear combination of $\zeta(s-1), \zeta(s-2), \dots, \zeta(s-i)$

for each i=0,1,2,...., N.

Proof of corollary 8) : We have $\int_{0}^{1} \zeta(-m_{1},\alpha) \cdot \zeta(-m_{2},\alpha) \dots \zeta(-m_{r},\alpha) \cdot \zeta'(s,\alpha) d\alpha$

$$=\int_{0}^{1} P_{N}(\alpha) \cdot \zeta'(s,\alpha) d\alpha = \sum_{j=0}^{N} a_{j} \int_{0}^{1} \alpha^{j} \cdot \zeta'(s,\alpha) d\alpha ,$$

where $P_{N}(\alpha)$ is the polynomial as in corollary 7) .

Note that
$$\int_{0}^{1} \alpha^{j} \cdot \zeta'(s,\alpha) d\alpha = \int_{0}^{1} \alpha^{j} d\left(\frac{\zeta'(s-1,\alpha)}{1-s} + \frac{\zeta(s-1,\alpha)}{(1-s)^{2}}\right) d\alpha$$
$$= \left[\alpha^{j} \left(\frac{\zeta'(s-1,\alpha)}{1-s} + \frac{\zeta(s-1,\alpha)}{(1-s)^{2}}\right)\right]_{\alpha=0}^{1} - \int_{0}^{1} \left(\frac{\zeta'(s-1,\alpha)}{(1-s)} + \frac{\zeta(s-1,\alpha)}{(1-s)^{2}}\right) \cdot j\alpha^{j-1} d\alpha$$
$$= \frac{\zeta'(s-1)}{1-s} + \frac{\zeta(s-1)}{(1-s)^{2}} - j\int_{0}^{1} \left(\frac{\zeta'(s-1,\alpha)}{(1-s)} + \frac{\zeta(s-1,\alpha)}{(1-s)^{2}}\right) \cdot \alpha^{j-1} d\alpha$$

We continue to integrate by parts j times.

Thus we find that
$$\int_{0}^{1} \alpha^{j} \zeta'(s, \alpha) d\alpha$$
 is a linear combination of $\zeta'(s-1), \zeta'(s-2), \dots, \zeta'(s-j)$; $\zeta(s-1), \zeta(s-2), \dots, \zeta(s-j)$ for each $j = 1, 2, \dots, N$.

Proof of Corollary 9) : We have for Re s>1,

$$\int_{0}^{1} \zeta(0,\alpha)\zeta(1-s,\alpha)\cdot\zeta(2-s,\alpha)d\alpha = \frac{1}{2(s-1)}\int_{0}^{1} (\frac{1}{2}-\alpha)\frac{\partial}{\partial\alpha}\zeta^{2}(1-s,\alpha)d\alpha$$

$$= \frac{1}{2(s-1)}\left\{ (\frac{1}{2}-\alpha)\zeta^{2}(1-s,\alpha)|_{\alpha=0}^{1} + \int_{0}^{1} \zeta^{2}(1-s,\alpha)d\alpha \right\}$$

$$= \frac{1}{2(s-1)} \left(-\zeta^{2}(1-s) + \int_{0}^{1} \zeta^{2}(1-s,\alpha)d\alpha \right) = \frac{1}{2(s-1)} \left(2(2\pi)^{-2s}\Gamma^{2}(s)\zeta(2s) - \zeta^{2}(1-s) \right).$$

It is known that $\zeta(s, \alpha)$ is an analytic function of the complex variable s with a simple pole at s=1. In author [1], [2] it has been shown that $\zeta(s, \alpha)$ is an analytic function of the complex variable α except for possible singularities at non-positive integer values of α . For an integer $r \ge 0$, we write $\zeta^{(r)}(s,\alpha) = \frac{\partial^r}{\partial s^r} \zeta(s,\alpha)$. In author [1], [2] it has been shown that $\zeta^{(r)}(s,\alpha)$ is an

analytic function of the complex variable α except for possible singularities at $\alpha = 0, -1, -2, \dots$.

We have
$$\zeta(s, \alpha) = \sum_{n \ge 0} (n + \alpha)^{-s}$$
 for Re s>1,

so that $(-1)^r \zeta^{(r)}(s,\alpha) = \sum_{n\geq 0} (n+\alpha)^{-s} \log^r (n+\alpha)$ for $r\geq 0$.

Thus
$$(-1)^r \frac{\partial}{\partial \alpha} \zeta^{(r)}(s,\alpha) = r \sum_{n \ge 0} (n+\alpha)^{-s-1} \log^{r-1} (n+\alpha) - s \sum_{n \ge 0} (n+\alpha)^{-s-1} \log^r (n+\alpha)$$

This gives
$$\frac{\partial}{\partial \alpha} \zeta^{(r)}(s, \alpha) = -r \zeta^{(r-1)}(s+1, \alpha) - s \zeta^{(r)}(s+1, \alpha)$$
 for Re s>1 and $r \ge 1$.

By analyticity of $\zeta^{(r)}(s,\alpha)$ as a function of complex variables s and α , the above result holds everywhere. This proves 2) of Proposition.

Let $k \ge 1$ be an integer. Let $\zeta_k(s, \alpha) = \sum_{n \ge k} (n + \alpha)^{-s}$ for Re s>1; and

its analytic continuation . Then $\zeta_k(s,\alpha) = \zeta(s,\alpha) - \sum_{0 \le n \le k-1} (n+\alpha)^{-s} = \zeta(s,k+\alpha)$.

Let $\zeta_k(s) = \zeta(s) - \sum_{1 \le n \le k-1} n^{-s}$. Then in author [2], it has been shown that

$$\zeta_k(s,\alpha) = \sum_{n \ge 0} \frac{(-\alpha)^n}{n!} s(s+1) \dots (s+n-1) \cdot \zeta_k(s+n) \text{ in the disc } |\alpha| < k,$$

where empty product stands for 1.

This gives
$$\zeta(s, \alpha) = \sum_{0 \le n \le k-1} (n + \alpha)^{-s} + \sum_{n \ge 0} s(s+1) \dots (s+n-1) \zeta_k (s+n) \cdot \frac{(-\alpha)^n}{n!}$$

 $= \sum_{0 \le n \le k-1} (n+\alpha)^{-s} + \phi_k(s,\alpha)$, say, where $\phi_k(s,\alpha)$ is an analytic function of α in the disc

 $|\alpha| < k$ with $k \ge 1$ arbitrary and $\phi_k^{(r)}(s, \alpha) = \frac{\partial^r}{\partial s^r} \phi_k(s, \alpha)$ can be obtained by

term-by-term differentiation of $\phi_k(s,\alpha)$ with respect to s , r times .

Thus
$$\zeta^{(r)}(s,\alpha) = \sum_{0 \le n \le k-1} (n+\alpha)^{-s} (-\log(n+\alpha))^r + \phi_k^{(r)}(s,\alpha)$$

where $\phi_k^{(r)}(s, \alpha)$ is an analytic function of α in the disc $|\alpha| < k$ and $k \ge 1$ is arbitrary.

From the expression $\zeta(s,\alpha) = \sum_{0 \le n \le k-1} (n+\alpha)^{-s} + \phi_k(s,\alpha)$, where $\phi_k(s,\alpha)$ is analytic in the disc $|\alpha| < k$ with integer $k \ge 1$ arbitrary, we get the following :

- 1) If s = -m, where $m \ge 0$ is an integer, then $\zeta(-m, \alpha) = \sum_{0 \le n \le k-1} (n+\alpha)^m + \phi_k(-m, \alpha)$. Thus $\zeta(-m, \alpha)$ is an entire function of α .
 - 2) If $s = m \ge 1$ is an integer, then $\zeta(m, \alpha) = \sum_{0 \le n \le k-1} (n + \alpha)^{-m} + \phi_k(m, \alpha)$. Thus $\zeta(m, \alpha)$ has a pole of order m at every non-positive integer value of α .

3) If Re s<0, then
$$\zeta^{(r)}(s,\alpha) = (-1)^r \sum_{0 \le n \le k-1} (n+\alpha)^{-s} \log^r (n+\alpha) + \phi_k^{(r)}(s,\alpha)$$

where $\phi_k^{(r)}(s,\alpha)$ is analytic function of α in the disc $|\alpha| < k$. This shows that $\zeta^{(r)}(s,\alpha)$ is a continuous function of α , because if $\alpha = -n_0$, where n_0 is a fixed integer from amongst 0,1,2,..., we have $\lim_{\alpha \to -n_0} (n_0 + \alpha)^{-s} \log^r (n_0 + \alpha) = 0$,

for Re s<0. This also gives that if s is any complex number , the only possible singularities of $\zeta^{(r)}(s,\alpha)$ are non-positive integer values of α .

4) For Re s>1, we have $\zeta(s,\alpha) = \sum_{n\geq 0} (n+\alpha)^{-s}$. As $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} (n+\alpha)^{-s} = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} (n+\alpha)^{-s}$ for $\alpha \neq -n$, we have $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} \left(\sum_{n\geq 0} (n+\alpha)^{-s} \right) = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \left(\sum_{n\geq 0} (n+\alpha)^{-s} \right)$ for Re s>1 and for $\alpha \neq -n$, where $n = 0,1,2,\ldots$.

Thus
$$\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} \zeta(s, \alpha) = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)$$
 for Re s>1 and for 0< α <1.

Thus in view of analyticity of ζ (*s*, α) as a function of each complex variable s

and
$$\alpha$$
, we have $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} \zeta(s, \alpha) = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)$ for $s \neq 1$ and $\alpha \neq 0, -1, -2, \dots$.

More generally , if $r_1, r_2 \ge 0$ are integers , we have

$$\frac{\partial^{r_1}}{\partial \alpha^{r_1}} \frac{\partial^{r_2}}{\partial s^{r_2}} \zeta(s, \alpha) = \frac{\partial^{r_2}}{\partial s^{r_2}} \frac{\partial^{r_1}}{\partial \alpha^{r_1}} \zeta(s, \alpha) \text{ for } s \neq 1 \text{ and } \alpha \neq 0, -1, -2, \dots$$

In particular, $\frac{\partial}{\partial \alpha} \left(\frac{\partial}{\partial s} \zeta(s, \alpha) \right)_{s=0} = \frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)_{s=0}$ for $\alpha \neq 0, -1, -2, \dots$

That is,
$$\frac{\partial}{\partial \alpha} \zeta'(0,\alpha) = \frac{\partial}{\partial s} (-s\zeta(s+1,\alpha))|_{s=0}$$

Let
$$\zeta(s+1,\alpha) = \frac{1}{s} + \sum_{n\geq 0} \gamma_n(\alpha) s^n$$
 so that $s\zeta(s+1,\alpha) = 1 + \sum_{n\geq 0} \gamma_n(\alpha) s^{n+1} = \sum_{n\geq 0} \gamma_{n-1}(\alpha) s^n$,

where we have written $\gamma_{-1}(\alpha) = 1$

Thus
$$(s\zeta(s+1,\alpha))^{(r)}|_{s=0} = r!\gamma_{r-1}(\alpha)$$
 for $r = 0,1,2,...$

Here the superscript (r) denotes r-th order derivative with respect to s.

Thus we have
$$\frac{\partial}{\partial \alpha} \zeta'(0, \alpha) = -\gamma_0(\alpha)$$
.

However, we know $\zeta'(0, \alpha) = \log \frac{\Gamma(\alpha)}{\sqrt{2\pi}}$ for $\alpha \neq -n$, where $n = 0, 1, 2, \dots, n$

Thus we have $\psi(\alpha) = -\gamma_0(\alpha)$, where $\psi(\alpha) = \frac{\Gamma'}{\Gamma}(\alpha)$.

Note that $\psi(1) = -\gamma_0(1) = -\gamma$,where γ is Euler's constant .

The fact $(s\zeta(s+1,\alpha))^{(r)}|_{s=0} = r!\gamma_{r-1}(\alpha)$ gives $\left(\frac{\partial}{\partial\alpha}\zeta(s,\alpha)\right)^{(r)}|_{s=0} = -r!\gamma_{r-1}(\alpha)$.

Equivalently , we have $\frac{\partial}{\partial \alpha} \zeta^{(r)}(0,\alpha) = -r! \gamma_{r-1}(\alpha)$ for $r \ge 0$.

5) We have
$$\zeta'(0,\alpha) = -\sum_{0 \le n \le k-1} \log (n+\alpha) + \phi'_k(0,\alpha)$$

so that
$$\frac{\partial}{\partial \alpha} \zeta'(0, \alpha) = -\sum_{0 \le n \le k-1} \frac{1}{n+\alpha} + \frac{\partial}{\partial \alpha} \phi'_k(0, \alpha)$$
.

That is $\psi(\alpha) = -\sum_{0 \le n \le k-1} \frac{1}{(n+\alpha)} + \frac{\partial}{\partial \alpha} \phi_k^{\prime}(0,\alpha)$.

Thus $\psi(\alpha)$ has a simple pole at each non-positive integer value of α and

consequently for $r \ge 1$, $\frac{\partial^r}{\partial \alpha^r} \psi(\alpha) = (-1)^{r-1} r! \zeta(r+1, \alpha)$. has a pole of order (r+1) at

each non-positive integer value of $\boldsymbol{\alpha}$ and is analytic elsewhere .

This completes our proof.

References

1] V.V. Rane , Instant Evaluation and demystification of $\zeta(n)$, $L(n, \chi)$ that Euler,

Ramanujan missed-I (ar Xiv org. website).

2] V.V. Rane , Instant Evaluation and demystification of $\zeta(n)$, $L(n, \chi)$ that Euler,

Ramanujan missed-II (ar Xiv org. website).

3] V.V.Rane , Functional Equation of Tornheim Zeta function and the α -Calculus of $\frac{\partial^r}{\partial s^r} \zeta(s, \alpha)$ (ar Xiv org. website) .