
 1 

Minimal Number of Discrete Velocities for a Flow Description 

Jae Wan Shim 

KIST & the University of Science and Technology, 136-791, Seoul, Korea 

One-sentence Summary: We describe a compressible thermal flow of the level of accuracy of the 
Navier-Stokes equation by only 33 discrete velocities for two-dimensional space, which are smaller 
than the previously known minimal set. 

Abstract: 
It seems intuitively correct to describe fluid flows by using fictitious particles hopping on 

homogeneously separated nodes with a given finite set of discrete velocities, however, it is not clear 

how many discrete velocities are needed for the motion of the fictitious particles to satisfy a certain 

level of accuracy with acceptable stability. This question is clarified by the discrete Boltzmann 

equation, which is originally developed from the cellular automata to fluid flows. Here we show that 

we can describe a compressible thermal flow of the level of accuracy of the Navier-Stokes equation 

by only 33 discrete velocities for two-dimensional space comprised of a square lattice. As a result, 

we have broken the previously known minimal number by sparsely and widely distributing the 

discrete velocities. 
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The lattice Boltzmann equation (1,2), originally developed from the cellular automata (3,4) to 

fluid flows, describes a fluid flow by using the notion of fictitious particles moving their positions 

and changing their distribution according to a simple rule ( , ) (1 ) ( , ) ( , )eq
i i i if t t f t f tw w+ + D = - +x v x x  

where ( , )if tx  is the density of particles having discrete velocities iv  at position x  at time t , ( , )eq
if tx  

is that in equilibrium states settled down from ( , )if tx , and w  adjusts viscosity. Because of the 

discretized characteristic of the velocity space, eq
if  is not the Maxwell-Boltzmann distribution itself 

but can be expressed by weight coefficients iw  and a polynomial approximated from the Maxwell-

Boltzmann distribution. We recover macroscopic physical properties such as density, velocity, 

pressure, and temperature from ( , )if tx . To make this particle or lattice-gas method efficient, it is 

highly desirable to minimize the number of discrete velocities with keeping accuracy and stability. 

An important study (5) showed that compressible thermal flows of the level of accuracy of the 

Navier-Stokes equation could be recovered by using the lattice Boltzmann equation with only 37 

discrete velocities in two-dimensional space comprised of a square lattice and this was confirmed 

again (6). However, we can reduce the minimal number by altering discrete velocities. Here, we 

present a 33-velocities model having the same order of accuracy to the 37-velocities one. As 

described in Figure 1, the vectors of the 33-velocities model are sparsely and widely distributed than 

those of the 37-velocities one. The discrete velocities of the 33-velocities model , ,( , )i i x i yv v=v  is 

comprised of 1 (0,0)=v , 2 (1,0)c=v , 3 (2,0)c=v , 4 (3,0)c=v , 5 (1,1)c=v , 6 (2,2)c=v , 7 (4,4)c=v , 8 (2,1)c=v  

and the other velocities obtained by the symmetry with respect to the x -axis, y -axis, and y x=  

where 0.819381c » , so that the discrete velocities satisfy isotropy. Their corresponding weight 

coefficients are 1 0.161987w » , 2 0.143204w » , 3 0.00556112w » , 4 0.00113254w » , 5 0.0338840w » , 
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6 0.0000844799w » , 6
7 3.45552 10w -» ´ , 8 0.0128169w » , and for the other velocities obtained by the 

symmetry, i jw w=  if i j=v v . For simplicity, we have presented the approximate values of c  and 

iw  with six significant figures instead of the exact values. Note that this solution can be obtained by 

the system of equations 
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Figure 1. The discrete velocities of the 33-, and 37-velocities models are described by the black and 

the blue (dot-dashed) arrows, and the black and the red (dashed) arrows, respectively. Note that the 

zero velocity is omitted. 

We illustrate the accuracy and the stability of the 33-velocities model by a shock tube simulation. 

A two-dimensional shock tube, whose calculation domain is comprised of 1000 8´  nodes, has been 

simulated by the two models with the equilibrium distribution eq
if  obtained by the fourth-order 

Hermite expansion (7). Initially, the flow is stationary, and the density and the pressure of the left-

half plane are 4 times higher than those of the right-half plane, while the temperatures are the same 

in both sides. The left and the right boundary conditions are the same to the left and the right initial 

conditions, respectively. On the upper and the lower boundaries, the symmetric conditions are used. 

The constant w  adjusting viscosity is chosen as 1w = . The result of the density distribution has no 

transversal gradient; therefore we show the profile with respect to the longitudinal axis in Figure 2. 

The results obtained by the two models are in excellent agreement. The shock front sharpness of the 

simulation result is blunt with respect to the analytical solution of the Riemann problem (8) because 

of the non-zero viscosity in contrast to the Riemann problem. 
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Figure 2. Comparison of the scaled density r  obtained by the 33-velocities model at relative time 

't = 0.2, 0.6, and 1 (from the light green line to the dark), the 37-velocities model at 't = 1 (yellow), 

and the analytical solution of the Riemann problem at 't = 1 (dashed black). 
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Figure 3. Result of the two-component flow simulation. The total density (green) and each 

component densities (blue and brown) are drawn 't = 1. Note that the thin blue and brown lines show 

the initial state and the thick lines show the state after the evolution of time. 

The simple and easy implantation of the multi-component flows is one of the advantages of the 

flow description by the notion of fictitious particles, on which we just add name tags. We simulate a 

two-component flow with the previous simulation setup. However, the domain is divided into 10 

vertical strips and we fill the two components, alternately. The simulation result is shown in Figure 3. 

The inside structure of the shock is well described. 
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Figure 4. Result of the two-component flow having a geometrically complex initial condition. The 

first, the second, and the third rows show the density distributions at relative time ''t = 0, 0.5, and 1, 

respectively. On the element figures of the first row, the values of density are indicated. 
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Another advantage of the notion of fictitious particles is that the simulation method is easily 

applicable to complex geometry. As an example, the two-component flow is simulated on a plane 

having a calculation domain comprised of 200 200´  nodes with an arbitrary complex initial condition. 

The first row of Figure 4 shows the initial density distribution of the components A and B. On the 

element figures of the first row, the values of density are indicated. The pressure is the same value to 

the density. The flow is stationary and the temperature is uniform at the initial moment.  

The simulations illustrate the accuracy and the stability under given conditions. A similar study 

can be easily done for three-dimensional space. 
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