THE α-CALCULUS-CUM- α-ANALYSIS OF $\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$

V.V.RANE
A-3/203, ANAND NAGAR,
DAHISAR ,MUMBAI-400 068,
INDIA
v v rane@yahoo.co.in

Abstract: _For Hurwitz zeta function $\zeta(s, \alpha)$, as a function of α, we discuss the location and the nature of singularities of $\zeta^{(r)}(s, \alpha)=\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$, the formulae for the derivatives and the primitives of $\zeta^{(r)}(s, \alpha)$, the Riemann-integrability of $\zeta^{(r)}(s, \alpha)$ on the intervals $[0,1]$ and $[1, \infty)$; and the evaluation of integrals $\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots \ldots \zeta\left(-m_{k}, \alpha\right) \cdot \zeta^{(r)}(s, \alpha) d \alpha$, where $m_{1}, m_{2}, \ldots \ldots \ldots \ldots ., m_{k} \geq 0$ are integers and Res<1.

Keywords : Hurwitz zeta function, Bernoulli polynomials/numbers .

THE α-CALCULUS-CUM- α-ANALYSIS OF $\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$
V.V.RANE

A-3/203, ANAND NAGAR,
DAHISAR ,MUMBAI-400 068,
INDIA
v v rane@yahoo.co.in

Let $r \geq 0$ be an integer and for the complex variables s, α, let $\zeta(s, \alpha)$ be the Hurwitz zeta function and let $\zeta^{(r)}(s, \alpha)=\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$. The object of this paper is to bring out the behaviour of $\zeta^{(r)}(s, \alpha)$ as an analytic function of the complex variable α; to determine the location and the nature of the singularities of $\zeta^{(r)}(s, \alpha)$; to determine the Riemann integrability of $\zeta^{(r)}(s, \alpha)$ on intervals $[0,1]$ and $[1, \infty)$; to obtain the formulae for its derivatives and primitives with respect to α; to evaluate the integrals $\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \zeta\left(-m_{2}, \alpha\right) \ldots \zeta\left(-m_{r}, \alpha\right) \zeta(s, \alpha)$ and $\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots . \zeta(-m, \alpha) \cdot \zeta^{\prime}(s, \alpha) d \alpha$, where $m_{1}, m_{2}, \ldots \ldots \ldots \ldots, m_{r} \geq 0$ are integers and Res <1.

Next, we formally introduce our notation and terminology .
For complex $\alpha \neq 0,-1,-2, \ldots \ldots$. , and for the complex variable s, let $\zeta(s, \alpha)$ be the Hurwitz zeta function defined by $\zeta(s, \alpha)=\sum_{n \geq 0}(n+\alpha)^{-s}$ for Re $s>1$ and its analytic continuation. Let $\zeta(s, 1)=\zeta(s)$, the Riemann zeta function. In what
follows, $\Gamma(s)$ stands for gamma function. $B_{n}(\alpha)=\sum_{i=0}^{n}\binom{n}{i} B_{n-i} \alpha^{i}$ stands for Bernoulli polynomial of degree n . Here $B_{n}=B_{n}(0)$ are Bernoulli numbers, which are known to be rational numbers. We note that if $n \geq 0$ is an integer, then $\zeta(-n, \alpha)=-\frac{B_{n+1}(\alpha)}{n+1}$ and $B_{n}(1-\alpha)=(-1)^{n} B_{n}(\alpha)$. We write $\psi(\alpha)=\frac{\Gamma^{\prime}}{\Gamma}(\alpha)$. Note that $\frac{d}{d \alpha} \zeta^{\prime}(0, \alpha)=\frac{d}{d \alpha} \log \frac{\Gamma(\alpha)}{\sqrt{2 \pi}}=\frac{\Gamma^{\prime}}{\Gamma}(\alpha)=\psi(\alpha)$. Thus $\frac{d}{d \alpha} \zeta^{\prime}(0, \alpha)=\psi(\alpha)$. We shall see that $\frac{d}{d \alpha} \psi(\alpha)=\zeta(2, \alpha)$. In view of the fact $\frac{d}{d \alpha} \zeta(s, \alpha)=-s \zeta(s+1, \alpha)$, we have $\frac{d^{r}}{d \alpha^{r}} \psi(\alpha)=(-1)^{r-1} r!\zeta(r+1, \alpha)$. We also note that if s_{1}, s_{2} are complex numbers, then $\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) d \alpha=2(2 \pi)^{s_{1}+s_{2}-2} \cdot \Gamma\left(1-s_{1}\right) \Gamma\left(1-s_{2}\right) \cdot \cos \frac{\pi}{2}\left(s_{1}-s_{2}\right) \cdot \zeta\left(2-s_{1}-s_{2}\right)$, barring the singularities of either side. In author [3] , we study evaluation of Tornheim double zeta function $T\left(s_{1}, s_{2}, s_{3}\right)$ for various values of the complex variables s_{1}, s_{2}, s_{3} in terms of integrals of the type $\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \zeta\left(s_{2}, \alpha\right) \zeta^{(r)}\left(s_{3}, \alpha\right) d \alpha$ for $r=0$ or 1 . In view of this, we shall find some integrals of the type $\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \zeta\left(s_{2}, \alpha\right) \zeta^{(r)}\left(s_{3}, \alpha\right) d \alpha$, which are explicitly computable in terms of values of Riemann zeta function and its derivatives. Apart from several other facts, in particular, we prove the following .

Proposition: For any integer $r \geq 0$ and for $\operatorname{Re} \mathrm{s}<0, \zeta^{(r)}(s, \alpha)$ is a continuous function of α in the whole complex α-plane and we have the following .

1) $\zeta^{(r)}(s, 0)=\zeta^{(r)}(s)=\zeta^{(r)}(s, 1)$ for Re $s<0$ and $\lim _{s \rightarrow 0-} \zeta^{(r)}(s, 0)=\zeta^{(r)}(0)$,
where $s \rightarrow 0$ through real values from the left of 0 .
2) $\frac{\partial}{\partial \alpha} \zeta^{(r)}(s, \alpha)=-r \cdot \zeta^{(r-1)}(s+1, \alpha)-s \zeta^{(r)}(s+1, \alpha)$ for $s \neq 0$ and for $r \geq 0$.
3) We have $\frac{\partial}{\partial \alpha} \zeta^{(r)}(0, \alpha)=-r!\gamma_{r-1}(\alpha)$ for $r \geq 0$, where $s \zeta(s+1, \alpha)=\sum_{n \geq 0} \gamma_{n-1}(\alpha) s^{n}$ with $\gamma_{-1}(\alpha)=1$.
4) We have $\frac{\partial}{\partial \alpha} \gamma_{r-1}(\alpha)=-\frac{1}{r!} \frac{\partial^{2}}{\partial \alpha^{2}} \zeta^{(r)}(0, \alpha)=-\left.\frac{1}{r!} \cdot \frac{\partial^{r}}{\partial s^{r}}(s(s+1) \zeta(s+2, \alpha))\right|_{s=0}$ for $r \geq 1$.

Note : 1) of Proposition follows from the fact $\zeta(s, \alpha)-\zeta(s, \alpha+1)=\alpha^{-s}$ and consequently, $\zeta^{(r)}(s, \alpha)-\zeta^{(r)}(s, \alpha+1)=\alpha^{-s}(-\log \alpha)^{r}$ for an integer $r \geq 0$, after letting $\alpha \rightarrow 0$.

Corollaries of Proposition :

1) For $s \neq 1$, the primitives (or the indefinite integrals) of $\zeta(s, \alpha), \zeta^{\prime}(s, \alpha)$ and $\zeta^{\prime \prime}(s, \alpha)$ are as follows :
a) $\int \zeta(s, \alpha) d \alpha=\frac{\zeta(s-1, \alpha)}{1-s}$
b) $\int \zeta^{\prime}(s, \alpha) d \alpha=\frac{\zeta(s-1, \alpha)}{(1-s)^{2}}+\frac{\zeta^{\prime}(s-1, \alpha)}{1-s}$
c) $\int \zeta^{\prime \prime}(s, \alpha) d \alpha=2 \frac{\zeta(s-1, \alpha)}{(1-s)^{3}}+2 \frac{\zeta^{\prime}(s-1, \alpha)}{(1-s)^{2}}+\frac{\zeta^{\prime \prime}(s-1, \alpha)}{1-s}$
d) $\int \zeta(s, 1-\alpha) d \alpha=\frac{\zeta(s-1,1-\alpha)}{s-1}$
e) $\int \zeta^{\prime}(s, 1-\alpha) d \alpha=-\left(\frac{\zeta(s-1,1-\alpha)}{(1-s)^{2}}+\frac{\zeta^{\prime}(s-1,1-\alpha)}{1-s}\right)$
f) In general , for an integer $r \geq 0$,

$$
\int \zeta^{(r)}(s, \alpha) d \alpha=\sum_{\ell=0}^{r} c_{\ell} \frac{\zeta^{(\ell)}(s-1, \alpha)}{(1-s)^{r+1-\ell}}
$$

for some absolute constants c_{ℓ} 's .
2) Under the action of the operator $\frac{\partial}{\partial \alpha}$, we have the following diagram
........................... $\rightarrow \zeta(-1, \alpha) \rightarrow \zeta(0, \alpha) . \rightarrow-1 \rightarrow 0 \rightarrow \ldots$.
$\ldots \rightarrow \zeta^{\prime}(-1, \alpha)+\zeta(-1, \alpha) \rightarrow \zeta^{\prime}(0, \alpha) \rightarrow-\gamma_{0}(\alpha) \rightarrow \zeta(2, \alpha) \rightarrow \ldots$.
$\ldots \rightarrow \zeta^{\prime \prime}(-1, \alpha)+2 \zeta^{\prime}(-1, \alpha)+2 \zeta(-1, \alpha) \rightarrow \zeta^{\prime \prime}(0, \alpha) \rightarrow-2 \gamma_{1}(\alpha) \rightarrow 2\left(\zeta^{\prime}(2, \alpha)+\zeta(2, \alpha)\right) \rightarrow \ldots$.
3) We have $\int_{1}^{\infty} \zeta^{(r)}(s, \alpha) d \alpha=-\sum_{\ell=o}^{r} c_{\ell} \cdot \frac{\zeta^{(\ell)}(s-1)}{(1-s)^{r+1-\ell}}$ for $\operatorname{Re} s>2$,
where c_{ℓ} 's are absolute constants as in f) of Corollary 1) above .
Note :This is so, because for $\operatorname{Re} s>1$, as $\alpha \rightarrow \infty$,

$$
\zeta^{(r)}(s, \alpha)=(-1)^{r} \sum_{n \geq 0}(n+\alpha)^{-s} \log ^{r}(n+\alpha)=0
$$

4) We have $\int_{0}^{1} \zeta^{(r)}(s, \alpha) d \alpha=0$ for $\operatorname{Re} s<1$.

Note : This follows from f) of corollary 1) and 1) of Proposition above.
5) For $\operatorname{Re} s_{1}, \operatorname{Re} s_{2}<0$ and for real s, we have

$$
\begin{aligned}
& \lim _{s \rightarrow 1-1} \int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) \cdot(s-1) \zeta(s, \alpha) d \alpha=\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) d \alpha-\zeta\left(s_{1}\right) \cdot \zeta\left(s_{2}\right) \\
& =2(2 \pi)^{s_{1}+s_{2}-2} \cdot \Gamma\left(1-s_{1}\right) \Gamma\left(1-s_{2}\right) \cos \frac{\pi}{2}\left(s_{1}-s_{2}\right) \cdot \zeta\left(2-s_{1}-s_{2}\right)-\zeta\left(s_{1}\right) \cdot \zeta\left(s_{2}\right),
\end{aligned}
$$

where $s \rightarrow 1$ from left through real values .
6) Let $m_{1}, m_{2}, \ldots \ldots \ldots . . . m_{r} \geq 1$ be integers and let $N=\sum_{i=1}^{r} m_{i}$. Then $\int_{0}^{1} \zeta\left(1-m_{1}, \alpha\right) \cdot \zeta\left(1-m_{2}, \alpha\right) \ldots \ldots \ldots \ldots . . \zeta\left(1-m_{r}, \alpha\right) d \alpha$
$=\frac{(-1)^{r}}{m_{1} m_{2} \ldots \ldots \ldots . . m_{r}} \int_{0}^{1} B_{m_{1}}(\alpha) \cdot B_{m_{2}}(\alpha) \ldots \ldots \ldots \ldots . B_{m_{r}}(\alpha) d \alpha$ is explicitly computable as
a rational number, which equals zero when N is odd .
Remark : Note that $\prod_{\ell=1}^{r} B_{m_{2}}(\alpha)$ is a polynomial with rational coefficients.
Hence $\int_{0}^{1} \prod_{\ell=1}^{r} B_{m_{2}}(\alpha) d \alpha$ is a rational number.
Note that $\int_{0}^{1} B_{m_{1}}(\alpha) B_{m_{2}}(\alpha) \ldots \ldots B_{m_{r}}(\alpha) d \alpha$
$=\int_{0}^{1} B_{m_{1}}(1-\alpha) \cdot B_{m_{2}}(1-\alpha) \ldots \ldots \ldots \ldots B_{m_{r}}(1-\alpha) d \alpha=(-1)^{N} \int_{0}^{1} B_{m_{1}}(\alpha) \cdot B_{m_{2}}(\alpha) \ldots \ldots \ldots . B_{m_{r}}(\alpha) d \alpha$
$=0$, when N is odd.
7) If $m_{1}, m_{2}, \ldots \ldots, m_{r} \geq 0$ are integers and $\operatorname{Re} s<1$, then
$\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots \ldots \cdot \zeta\left(-m_{r}, \alpha\right) \zeta(s, \alpha) d \alpha$
is explicitly computable as a linear combination of $\zeta(s-1), \zeta(s-2), \ldots \ldots \ldots \ldots . ., \zeta(s-N)$ with coefficients dependent on s, where $N=\sum_{i=1}^{r}\left(m_{i}+1\right)$ is the degree of the product polynomial $\zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right)$ \qquad $\cdot \zeta\left(-m_{r}, \alpha\right)$.
8) If $m_{1}, m_{2}, \ldots \ldots, m_{r} \geq 0$ are integers and $\operatorname{Res} s<1$,
then $\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots \ldots . \zeta\left(-m_{r}, \alpha\right) \cdot \zeta^{\prime}(s, \alpha) d \alpha$
is explicitly computable as a linear combination of

$$
\zeta^{\prime}(s-1), \zeta^{\prime}(s-2), \ldots \ldots \ldots \ldots ., \zeta^{\prime}(s-N) ; \zeta(s-1), \zeta(s-2), \ldots \ldots \ldots \ldots, \zeta(s-N)
$$

with coefficients dependent upon s , where $N=\sum_{i=1}^{r}\left(m_{i}+1\right)$.
9) We have for $\operatorname{Re} s>1$,

$$
\int_{0}^{1} \zeta(0, \alpha) \zeta(1-s, \alpha) \cdot \zeta(2-s, \alpha) d \alpha=\frac{1}{2(s-1)}\left(2(2 \pi)^{-2 s} \cdot \Gamma^{2}(s) \zeta(2 s)-\zeta^{2}(1-s)\right) .
$$

Assuming Proposition, we shall prove the corollaries .
Proof of Corollary 2) : We shall sketch the proof of

$$
\frac{\partial}{\partial \alpha}\left(-\gamma_{0}(\alpha)\right)=\frac{\partial^{2}}{\partial \alpha^{2}} \zeta^{\prime}(0, \alpha)=\zeta(2, \alpha) .
$$

We have $\frac{\partial^{2}}{\partial \alpha^{2}} \zeta^{\prime}(0, \alpha)=\left.\frac{\partial^{2}}{\partial \alpha^{2}} \frac{\partial}{\partial s} \zeta(s, \alpha)\right|_{s=0}$

$$
\begin{aligned}
& =\left.\frac{\partial}{\partial s} \frac{\partial^{2}}{\partial \alpha^{2}} \zeta(s, \alpha)\right|_{s=0}=\left.\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha}(-s \zeta(s+1, \alpha))\right|_{s=0}=\left.\frac{\partial}{\partial s}(s(s+1) \zeta(s+2, \alpha))\right|_{s=0} \\
& =\left((s+1) \zeta(s+2, \alpha)+s \zeta(s+2, \alpha)+s(s+1) \zeta^{\prime}(s+2, \alpha)\right)_{s=0}=\zeta(2, \alpha) .
\end{aligned}
$$

$$
\text { Next, we show } \frac{\partial}{\partial \alpha} \zeta^{\prime \prime}(0, \alpha)=-2 \gamma_{1}(\alpha)
$$

and $\frac{\partial}{\partial \alpha}\left(-2 \gamma_{1}(\alpha)\right)=\frac{\partial^{2}}{\partial \alpha^{2}} \zeta^{\prime \prime}(0, \alpha)=2\left(\zeta^{\prime}(2, \alpha)+\zeta(2, \alpha)\right)$.
We have $\frac{\partial}{\partial \alpha} \zeta^{\prime \prime}(0, \alpha)=\left.\frac{\partial}{\partial \alpha} \frac{\partial^{2}}{\partial s^{2}} \zeta(s, \alpha)\right|_{s=0}$
$=\left.\frac{\partial^{2}}{\partial s^{2}} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)\right|_{s=0}=\left.\frac{\partial^{2}}{\partial s^{2}}(-s \zeta(s+1, \alpha))\right|_{s=0}=-\left.(s \zeta(s+1, \alpha))^{\prime \prime}\right|_{s=0}=-2 \gamma_{1}(\alpha)$.

$$
\begin{aligned}
& \quad \text { Next , } \frac{\partial}{\partial \alpha}\left(-2 \gamma_{1}(\alpha)\right)=\frac{\partial^{2}}{\partial \alpha^{2}} \zeta^{\prime \prime}(0, \alpha)=\left.\frac{\partial^{2}}{\partial \alpha^{2}} \frac{\partial^{2}}{\partial s^{2}} \zeta(s, \alpha)\right|_{s=0} \\
& =\left.\frac{\partial^{2}}{\partial s^{2}} \frac{\partial^{2}}{\partial \alpha^{2}} \zeta(s, \alpha)\right|_{s=0}=\left.\frac{\partial^{2}}{\partial s^{2}}(s(s+1) \zeta(s+2, \alpha))\right|_{s=0} \\
& =\frac{\partial}{\partial s}\left\{s \cdot \zeta(s+2, \alpha)+(s+1) \zeta(s+2, \alpha)+s(s+1) \zeta^{\prime}(s+2, \alpha)\right\}_{s=0} \\
& =\left\{\begin{array}{l}
\zeta(s+2, \alpha)+s \zeta^{\prime}(s+2, \alpha)+\zeta(s+2, \alpha)+(s+1) \zeta^{\prime}(s+2, \alpha) \\
+(s+1) \zeta^{\prime}(s+2, \alpha)+s \zeta^{\prime}(s+2, \alpha)+s(s+1) \zeta^{\prime \prime}(s+2, \alpha)
\end{array}\right\}_{s=0}=2\left(\zeta(2, \alpha)+\zeta^{\prime}(2, \alpha)\right) .
\end{aligned}
$$

Proof of Corollary 5) : For $\operatorname{Re} s_{1}, \operatorname{Re} s_{2}<0$ and for real s with $s<1$,

$$
\begin{aligned}
& \int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) \cdot(s-1) \zeta(s, \alpha) d \alpha=-\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) \frac{\partial}{\partial \alpha} \zeta(s-1, \alpha) d \alpha \\
& =-\left\{\left.\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) \cdot \zeta(s-1, \alpha)\right|_{\alpha=0} ^{1}-\int_{0}^{1} \zeta(s-1, \alpha) \cdot \frac{\partial}{\partial \alpha}\left(\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right) d \alpha\right\} \\
& =0+\int_{0}^{1} \zeta(s-1, \alpha) \cdot \frac{\partial}{\partial \alpha}\left(\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right) d \alpha
\end{aligned}
$$

Thus $\lim _{s \rightarrow 1-1} \int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)(s-1) \zeta(s, \alpha) d \alpha$

$$
\begin{aligned}
& =\lim _{s \rightarrow 1-1} \int_{0}^{1} \zeta(s-1, \alpha) \cdot \frac{\partial}{\partial \alpha}\left(\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right) d \alpha=\int_{0}^{1} \zeta(0, \alpha) \cdot \frac{\partial}{\partial \alpha}\left(\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right) d \alpha \\
& =\int_{0}^{1}\left(\frac{1}{2}-\alpha\right) \frac{\partial}{\partial \alpha}\left(\zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right) d \alpha=\left.\left(\frac{1}{2}-\alpha\right) \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right)\right|_{\alpha=0} ^{1}+\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) d \alpha
\end{aligned}
$$

on integration by parts .
This , in turn,$=\int_{0}^{1} \zeta\left(s_{1}, \alpha\right) \cdot \zeta\left(s_{2}, \alpha\right) d \alpha-\zeta\left(s_{1}\right) \cdot \zeta\left(s_{2}\right)$
$=2(2 \pi)^{s_{1}+s_{2}-2} \cdot \Gamma\left(1-s_{1}\right) \Gamma\left(1-s_{2}\right) \cos \frac{\pi}{2}\left(s_{1}-s_{2}\right) \cdot \zeta\left(2-s_{1}-s_{2}\right)-\zeta\left(s_{1}\right) \cdot \zeta\left(s_{2}\right)$.

Proof of Corollary 7) : We have

$\zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots \ldots . \zeta\left(-m_{r}, \alpha\right)=\left(-\frac{B_{m+1}(\alpha)}{m_{1}+1}\right)\left(-\frac{B_{m_{2}+1}(\alpha)}{m_{2}+1}\right) \ldots \ldots \ldots . .\left(-\frac{B_{m_{2}+1}(\alpha)}{m_{r}+1}\right)$
$=P_{N}(\alpha)$, say, where $P_{N}(\alpha)$ is a polynomial of degree $\mathrm{N}=\sum_{i=1}^{r}\left(m_{i}+1\right)$.
Let $P_{N}(\alpha)=\sum_{\ell=0}^{N} a_{i} \alpha^{i}$, where $a_{i}{ }^{\prime} s$ are rational numbers.
Thus $\int_{0}^{1} P_{N}(\alpha) \zeta(s, \alpha) d \alpha=\sum_{i=0}^{N} a_{i} \int_{0}^{1} \alpha^{i} \zeta(s, \alpha) d \alpha$.
Note that for each i, $\int_{0}^{1} \alpha^{i} \zeta(s, \alpha) d \alpha=\int_{0}^{1} \alpha^{i} d\left(\frac{\zeta(s-1, \alpha)}{1-s}\right)$
$=\left.\alpha^{i} \frac{\zeta(s-1, \alpha)}{1-s}\right|_{\alpha=0} ^{1}-\int_{0}^{1} \frac{\zeta(s-1, \alpha)}{1-s} i \alpha^{i-1} d \alpha=\frac{\zeta(s-1)}{1-s}+\frac{i}{s-1} \int_{0}^{1} \alpha^{i-1} \zeta(s-1, \alpha) d \alpha$.
We write $\int_{0}^{1} \alpha^{i-1} \zeta(s-1, \alpha) d \alpha=\int_{0}^{1} \alpha^{i-1} d\left(\frac{\zeta(s-2, \alpha}{2-s}\right)$ and continue the process of integration by parts till we reach the stage, when we come across the integral
$\int_{0}^{1} \zeta(s-i, \alpha) d \alpha$, which is equal to zero.
Thus $\int_{0}^{1} \alpha^{i} \zeta(s, \alpha) d \alpha$ is a linear combination of $\zeta(s-1), \zeta(s-2), \ldots \ldots \ldots \ldots ., \zeta(s-i)$
for each $i=0,1,2, \ldots, N$.
Proof of corollary 8) : We have $\int_{0}^{1} \zeta\left(-m_{1}, \alpha\right) \cdot \zeta\left(-m_{2}, \alpha\right) \ldots \ldots \ldots . . . \zeta\left(-m_{r}, \alpha\right) \cdot \zeta^{\prime}(s, \alpha) d \alpha$

$$
=\int_{0}^{1} P_{N}(\alpha) \cdot \zeta^{\prime}(s, \alpha) d \alpha=\sum_{j=0}^{N} a_{j} \int_{0}^{1} \alpha^{j} \cdot \zeta^{\prime}(s, \alpha) d \alpha,
$$

where $P_{N}(\alpha)$ is the polynomial as in corollary 7).
Note that $\int_{0}^{1} \alpha^{j} \cdot \zeta^{\prime}(s, \alpha) d \alpha=\int_{0}^{1} \alpha^{j} d\left(\frac{\zeta^{\prime}(s-1, \alpha)}{1-s}+\frac{\zeta(s-1, \alpha)}{(1-s)^{2}}\right) d \alpha$

$$
=\left[\alpha^{j}\left(\frac{\zeta^{\prime}(s-1, \alpha)}{1-s}+\frac{\zeta(s-1, \alpha)}{(1-s)^{2}}\right)\right]_{\alpha=0}^{1}-\int_{0}^{1}\left(\frac{\zeta^{\prime}(s-1, \alpha)}{(1-s)}+\frac{\zeta(s-1, \alpha)}{(1-s)^{2}}\right) \cdot j \alpha^{j-1} d \alpha
$$

$$
=\frac{\zeta^{\prime}(s-1)}{1-s}+\frac{\zeta(s-1)}{(1-s)^{2}}-j \int_{0}^{1}\left(\frac{\zeta^{\prime}(s-1, \alpha)}{(1-s)}+\frac{\zeta(s-1, \alpha)}{(1-s)^{2}}\right) \cdot \alpha^{j-1} d \alpha
$$

We continue to integrate by parts j times .
Thus we find that $\int_{0}^{1} \alpha^{j} \zeta^{\prime}(s, \alpha) d \alpha$ is a linear combination of $\zeta^{\prime}(s-1), \zeta^{\prime}(s-2), \ldots \ldots \ldots, \zeta^{\prime}(s-j) ; \zeta(s-1), \zeta(s-2), \ldots \ldots \ldots, \zeta(s-j)$ for each $j=1,2, \ldots \ldots \ldots, N$.

Proof of Corollary 9) : We have for $\operatorname{Re} s>1$,

$$
\begin{aligned}
& \int_{0}^{1} \zeta(0, \alpha) \zeta(1-s, \alpha) \cdot \zeta(2-s, \alpha) d \alpha=\frac{1}{2(s-1)} \int_{0}^{1}\left(\frac{1}{2}-\alpha\right) \frac{\partial}{\partial \alpha} \zeta^{2}(1-s, \alpha) d \alpha \\
& =\frac{1}{2(s-1)}\left\{\left.\left(\frac{1}{2}-\alpha\right) \zeta^{2}(1-s, \alpha)\right|_{\alpha=0} ^{1}+\int_{0}^{1} \zeta^{2}(1-s, \alpha) d \alpha\right\} \\
& =\frac{1}{2(s-1)}\left(-\zeta^{2}(1-s)+\int_{0}^{1} \zeta^{2}(1-s, \alpha) d \alpha\right)=\frac{1}{2(s-1)}\left(2(2 \pi)^{-2 s} \Gamma^{2}(s) \zeta(2 s)-\zeta^{2}(1-s)\right) .
\end{aligned}
$$

It is known that $\zeta(s, \alpha)$ is an analytic function of the complex variable s with a simple pole at $s=1$. In author [1] , [2] it has been shown that $\zeta(s, \alpha)$ is an analytic function of the complex variable α except for possible singularities at non-positive integer values of α. For an integer $r \geq 0$, we write
$\zeta^{(r)}(s, \alpha)=\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$. In author [1] , [2] it has been shown that $\zeta^{(r)}(s, \alpha)$ is an analytic function of the complex variable α except for possible singularities at $\alpha=0,-1,-2, \ldots \ldots \ldots . . .$.

$$
\text { We have } \zeta(s, \alpha)=\sum_{n \geq 0}(n+\alpha)^{-s} \text { for } \operatorname{Re} s>1 \text {, }
$$

so that $(-1)^{r} \zeta^{(r)}(s, \alpha)=\sum_{n \geq 0}(n+\alpha)^{-s} \log ^{r}(n+\alpha)$ for $r \geq 0$.
Thus $(-1)^{r} \frac{\partial}{\partial \alpha} \zeta^{(r)}(s, \alpha)=r \sum_{n \geq 0}(n+\alpha)^{-s-1} \log ^{r-1}(n+\alpha)-s \sum_{n \geq 0}(n+\alpha)^{-s-1} \log ^{r}(n+\alpha)$.
This gives $\frac{\partial}{\partial \alpha} \zeta^{(r)}(s, \alpha)=-r \zeta^{(r-1)}(s+1, \alpha)-s \zeta^{(r)}(s+1, \alpha)$ for Re $s>1$ and $r \geq 1$.
By analyticity of $\zeta^{(r)}(s, \alpha)$ as a function of complex variables s and α, the above result holds everywhere. This proves 2) of Proposition.

$$
\text { Let } k \geq 1 \text { be an integer. Let } \zeta_{k}(s, \alpha)=\sum_{n \geq k}(n+\alpha)^{-s} \text { for Re } s>1 \text {; and }
$$

its analytic continuation. Then $\zeta_{k}(s, \alpha)=\zeta(s, \alpha)-\sum_{0 \leq n k k-1}(n+\alpha)^{-s}=\zeta(s, k+\alpha)$.
Let $\zeta_{k}(s)=\zeta(s)-\sum_{1 \leq n s k-1} n^{-s}$. Then in author [2] , it has been shown that $\zeta_{k}(s, \alpha)=\sum_{n \geq 0} \frac{(-\alpha)^{n}}{n!} s(s+1) \ldots \ldots \ldots \ldots(s+n-1) \cdot \zeta_{k}(s+n)$ in the disc $|\alpha|<k$,
where empty product stands for 1.
This gives $\zeta(s, \alpha)=\sum_{0 \leq n s k-1}(n+\alpha)^{-s}+\sum_{n \geq 0} s(s+1) \ldots \ldots \ldots \ldots . .(s+n-1) \zeta_{k}(s+n) \cdot \frac{(-\alpha)^{n}}{n!}$
$=\sum_{0 \leq n s k-1}(n+\alpha)^{-s}+\phi_{k}(s, \alpha)$, say, where $\phi_{k}(s, \alpha)$ is an analytic function of α in the disc
$|\alpha|<k$ with $k \geq 1$ arbitrary and $\phi_{k}^{(r)}(s, \alpha)=\frac{\partial^{r}}{\partial s^{r}} \phi_{k}(s, \alpha)$ can be obtained by
term-by-term differentiation of $\phi_{k}(s, \alpha)$ with respect to s, r times.
Thus $\zeta^{(r)}(s, \alpha)=\sum_{0 \leq n s k-1}(n+\alpha)^{-s}(-\log (n+\alpha))^{r}+\phi_{k}^{(r)}(s, \alpha)$, where $\phi_{k}^{(r)}(s, \alpha)$ is an analytic function of α in the disc $|\alpha|<k$ and $k \geq 1$ is arbitrary.

From the expression $\zeta(s, \alpha)=\sum_{0 \leq n s k-1}(n+\alpha)^{-s}+\phi_{k}(s, \alpha)$, where $\phi_{k}(s, \alpha)$ is analytic in the disc $|\alpha|<k$ with integer $k \geq 1$ arbitrary, we get the following :

1) If $s=-m$, where $m \geq 0$ is an integer, then $\zeta(-m, \alpha)=\sum_{0 \leq n s k-1}(n+\alpha)^{m}+\phi_{k}(-m, \alpha)$. Thus $\zeta(-m, \alpha)$ is an entire function of α.
2) If $s=m \geq 1$ is an integer, then $\zeta(m, \alpha)=\sum_{0 \leq n s k-1}(n+\alpha)^{-m}+\phi_{k}(m, \alpha)$.

Thus $\zeta(m, \alpha)$ has a pole of order m at every non-positive integer value of α.
3) If Re $s<0$, then $\zeta^{(r)}(s, \alpha)=(-1)^{r} \sum_{0 \leq n \leq k-1}(n+\alpha)^{-s} \log ^{r}(n+\alpha)+\phi_{k}^{(r)}(s, \alpha)$,
where $\phi_{k}^{(r)}(s, \alpha)$ is analytic function of α in the disc $|\alpha|<k$. This shows that $\zeta^{(r)}(s, \alpha)$ is a continuous function of α, because if $\alpha=-n_{0}$, where n_{0} is a fixed integer from amongst 0,1,2,............, we have $\lim _{\alpha \rightarrow-n_{0}}\left(n_{0}+\alpha\right)^{-s} \log ^{r}\left(n_{0}+\alpha\right)=0$,
for Res<0. This also gives that if s is any complex number, the only possible singularities of $\zeta^{(r)}(s, \alpha)$ are non-positive integer values of α.
4) For $\operatorname{Re} s>1$, we have $\zeta(s, \alpha)=\sum_{n \geq 0}(n+\alpha)^{-s}$.

As $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s}(n+\alpha)^{-s}=\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha}(n+\alpha)^{-s}$ for $\alpha \neq-n$,
we have $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s}\left(\sum_{n \geq 0}(n+\alpha)^{-s}\right)=\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha}\left(\sum_{n \geq 0}(n+\alpha)^{-s}\right)$ for Re $s>1$
and for $\alpha \neq-n$, where $n=0,1,2, \ldots \ldots$.

Thus $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} \zeta(s, \alpha)=\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)$ for Re $s>1$ and for $0<\alpha<1$.
Thus in view of analyticity of $\zeta(s, \alpha)$ as a function of each complex variable s and α, we have $\frac{\partial}{\partial \alpha} \frac{\partial}{\partial s} \zeta(s, \alpha)=\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)$ for $s \neq 1$ and $\alpha \neq 0,-1,-2, \ldots \ldots \ldots \ldots .$.

More generally , if $r_{1}, r_{2} \geq 0$ are integers, we have
$\frac{\partial^{r_{1}}}{\partial \alpha^{r_{1}}} \frac{\partial^{r_{2}}}{\partial s^{r_{2}}} \zeta(s, \alpha)=\frac{\partial^{r_{2}}}{\partial s^{r_{2}}} \frac{\partial^{r_{1}}}{\partial \alpha^{r_{1}}} \zeta(s, \alpha)$ for $s \neq 1$ and $\alpha \neq 0,-1,-2, \ldots \ldots \ldots . .$.
In particular , $\frac{\partial}{\partial \alpha}\left(\frac{\partial}{\partial s} \zeta(s, \alpha)\right)_{s=0}=\frac{\partial}{\partial s} \frac{\partial}{\partial \alpha} \zeta(s, \alpha)_{s=0}$ for $\alpha \neq 0,-1,-2$, .
That is , $\frac{\partial}{\partial \alpha} \zeta^{\prime}(0, \alpha)=\left.\frac{\partial}{\partial s}(-s \zeta(s+1, \alpha))\right|_{s=0}$.
Let $\zeta(s+1, \alpha)=\frac{1}{s}+\sum_{n \geq 0} \gamma_{n}(\alpha) s^{n}$ so that $\mathrm{s} \zeta(s+1, \alpha)=1+\sum_{n \geq 0} \gamma_{n}(\alpha) s^{n+1}=\sum_{n \geq 0} \gamma_{n-1}(\alpha) s^{n}$,
where we have written $\gamma_{-1}(\alpha)=1$
Thus $\left.(s \zeta(s+1, \alpha))^{(r)}\right|_{s=0}=r!\gamma_{r-1}(\alpha)$ for $r=0,1,2, \ldots \ldots \ldots \ldots$.
Here the superscript (r) denotes r-th order derivative with respect to s.
Thus we have $\frac{\partial}{\partial \alpha} \zeta^{\prime}(0, \alpha)=-\gamma_{0}(\alpha)$.
However, we know $\zeta^{\prime}(0, \alpha)=\log \frac{\Gamma(\alpha)}{\sqrt{2 \pi}}$ for $\quad \alpha \neq-n$, where $n=0,1,2, \ldots \ldots \ldots$
Thus we have $\psi(\alpha)=-\gamma_{0}(\alpha)$, where $\psi(\alpha)=\frac{\Gamma^{\prime}}{\Gamma}(\alpha)$.
Note that $\psi(1)=-\gamma_{0}(1)=-\gamma$, where γ is Euler's constant.

The fact $\left.(s \zeta(s+1, \alpha))^{(r)}\right|_{s=0}=r!\gamma_{r-1}(\alpha)$ gives $\left.\left(\frac{\partial}{\partial \alpha} \zeta(s, \alpha)\right)^{(r)}\right|_{s=0}=-r!\gamma_{r-1}(\alpha)$.
Equivalently, we have $\frac{\partial}{\partial \alpha} \zeta^{(r)}(0, \alpha)=-r!\gamma_{r-1}(\alpha)$ for $r \geq 0$.
5) We have $\zeta^{\prime}(0, \alpha)=-\sum_{0 \leq n s k-1} \log (n+\alpha)+\phi_{k}^{\prime}(0, \alpha)$
so that $\frac{\partial}{\partial \alpha} \zeta^{\prime}(0, \alpha)=-\sum_{0 \leq n s k-1} \frac{1}{n+\alpha}+\frac{\partial}{\partial \alpha} \phi_{k}^{\prime}(0, \alpha)$.
That is $\psi(\alpha)=-\sum_{0 \leq n \leq k-1} \frac{1}{(n+\alpha)}+\frac{\partial}{\partial \alpha} \phi_{k}^{\prime}(0, \alpha)$.
Thus $\psi(\alpha)$ has a simple pole at each non-positive integer value of α and consequently for $r \geq 1$, $\frac{\partial^{r}}{\partial \alpha^{r}} \psi(\alpha)=(-1)^{r-1} r!\zeta(r+1, \alpha)$. has a pole of order $(r+1)$ at each non-positive integer value of α and is analytic elsewhere.

This completes our proof.

References

1] V.V. Rane , Instant Evaluation and demystification of $\zeta(n), L(n, \chi)$ that Euler, Ramanujan missed-I (ar Xiv org. website).

2] V.V. Rane , Instant Evaluation and demystification of $\zeta(n), L(n, \chi)$ that Euler, Ramanujan missed-II (ar Xiv org. website) .

3] V.V.Rane , Functional Equation of Tornheim Zeta function and the α-Calculus of $\frac{\partial^{r}}{\partial s^{r}} \zeta(s, \alpha)$ (ar Xiv org. website) .

