Moments of random sums and Robbins' problem of optimal stopping

Alexander Gnedin* and Alexander Iksanov ${ }^{\dagger}$

Abstract

Robbins' problem of optimal stopping asks one to minimise the expected rank of observation chosen by some nonanticipating stopping rule. We settle a conjecture regarding the value of the stopped variable under the rule optimal in the sense of the rank, by embedding the problem in a much more general context of selection problems with the nonanticipation constraint lifted, and with the payoff growing like a power function of the rank.

1. Let X_{1}, \ldots, X_{n} be independent random variables sampled sequentially from the uniform $[0,1]$ distribution, and let $Y_{1}<\ldots<Y_{n}$ be their order statistics. The rank R_{j} of the variable X_{j} is defined by setting $R_{j}=k$ on the event $X_{j}=Y_{k}$. Robbins' problem of optimal stopping [3] asks one to minimize the expected rank $\mathbb{E} R_{\tau}$ over all stopping times τ that assume values in $\{1, \ldots, n\}$ and are adapted to the natural filtration of the sequence X_{1}, \ldots, X_{n}. Let τ_{n} be the optimal stopping time. The minimum expected rank $\mathbb{E} R_{\tau_{n}}$ increases as n grows, and converges to some finite limit v whose exact value is unknown. The closest known upper bound is slightly less than $7 / 3$. Finding v or even improving the existing rough bounds remains a challenge. A major source of difficulties is that the optimal stopping time τ_{n} is a very complicated function of the sample. It seems that τ_{n} has not been computed for $n>3$. Moreover, for large n there is no simplification, and the complexity of the optimal stopping time persists in the ' $n=\infty$ ' limiting form of the problem [6].

In a recent paper Bruss and Swan [4] stressed that it is not even known if $\lim \sup _{n} n \mathbb{E} X_{\tau_{n}}$ is finite. They mentioned that the property was first conjectured in [2]. While the conjecture stems from the attempts to bound v by the comparison with much simpler problem of minimising $\mathbb{E} X_{\tau}$ (or minor variations of the problem), it seems that the question is of independent interest as a relation between the stopped sample value and its rank. In this note we settle the conjecture by proving a considerably more general assertion:

[^0]Proposition 1. Fix $p>0$. For $n=1,2, \ldots$ let σ_{n} be a random variable with range $\{1, \ldots, n\}$ and arbitrary joint distribution with X_{1}, \ldots, X_{n}. Then

$$
\begin{equation*}
\limsup _{n} \mathbb{E}\left[R_{\sigma_{n}}\right]^{p}<\infty \quad \text { implies } \quad \underset{n}{\limsup } n^{p} \mathbb{E}\left[X_{\sigma_{n}}\right]^{p}<\infty \tag{1}
\end{equation*}
$$

In particular, $\lim _{n \rightarrow \infty} n^{p} \mathbb{E}\left[X_{\tau_{n}}\right]^{p}<\infty$ for τ_{n} the stopping time minimising $\mathbb{E}\left[R_{\tau}\right]^{p}$ over all stopping times adapted to X_{1}, \ldots, X_{n}.

The idea is to bound $X_{\sigma_{n}}$ by exploiting properties of a random walk with negative drift.
2. Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be iid nonnegative random variables with $\mu=\mathbb{E} \xi \in(0, \infty)$. Let $S_{k}:=\xi_{1}+\cdots+\xi_{k}$ and for $\lambda>\mu$ let $M_{\lambda}=: \sup _{k \geq 0}\left(S_{k}-\lambda k\right)$.
Proposition 2. For $p>0$

$$
\mathbb{E} \xi^{p+1}<\infty \quad \Longleftrightarrow \quad \mathbb{E} M_{\lambda}^{p}<\infty
$$

Proof. The moment condition on ξ is equivalent to $\mathbb{E}\left[(\xi-\lambda)^{+}\right]^{p+1}<\infty$, and the result follows from Lemma 3.5 in [1].

Corollary 3. Suppose $\mathbb{E} \xi^{p+1}<\infty$ and let σ be a nonnegative integer random variable with $\mathbb{E} \sigma^{p}<\infty$. Then $\mathbb{E} S_{\sigma}^{p}<\infty$.

Proof. This follows from $S_{\sigma}^{p} \leq\left(M_{\lambda}+\lambda \sigma\right)^{p} \leq c_{p}\left(M_{\lambda}^{p}+\lambda^{p} \sigma^{p}\right)$, where $c_{p}:=2^{p-1} \vee 1$.
3. We can apply Corollary 3 to a Poisson-embedded, limiting form of the stopping problem with continuous time [6]. Let ξ_{1}, ξ_{2}, \ldots be iid rate-one exponential variables, S_{k} as above, and let T_{1}, T_{2}, \ldots be iid uniform $[0,1]$ random times, independent of the ξ_{j} 's. The points $\left(T_{k}, S_{k}\right)$ are the atoms of a homogeneous planar Poisson process \mathcal{P} in $[0,1] \times[0, \infty)$. To introduce the dynamics, consider an observer whose information at time $t \in[0,1]$ is the (infinite) configuration of points of \mathcal{P} within the strip $[0, t] \times$ $[0, \infty)$, that is $\left\{\left(T_{k}, S_{k}\right): T_{k} \leq t\right\}$. The rank of point $\left(T_{k}, S_{k}\right)$ is defined as $R_{T_{k}}=k$, meaning that S_{k} is the k th smallest value among S_{1}, S_{2}, \ldots. The piece of information added at time T_{k} is the point $\left(T_{k}, S_{k}\right)$, but not the rank $R_{T_{k}}$.

Suppose the objective of the observer is to minimize $\mathbb{E}\left[R_{\tau}\right]^{p}$ over stopping times τ that assume values in the random set $\left\{T_{1}, T_{2} \ldots\right\}$ and are adapted to the information flow of the observer. For the optimal stopping time τ_{∞} it is known from the previous studies that $\mathbb{E}\left[R_{\tau_{\infty}}\right]^{p}<\infty$ (see [6] and [5]). Taking $\sigma=R_{\tau_{\infty}}$, we have $\mathbb{E}\left[S_{\sigma}\right]^{p}<\infty$. The case $p=1$ corresponds to the infinite version of Robbins's problem of minimising the expected rank.
4. To apply the above to a finite sample, we shall use the familiar realisation of uniform order statistics through sums of exponential variables, as

$$
\left(Y_{k}, 1 \leq k \leq n\right) \stackrel{d}{=}\left(S_{k} / S_{n}, 1 \leq k \leq n\right) .
$$

Introducing the event $A_{n}:=\left\{n / S_{n}>1+\epsilon\right\}$, we can estimate for $1 \leq k \leq n$
$n^{p} Y_{k}^{p}=n^{p} Y_{k}^{p} 1_{A_{n}}+n^{p} Y_{k}^{p} 1_{A_{n}^{c}} \leq n^{p} 1_{A_{n}}+(1+\epsilon)^{\rho} S_{k}^{p} \leq n^{p} 1_{A_{n}}+c_{p}(1+\epsilon)^{p}\left(M_{\lambda}^{p}+\lambda^{p} k^{p}\right)$,
where we used $S_{k} \leq M_{\lambda}+\lambda k$. Using a large deviation bound for the probability of A_{n} and sending $\epsilon \rightarrow 0$ we conclude that for any random variable σ_{n} with values in $\{1, \ldots, n\}$

$$
\limsup _{n} n^{p} \mathbb{E}\left[Y_{\sigma_{n}}\right]^{p} \leq c_{p} \lambda^{p} \limsup _{n} \mathbb{E} \sigma_{n}^{p}+c_{p} \mathbb{E} M_{\lambda}^{p}
$$

Finally, taking $\sigma_{n}=R_{\tau_{n}}$, Proposition 2 follows from

$$
\limsup _{n} n^{p} \mathbb{E}\left[X_{\tau_{n}}\right]^{p} \leq c_{p} \lambda^{p} \limsup _{n} \mathbb{E}\left[R_{\tau_{n}}\right]^{p}+c_{p} \mathbb{E} M_{\lambda}^{p}<\infty,
$$

since $\mathbb{E}\left[R_{\tau_{n}}\right]^{p}$ converges to a finite limit (see [6], [5]).
Acknowledgement This note was completed during the second author's visit to Utrecht, supported by the Department of Mathematics and stochastic cluster STAR.

References

[1] Alsmeyer, G. and Iksanov, A. (2009). A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks. Elect. J. Probab. 14, 289-313.
[2] Assaf, D. and Samuel-Cahn, E. (1996). The secretary problem: minimizing the expected rank with i.i.d. random variables. Adv. Appl. Prob. 28, 828-852.
[3] Bruss, F. T. (2005). What is known about Robbins problem? J. Appl. Prob. 42, 108-120.
[4] Bruss, F.T. and Swan, Y. (2009). A continuous time approach to Robbins' problem of minimizing the expected rank. J. Appl. Prob. 46, 1-18.
[5] Gianini, J. and Samuels, S.M. (1976). The infinite secretary problem. Ann. Probab. 3, 418-432.
[6] Gnedin, A. (2007). Optimal stopping with rank-dependent loss, J. Appl. Prob. 44, 996-1011.

[^0]: *Postal address: Department of Mathematics, Utrecht University, Postbus 80010, 3508 TA Utrecht, The Netherlands. E-mail address: A.V.Gnedin@uu.nl
 ${ }^{\dagger}$ Postal address: Faculty of Cybernetics, National T. Shevchenko University of Kiev, Kiev-01033, Ukraine. E-mail address: iksan72@mail.ru

