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A note on a maximal Bernstein inequality

PÉTER KEVEI1 and DAVID M. MASON2

1CIMAT, Callejón Jalisco S/N, Mineral de Valenciana, Guanajuato 36240, Mexico
E-mail: kevei@cimat.mx
2Statistics Program, University of Delaware, 213 Townsend Hall Newark, DE 19716, USA
E-mail: davidm@udel.edu

Dedicated to the memory of Sándor Csörgő

We show somewhat unexpectedly that whenever a general Bernstein-type maximal inequality
holds for partial sums of a sequence of random variables, a maximal form of the inequality is
also valid.
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1. Introduction and statement of main result

Let X1,X2, . . . , be a sequence of independent random variables such that for all i ≥ 1,
EXi = 0 and for some κ > 0 and v > 0 for integers m≥ 2, E|Xi|m ≤ vm!κm−2/2. The
classic Bernstein inequality (cf. [13], page 855) says that, in this situation, for all n≥ 1
and t≥ 0,
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Moreover (cf. [12], Theorem B.2), its maximal form also holds; that is, we have
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It turns out that, under a variety of assumptions, a sequence of not necessarily indepen-
dent random variables X1,X2, . . . , will satisfy a generalized Bernstein-type inequality of
the following form: For suitable constants A> 0, a > 0, b≥ 0 and 0< γ < 2 for all m≥ 0,
n≥ 1 and t≥ 0,

P{|S(m+1,m+ n)|> t} ≤A exp

{

− at2

n+ btγ

}

, (1.1)
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where, for any choice of 1 ≤ k ≤ l < ∞, we denote the partial sum S(k, l) =
∑l

i=k Xi.
Here are some examples.

Example 1. Let X1,X2, . . . , be a stationary sequence satisfying EX1 = 0 and
VarX1 = 1. For each integer n≥ 1 set Sn =X1 + · · ·+Xn and B2

n = Var(Sn). Assume
that for some σ2

0 > 0 we have B2
n ≥ σ2

0n for all n≥ 1. Statulevičius and Jakimavičius [15]
and Saulis and Statulevičius [14] prove that the partial sums satisfy (1.1) with constants
depending on a Bernstein condition on the moments of X1 and the particular mixing con-
dition that the sequence may fulfill. In fact, all values of 1≤ γ < 2 are attainable. Their
Bernstein-type inequalities are derived via a result of [1] relating cumulant behavior to
tail behavior, which says that for an arbitrary random variable ξ with expectation 0,
whenever there exist γ ≥ 0, H > 0 and ∆ > 0 such that its cumulants Γk(ξ) satisfy
|Γk(ξ)| ≤ (k!/2)1+γH/∆k−2 for k = 2,3, . . . , then for all x≥ 0

P{±ξ > x} ≤ exp

{

− x2

2(H + (x/∆1/(1+2γ))(1+2γ)/(1+γ))

}

. (1.2)

In Example 1, ξ = Sn/Bn and ∆= d
√
n for some d > 0.

Example 2. Doukhan and Neumann [4] have shown, using the result in (1.2), that
if a sequence of mean zero random variables X1,X2, . . . , satisfies a general covariance
condition, then the partial sums satisfy (1.1). Refer to their Theorem 1 and Remark 2,
and also see [8].

Example 3. Assume that X1,X2, . . . , is a strong mixing sequence with mixing coef-
ficients α(n), n ≥ 1, satisfying for some c > 0, α(n) ≤ exp(−2cn). Also assume that
EXi = 0 and for some M > 0 for all i≥ 1, |Xi| ≤M . Theorem 2 of Merlevéde, Peligrad
and Rio [9] implies that for some constant C > 0 for all t≥ 0 and n≥ 1,

P{|Sn|> t} ≤ exp

(

− Ct2

nv2 +M2 + tM(logn)2

)

, (1.3)

with Sn =
∑n

i=1Xi and where v2 = supi>0(Var(Xi) + 2
∑

j>i | cov(Xi,Xj)|)> 0.

To see how the last example satisfies (1.1), notice that for any 0< η < 1 there exists a
D1 > 0 such that for all t≥ 0 and n≥ 1,

nv2 +M2 + tM(logn)2 ≤ n(v2 +M2) +D1t
1+η. (1.4)

Thus (1.1) holds with γ = 1+ η for suitable A> 0, a > 0 and b≥ 0.
For any choice of 1≤ i≤ j <∞ define

M(i, j) =max{|S(i, i)|, . . . , |S(i, j)|}.
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We shall show, somewhat unexpectedly, that if a sequence of random variablesX1,X2, . . . ,
satisfies a Bernstein-type inequality of the form (1.1), then, without any additional as-
sumptions, a modified version of it also holds for M(1 +m,n+m) for all m ≥ 0 and
n≥ 1.

Theorem 1. Assume that, for constants A > 0, a > 0, b ≥ 0 and γ ∈ (0,2), inequal-
ity (1.1) holds for all m ≥ 0, n ≥ 1 and t ≥ 0. Then for every 0 < c < a there exists
a C > 0 depending only on A,a, b and γ such that for all n≥ 1, m≥ 0 and t≥ 0,

P{M(m+ 1,m+ n)> t} ≤C exp

{

− ct2

n+ btγ

}

. (1.5)

Remark 1. Notice that though c < a, c can be chosen arbitrarily close to a.

Remark 2. Theorem 1 was motivated by Theorem 2.2 of Móricz, Serfling and Stout [11],
who showed that whenever for a suitable positive function g(i, j) of (i, j) ∈ {1,2, . . .} ×
{1,2, . . .}, positive function φ(t) defined on (0,∞) and constant K > 0, for all 1 ≤ i ≤
j <∞ and t > 0,

P{|S(i, j)|> t} ≤K exp{−φ(t)/g(i, j)},
then there exist constants 0< c< 1 and C > 0 such that for all n≥ 1 and t > 0,

P{M(1, n)> t} ≤C exp{−cφ(t)/g(1, n)}.

Earlier, Móricz [10] proved that in the special case when φ(t) = t2 one can choose c < 1
arbitrarily close to 1 by making C > 0 large enough. This inequality is clearly not appli-
cable to obtain a maximal form of the generalized Bernstein inequality.

Remark 3. We do not know whether there exist examples for which (1.1) holds for some
0< γ < 1 and b > 0. However, since the proof of our theorem remains valid in this case,
we shall keep it in the statement.

Remark 4. The version of Theorem 1 obtained by replacing everywhere |S(m +
1,m + n)| by S(m + 1,m + n) and M(m + 1,m + n) by M+(m + 1,m + n) =
maxm+1≤j≤n+m(S(m+ 1, j)∨ 0) remains true with little change in the proof.

Remark 5. Theorem 1 also remains valid for sums of Banach space valued random
variables with absolute value | · | replaced by norm ‖ · ‖.

Remark 6. In statistics, maximal exponential inequalities are crucial tools to determine
the exact rate of almost sure pointwise and uniform consistency of kernel estimators of
the density function and the regression function. The literature in this area is huge. See,
for instance, [2, 3, 5–7, 16] and the references therein. These results only treat the case
of i.i.d. observations. Dependent versions of our maximal Bernstein inequalities should
be useful to determine exact rates of almost sure consistency of kernel estimators based
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on data that possess a certain dependence structure. In fact, some work in this direction
has already been accomplished in Section 4.2 of [4]. To carry out such an application in
the present paper is well beyond its scope.

Theorem 1 leads to the following bounded law of the iterated logarithm.

Corollary 1. Under the assumptions of Theorem 1, with probability 1,

lim sup
n→∞

|S(1, n)|√
n log logn

≤ 1√
a
. (1.6)

Remark 7. In general, one cannot replace “≤” by “=” in (1.6). To see this, let Y ,
Z1, Z2, . . . be a sequence of independent random variables such that Y takes on the
value 0 or 1 with probability 1/2 and Z1, Z2, . . . are independent standard normals. Now
define Xi = Y Zi, i= 1,2, . . . . It is easily checked that assumption (1.1) is satisfied with
A = 2, a = 1/2, b = 0 and γ = 1. When Y = 1 the usual law of the iterated logarithm
gives with probability 1,

limsup
n→∞

|S(1, n)|/
√

n log logn=
√
2 = 1/

√
a, (1.7)

whereas, when Y = 0 the above limsup is obviously 0. This agrees with Corollary 1, which
says that with probability 1 the limsup is ≤

√
2. However, we see that with probability

1/2 it equals
√
2 and with probability 1/2 it equals 0.

Theorem 1 is proved in Section 2 and the proof of Corollary 1 is given in Section 3.

2. Proof of theorem

The case b= 0 is a special case of Theorem 1 of [10]. Therefore we shall always assume
that b > 0. Choose any 0< c< a. We prove our theorem by induction on n. Notice that
by the assumption, for any integer n0 ≥ 1 we may choose C >An0 to make the statement
true for all 1≤ n≤ n0. This remark will be important, because at some steps of the proof
we assume that n is large enough. Also, since the constants A, a, b and γ in (1.1) are
independent of m, we can assume m= 0 without loss of generality in our proof.
Assume the statement holds up to some n≥ 2. (The constant C will be determined in

the course of the proof.)
Case 1: Fix a t > 0 for which

tγ ≤ αn (2.1)

for some 0<α< 1 to be specified later. (In any case, we assume that αn≥ 1.) Using an
idea of [11], we may write for arbitrary 1≤ k ≤ n, 0≤ q ≤ 1 and p+ q = 1 the inequality

P{M(1, n+1)> t}
≤P{M(1, k)> t}+P{|S(1, k)|> pt}+P{M(k+ 1, n+ 1)> qt}.
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Let

u=
n+ tγb(qγ − q2)

1 + q2
.

Notice that

t2

u+ btγ
=

q2t2

n− u+ bqγtγ
. (2.2)

Set

k = ⌈u⌉. (2.3)

Using the induction hypothesis and (1.1) we obtain

P{M(1, n+ 1)> t}
(2.4)

≤C exp

{

− ct2

k+ btγ

}

+A exp

{

− ap2t2

k+ bpγtγ

}

+C exp

{

− cq2t2

n− k+ bqγtγ

}

.

Notice that we chose k to make the first and third terms in the right-hand side of (2.4)
almost equal, and since by (2.3)

t2

k+ btγ
≤ q2t2

n− k+ bqγtγ
,

the first term is greater than or equal to the third.
First we handle the second term in (2.4), showing that for 0≤ t≤ (αn)1/γ ,

exp

{

− ap2t2

k+ bpγtγ

}

≤ exp

{

− ct2

n+ 1+ btγ

}

.

For this we need to verify that for 0≤ t≤ (αn)1/γ ,

ap2

k+ bpγtγ
>

c

n+ 1+ btγ
, (2.5)

which is equivalent to

ap2(n+1+ btγ)> c(k+ bpγtγ).

Using that

k = ⌈u⌉ ≤ u+ 1= 1+
1

1+ q2
[n+ b(qγ − q2)tγ ],

it is enough to show

n

(

ap2 − c

1 + q2

)

+ tγ
(

ap2b− cbpγ − cb

1+ q2
(qγ − q2)

)

+ ap2 − c > 0.
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Note that if the coefficient of n is positive, then we can choose α in (2.1) small enough
to make the above inequality hold, even if the coefficient of tγ is negative. So in order
to guarantee (2.5) (at least for large n) we only have to choose the parameter p so that
ap2 − c > 0 – which implies that

ap2 − c

1 + q2
> 0 (2.6)

holds – and then select α small enough.
Next we treat the first and third terms in (2.4). By the remark above, it is enough

to handle the first term. Let us examine the ratio of C exp{−ct2/(k + btγ)} and
C exp{−ct2/(n+ 1+ btγ)}. Notice again that since u+1≥ k,

n+ 1− k ≥ n− u= n− n+ b(qγ − q2)tγ

1+ q2

=
q2n− b(qγ − q2)tγ

1 + q2

≥ n
q2 − αb(qγ − q2)

1 + q2

=: c1n.

At this point we need that 0< c1 < 1. Thus we choose α small enough so that

q2 − αb(qγ − q2)> 0. (2.7)

Also, using t≤ (αn)1/γ , we get the bound

(n+ 1+ btγ)(k + btγ)≤ n2(1 + αb)2 =: c2n
2,

which holds if n is large enough. Therefore, we obtain for the ratio

exp

{

−ct2
(

1

k+ btγ
− 1

n+ 1+ btγ

)}

≤ exp

{

−cc1t
2

c2n

}

≤ e−1,

whenever cc1t
2/(c2n)≥ 1, that is, t≥

√

c2n/(cc1). Substituting back into (2.4), for t≥
√

c2n/(cc1) and t≤ (αn)1/γ we obtain

P{M(1, n+1)> t}

≤
(

2

e
C +A

)

exp{−ct2/(n+ 1+ btγ)} ≤C exp{−ct2/(n+ 1+ btγ)},

where the last inequality holds for C >Ae/(e− 2).
Next assume that t <

√

c2n/(cc1). In this case, choosing C large enough, we can make
the bound > 1, namely

C exp

{

− ct2

n+ 1+ btγ

}

≥C exp

{

−cc2n

cc1n

}

=Ce−c2/c1 ≥ 1,
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if C > ec2/c1 .
Case 2: Now we must handle the case t > (αn)1/γ . Here we apply the inequality

P{M(1, n+ 1)> t} ≤P{M(1, n)> t}+P{|S(1, n+1)|> t}.

Using assumption (1.1) and the induction hypothesis, we have

P{M(1, n+1)> t} ≤C exp

{

− ct2

n+ btγ

}

+A exp

{

− at2

n+ 1+ btγ

}

.

We will show that the right-hand side ≤C exp{−ct2/(n+1+ btγ)}. For this it is enough
to prove

exp

{

−ct2
(

1

n+ btγ
− 1

n+1+ btγ

)}

+
A

C
exp

{

− t2(a− c)

n+1+ btγ

}

≤ 1. (2.8)

First assume that γ ≤ 1. Using the bound following from t > (αn)1/γ , we get

t2

(n+ btγ)(n+ btγ + 1)
≥ t2

(α−1 + b)(2α−1 + b)t2γ
=: t2−2γc3 ≥ c3.

We have that the right-hand side of (2.8) for a≥ c is less than

e−cc3 +
A

C
≤ 1

for C large enough.
For 1< γ < 2 we have to use a different argument. For t large enough (i.e., for n large

enough, since t > (αn)1/γ) we have

exp

{

− ct2

(n+ btγ)(n+ btγ +1)

}

≤ exp{−cc3t
2−2γ} ≤ 1− cc3t

2−2γ

2
.

We also have for C >A,

A

C
exp

{

− t2(a− c)

n+ 1+ btγ

}

≤ exp

{

−t2−γ a− c

2α−1 + b

}

.

It is clear that since a > c, for t large enough, that is, for n large enough,

cc3t
2−2γ

2
> exp

{

−t2−γ a− c

2α−1 + b

}

.

The proof is complete.
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3. Proof of corollary

Choose any λ > 1 and set mr = ⌈λr⌉ for r = 1,2, . . . . Now, using inequality (1.5), we get

P{M(1,mr)>
√

c−1mr+1 log logmr}

≤C exp

{

− mr+1 log logmr

mr + b(c−1mr+1 log logmr)γ/2

}

.

Since as r→∞
mr+1 log logmr

mr + b(c−1mr+1 log logmr)γ/2
= (1+ o(1))λ log r,

it is readily checked that for r0 large enough so that log logmr0 > 0,

∞
∑

r=r0

P{M(1,mr)>
√

c−1mr+1 log logmr}<∞

and thus, since mr+1/mr = λ + o(1), we get by the Borel–Cantelli lemma that with
probability 1

limsup
r→∞

M(1,mr)√
mr log logmr

≤
√
λc−1. (3.1)

Next we see that for all r ≥ r0

max
mr≤n<mr+1

|S(1, n)|√
n log logn

≤ M(1,mr+1)√
mr log logmr

.

Thus by (3.1), with probability 1,

lim sup
r→∞

max
mr≤n<mr+1

|S(1, n)|√
n log logn

≤ lim sup
r→∞

M(1,mr+1)√
mr log logmr

= limsup
r→∞

M(1,mr+1)
√

mr+1 log logmr+1

√

mr+1 log logmr+1√
mr log logmr

≤ λ
√
c−1.

Hence, since λ > 1 can be chosen arbitrarily close to 1 and c < a arbitrarily close to a,
we have proved (1.6).
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