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Moments of random sums and Robbins’ problem of

optimal stopping

Alexander Gnedin∗ and Alexander Iksanov†

Abstract

Robbins’ problem of optimal stopping asks one to minimise the expected rank

of observation chosen by some nonanticipating stopping rule. We settle a con-

jecture regarding the value of the stopped variable under the rule optimal in the

sense of the rank, by embedding the problem in a much more general context

of selection problems with the nonanticipation constraint lifted, and with the

payoff growing like a power function of the rank.

1. Let X1, . . . , Xn be independent random variables sampled sequentially from the
uniform [0, 1] distribution, and let Y1 < . . . < Yn be their order statistics. The rank
Rj of the variable Xj is defined by setting Rj = k on the event Xj = Yk. Robbins’
problem of optimal stopping [3] asks one to minimize the expected rank ERτ over
all stopping times τ that assume values in {1, . . . , n} and are adapted to the natural
filtration of the sequence X1, . . . , Xn. Let τn be the optimal stopping time. The
minimum expected rank ERτn increases as n grows, and converges to some finite
limit v whose exact value is unknown. The closest known upper bound is slightly
less than 7/3. Finding v or even improving the existing rough bounds remains a
challenge. A major source of difficulties is that the optimal stopping time τn is a
very complicated function of the sample. It seems that τn has not been computed
for n > 3. Moreover, for large n there is no simplification, and the complexity of the
optimal stopping time persists in the ‘n = ∞’ limiting form of the problem [6].

In a recent paper Bruss and Swan [4] stressed that it is not even known if
lim supn nEXτn is finite. They mentioned that the property was first conjectured
in [2]. While the conjecture stems from the attempts to bound v by the comparison
with much simpler problem of minimising EXτ (or minor variations of the prob-
lem), it seems that the question is of independent interest as a relation between the
stopped sample value and its rank. In this note we settle the conjecture by proving
a considerably more general assertion:
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Proposition 1. Fix p > 0. For n = 1, 2, . . . let σn be a random variable with

range {1, . . . , n} and arbitrary joint distribution with X1, . . . , Xn. Then

lim sup
n

E[Rσn
]p < ∞ implies lim sup

n

np
E[Xσn

]p < ∞. (1)

In particular, lim
n→∞

np
E[Xτn ]

p < ∞ for τn the stopping time minimising E[Rτ ]
p over

all stopping times adapted to X1, . . . , Xn.

The idea is to bound Xσn
by exploiting properties of a random walk with negative

drift.

2. Let ξ, ξ1, ξ2, . . . be iid nonnegative random variables with µ = Eξ ∈ (0,∞). Let
Sk := ξ1 + · · ·+ ξk and for λ > µ let Mλ =: supk≥0(Sk − λk).

Proposition 2. For p > 0

Eξp+1 < ∞ ⇐⇒ EMp
λ < ∞.

Proof. The moment condition on ξ is equivalent to E[(ξ − λ)+]p+1 < ∞, and the
result follows from Lemma 3.5 in [1].

Corollary 3. Suppose Eξp+1 < ∞ and let σ be a nonnegative integer random

variable with Eσp < ∞. Then ESp
σ < ∞.

Proof. This follows from Sp
σ ≤ (Mλ+λσ)p ≤ cp(M

p
λ +λpσp), where cp := 2p−1∨1.

3. We can apply Corollary 3 to a Poisson-embedded, limiting form of the stopping
problem with continuous time [6]. Let ξ1, ξ2, . . . be iid rate-one exponential variables,
Sk as above, and let T1, T2, . . . be iid uniform [0, 1] random times, independent of the
ξj’s. The points (Tk, Sk) are the atoms of a homogeneous planar Poisson process P
in [0, 1]× [0,∞). To introduce the dynamics, consider an observer whose information
at time t ∈ [0, 1] is the (infinite) configuration of points of P within the strip [0, t]×
[0,∞), that is {(Tk, Sk) : Tk ≤ t}. The rank of point (Tk, Sk) is defined as RTk

= k,
meaning that Sk is the kth smallest value among S1, S2, . . . . The piece of information
added at time Tk is the point (Tk, Sk), but not the rank RTk

.
Suppose the objective of the observer is to minimize E[Rτ ]

p over stopping times τ
that assume values in the random set {T1, T2 . . . } and are adapted to the information
flow of the observer. For the optimal stopping time τ∞ it is known from the previous
studies that E[Rτ∞ ]p < ∞ (see [6] and [5]). Taking σ = Rτ∞ , we have E[Sσ]

p < ∞.
The case p = 1 corresponds to the infinite version of Robbins’s problem of minimising
the expected rank.

4. To apply the above to a finite sample, we shall use the familiar realisation of
uniform order statistics through sums of exponential variables, as

(Yk, 1 ≤ k ≤ n)
d
= (Sk/Sn, 1 ≤ k ≤ n).

2



Introducing the event An := {n/Sn > 1 + ǫ}, we can estimate for 1 ≤ k ≤ n

npY p
k = npY p

k 1An
+ npY p

k 1Ac
n
≤ np1An

+ (1 + ǫ)ρSp
k ≤ np1An

+ cp(1 + ǫ)p(Mp
λ + λpkp),

where we used Sk ≤ Mλ + λk. Using a large deviation bound for the probability of
An and sending ǫ → 0 we conclude that for any random variable σn with values in
{1, . . . , n}

lim sup
n

np
E[Yσn

]p ≤ cpλ
p lim sup

n

Eσp
n + cpEM

p
λ .

Finally, taking σn = Rτn , Proposition 2 follows from

lim sup
n

np
E[Xτn ]

p ≤ cpλ
p lim sup

n

E[Rτn ]
p + cpEM

p
λ < ∞,

since E[Rτn ]
p converges to a finite limit (see [6], [5]).
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