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Abstract

We investigate how author name homonymy distorts clustered
large-scale co-author networks, and present a simple, effective, scal-
able and generalizable algorithm to ameliorate such distortions. We
evaluate the performance of the algorithm to improve the resolution of
mesoscopic network structures. To this end, we establish the ground
truth for a sample of author names that is statistically representative
of different types of nodes in the co-author network, distinguished
by their role for the connectivity of the network. We finally observe
that this distinction of node roles based on the mesoscopic structure
of the network, in combination with a quantification of author name
commonality, suggests a new approach to assess network distortion by
homonymy and to analyze the reduction of distortion in the network
after disambiguation, without requiring ground truth sampling.
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1 Introduction

A nascent stream of research in scientometrics, policy research, and social
studies of science and technology analyzes co-author or citation networks to
obtain a better understanding of scientific collaboration and the social orga-
nization of science. Author name ambiguity compromises this analysis and it
is essential to remove this noise as the study of network structures becomes
more sophisticated and moves beyond global measures of network topology
to mesoscopic network features. Whereas in the past, e.g. for the evalua-
tion of scientists based on their publication output, manual disambiguation
of author names was feasible, large scale network studies require automated
methods.

We present here a simple, effective, scalable and generalizable algorithmic
approach for name disambiguation, and evaluate its performance in the par-
ticular use context of co-author network analysis. Based on our observations
we suggest a new approach to assessing the quality of name disambiguation in
co-author networks that does not require the expensive investment of estab-
lishing the ground truth for a representative sample, but builds exclusively
on measures that can be derived from a structural analysis of the network
itself.

Name ambiguity can be classified into two kinds of problems: synonymy
and homonymy. In this work we focus on name homonymy, which in the
remainder of the paper we refer to as ‘name disambiguation’. In name
homonymy, different individuals have the same name, either due to coin-
cidence or abbreviations of names such as using initials for given names
instead of using the full name. Homonymy is a problem especially for names
coming from naming practices, such as those in Korea or China, that may
have uniquely identifiable full names but very common last names.

Effective and generalizable author name disambiguation remains a gen-
erally unsolved problem for the following reasons. First, different databases
provide different kind of information about articles and authors (the feature-
set used for disambiguation), making it hard to devise a ’one size fits all’
algorithm. Second, the tolerance for errors and for different types of er-
rors will differ between use contexts. Third, the methods for evaluating the
effectiveness of a disambiguation algorithm are not well-established. No com-
prehensive, standardized set of benchmark data exists due to the variety in
use contexts, the range of possibly relevant features of a dataset, and the
costs of manually establishing ground truth. Finally, some algorithms do
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not scale for large data sets. All these concerns have resulted in a variety of
algorithms for name disambiguation.

We consider here the problem of name ambiguity in the context of ear-
lier work presented in [17]. In this earlier work, we analyzed co-authorship
networks to better understand patterns of scientific collaboration in different
scientific fields. We combined ethnographic methods with network analysis
to identify co-author clusters in a co-author network as the smallest collec-
tive units of research in a field, and to extract linking patterns that represent
different kinds of cooperative relationships between such collectives. A sub-
network of particular interest are the co-author clusters in a specialty field
that show intensive inter-group collaboration. The work described here ad-
dresses the fact that this network, which was based on non-disambiguated
author names, showed peculiarly dense clustering for research groups with
Asian affiliations, suggesting distortions due to name homonymy.

Our evaluation method is relatively novel compared to previous approaches
because it takes network structural properties explicitly into account. We ex-
tract and quantify mesoscopic network features by classifying the nodes in a
clustered co-author network into seven different classes of node roles based
on their cluster internal and cluster external linking, following a classification
scheme introduced by Guimera et al. in [3]. Given our suspicion of network
distortions due to homonymy, we are interested to learn how those classes
of nodes are affected by name homonymy and how their proportions change
after disambiguation, reflecting changes in network structure. To establish
the ground truth, for each class of nodes we have sampled a representative
set of author names and manually disambiguated them. Based on this node
role stratified sample, we can obtain estimates of the network distortions due
to name homonymy, and we can evaluate the node role specific performance
of our disambiguation algorithm.

Our algorithm for name disambiguation is fairly simple, yet effective, and
can easily scale up for large networks. We consider two articles with the
same name to be by the same individual if either there is a co-author that
is common in both the articles, following an approach by [7], or if there is a
citation from one article to the other, which we interpret as a self-citation.
Co-author overlap is easy to compute and very effective, while self-citation
leverages an author’s research continuity. One novel feature we use in our al-
gorithm is the commonality of last names, which we operationalize as author
name redundancy by counting the number of variations of initials of a last
name within our data set. Hence the distribution of name redundancy can
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be easily obtained from the data set itself, and we present a principled way of
using this information for excluding less common names from unproductive
disambiguation attempts. Also, through the use of name redundancy, those
parts of the co-author network where naming traditions favor a small set of
highly common last names become identifiable and quantifiable.

2 Related Work

There is a large body of work on name disambiguation which falls under
the general area of entity resolution (see [12] for a broad overview). These
methods employ either supervised or unsupervised learning.

In supervised learning a smaller set of names is manually disambiguated
so that a classification model can be trained. In [4] techniques such as naive
bayes and support vector machines were employed effectively. The drawback
of such methods is that the training set needs to be large enough for the clas-
sifier to extrapolate unseen data accurately. This re-introduces the problem
of manual disambiguation of large sets of names.

Unsupervised learning uses clustering based on similarity metrics between
names [5]. Generative models such as latent dirichlet allocation and topic-
based probabilistic latent semantic indexing have also been used [1, 6]. The
tricky part of using unsupervised learning is to judiciously choose the sim-
ilarity metric and the clustering algorithm. In [6] the similarity metric was
learned from a set of similarity metrics via online active learning.

There are methods that tried to combine the benefits of supervised and
unsupervised learning. In [16, 2] training sets were generated automatically
from the data. Such training sets have noise in them and algorithms must
not overfit by learning the noise.

Whether learning is supervised or unsupervised, feature availability in the
data and feature selection is of paramount importance. Features regularly
employed are co-author names, affiliation, article title, journal names and
topic keywords [16, 12, 2, 4, 5, 6, 7]. Unfortunately, affiliation on an author
basis is not regularly available, nor are standardized keywords. Co-author
names have been shown to be extremely effective [16, 7], even by itself [7], and
they provide a feature that is generally available in any data set of interest to
author name disambiguation. Topics from article text were used in [13] while
random walks on co-author networks were used in [8]. An entirely different
set of features arises from reference or citation networks. For example, self-
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citation was used in [9] and co-reference was used in [15].
Because of overwhelming evidence in favor of co-author names we have

chosen it as the main feature. We also use self-citation to gain more accuracy
on top of co-author patterns. By using both co-author and citation based
features we have broadened the grasp of our algorithm. One novel feature
introduced in this work is the quantification of the variety of first name
initials associated with last names as an indicator of last name commonality.

Our algorithm falls under the category of unsupervised learning where
we have blocked the authors by their names and clustered them using co-
authorship and self-citation. It relies on clustering as simple as finding con-
nected components on co-author overlap graphs, making it useable for large
scale network analysis. The necessity for simplicity in large scale disambigua-
tion was correctly noted in [12] and a recent attempt of disambiguation in
the context of network analysis was presented in [14].

We do, however, have one parameter in our algorithm that was learned
from a small set of manually disambiguated names. So our method is semi-
supervised in some sense. But this parameter is based on a straightforward
intuitive consideration, and the empirical determination mainly served to
verify this intuition. We suggest that the learned value for this parameter
can be safely applied to other data sets, so that our algorithm could be run
in an unsupervised manner.

Because of the context of network analysis, our evaluation method is
significantly different from previous works. Although name ambiguity is
apparent in most standard bibliographic datasets, the importance or effect
of disambiguating these authors is not apparent. In our evaluation we have
taken into account the role of an author in a network and sampled authors
from the seven roles (as presented in [3]) for manual disambiguation so that
network structural effects of disambiguation can be assessed.

3 Data

The publication data used in this study has been obtained from the Web
of Science database by Thomson Reuters using a lexical query to capture
the publications of a specialty field in physical chemistry over a period of 22
years (1987-2008). The co-author network constructed from this data set of
29, 905 publications, identifying individuals based solely on first name initials
and last name, was introduced in [17]. When building the co-author network
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we filter out and exclude from the network author names that have only one
paper associated with them1, and end up with 18, 419 nodes, representing
authors linked by co-authorship, with a giant component of 17, 250 nodes
(93.7%).

Clustering of the co-author network using the information theoretic clus-
tering in [11], exposes the modular structure of co-author relationships, and
results in a network of clusters of closely collaborating authors. Each author
node in such a clustered network can be classified into one of seven node
role types introduced in [3]. A node is classified as a hub node or a non-hub
node based on a first parameter, the number of its cluster internal links rel-
ative to the average inside-the-cluster degree of the nodes in the respective
cluster. This means a hub node in a cluster has more cluster internal links
than the average node of that cluster. A second parameter quantifies how
a node distributes its outside links among the clusters and subdivides hub
nodes into three groups, and non-hub nodes into four groups, both of which
are ordered by increasing outside linking. See table 1 for characterizations
of those type of nodes and their frequency in the giant component of our
network. As reported in [17], based on this distinction between node roles,
we can find a typical principal investigator (PI) led, hierarchically organized
research group as a starlike structure, represented by a hub node in the cen-
ter of a cluster with smaller nonhub nodes around, or a field-specific research
institution or funded research network as a more egalitarian organized cluster
with several hub nodes involved.

In the following we focus on the giant component of the coauthor network,
and population statistics are based on all nodes in the giant component that
can be classified according to Guimera et al.’s role type classification2. This
population comprises 92.5% of the nodes in the entire (undisambiguated)
network. For this population at least 75% of papers are published by coauthor
teams of 5 or less authors (median 3, mean 3.8). The maximum number of

1This filtering is applied to reduce noise in the network structure of a scientific commu-
nity. It excludes about 20% of publications from the data set and 60% of author names.
The filtering is not perfect, as in a first step author names with only one publication get
excluded, and then in a second step we remove all now orphaned publications, or publica-
tions with only one remaining author. This step may result in some authors now having
only a single publication left in the data set. We interrupt the recursive process at this
point, leaving about 3% of authors with a single publication included in the network.

2For a few clusters zero standard deviation of the inside-the-cluster degree prevents
calculation of the first parameter needed in the classification, resulting in the exclusion of
1.2% of nodes in the giant component from the population.
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Figure 1: Cumulative probability distributions of name redundancies before
disambiguation.

coauthors found is 34.
As described below, the classification of author nodes is significantly dis-

torted by author name homonymy, affecting in particular externally linking
node role types (R3, R4, R6, R7). This is of concern; for the study of collab-
oration between groups, the resolution of nodes with role types characterized
by high between-cluster linking is crucial, since they determine the connec-
tivity of the inter-group collaboration network.

Name Redundancy

To capture the ambiguity of an author name due to homonymy we introduce
a measure of a name’s commonality that we derive from the data set itself.
We call it ‘raw name redundancy’, and it is obtained by examining how
numerous variations of initials with the same last name are. For example, for
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the Chinese last name ‘WANG” we have found in our data set 740 instances
of names containing the last name “WANG” that can be distinguished by
their initials, like “WANG, CH” can be distinguished from “WANG, XL”.
Another example for a high scoring last name is the Korean name “LEE” with
raw name redundancy of 511. A large portion of the last names appearing
in our data set, 91.7%, have raw name redundancy of 3 or less. It is worth
noting though that of the 86, 389 co-authorship instances (an author being
listed as a coauthor for a paper), 52, 913 (61.2%) are attributed to authors
with raw name redundancies greater than 3, suggesting the larger number of
actual authors represented by that smaller proportion of names.

The comparison of the cumulative probabilities of raw name redundancy
for the seven different node role types in our population data set in fig 1
reveals strongly right-skewed, long-tailed distributions for role types R1, R2
and R5, that become heavy-tailed for R3 and R6, have an even distribution
for R7, and are finally-left skewed for R4. This indicates an overrepresen-
tation of very high redundancy names for the externally linking node role
types R3, R4, R6 and R7. We suggest that one would expect randomness in
the distribution of raw name redundancies among node role types, resulting
in very similar curves. That the curves differ significantly suggests that a
substantial portion of these nodes has been wrongly classified as strongly
outward connecting, due to a lack of resolution of distinct author identities
because of name homonymy. This would imply a serious misrepresentation of
the true interconnectivity between co-author clusters in the undisambiguated
network.

If we observe a last name L to have rn(L) different initials associated
with it in the dataset then we define its “name redundancy” sn(L) to be the
cumulative normalized rn(L) value:

sn(L) = Pr[X ≤ rn(L)]

Here X is the random variable on rn(.) distribution, and rn(L) the “raw
redundancy” of L. Last names with small raw redundancy will have name
redundancy close to 0 while last names with many different initials will score
close to 1.

Building on this definition we introduce as “article redundancy” the com-
bined name redundancies of the co-author team writing an article, defined
as the product of name redundancies of the last names of the authors. The
distribution of article redundancies for the articles of the authors included
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Figure 2: Distribution of article redundancy for the population data set
resulting from the combined name redundancies of the authors of an article.

in our population data set shows two distinct regions, one symmetric broad
distribution, and one narrow peak, fig 2. Those can be conceptualized as the
overlap of two distributions. The broad distribution comprises articles with
author teams that include one or several author last names with low name
redundancy. Assuming an average number of co-authors per paper of roughly
four authors, this distribution would result from the 4-fold convolution of dis-
tributions representing the independent, random choice of last names from
the name redundancy distribution. The narrow peak on the other hand can
be interpreted as the result of the convolution of distributions representing
the independent choice of last names exclusively from the heavy tail of the
name redundancy distribution. Upon inspection of manually selected sam-
ples we conclude that these are mainly East Asian, specifically Chinese and
Korean, last names. Hence we suggest that the shape of the distribution in
this diagram highlights the division of our data set into two components that
are culturally (naming traditions) and geographically (co-location of closely
collaborating authors) distinct.

To check how this division in the article set is reflected in the set of au-
thors, we can calculate for each author name the average article redundancy
for all articles authored by an author of that name. We find that the distribu-
tion of average article redundancies in the population data set (represented
by the combination of white and light grey areas of the bars in fig 3) also
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shows a distinct peak for high average article redundancies that result if the
author name and all the names of the co-authors of that author have high
name redundancy scores. Such region in the average article redundancy dis-
tribution is of much interest since they are most affected by homonymy, as
shown further below. We can derive a rough estimate from the distribution
in fig 3 on the proportion of authors represented by the high average article
redundancy peak, and hence the percentage of authors working in exclusive
teams of coauthors with highly common last names, likely geographically
co-located in East Asian countries. Taking the local minimum at about 0.85
as the division point, we find 21.5% of (non-disambiguated) authors in the
population data set belong to the peak of high (> 0.85) average article re-
dundancy.

Ground Truth

To estimate the error made by not correcting for homonymy in author names,
and to quantify the improvement made by our disambiguation approach,
we randomly sample a subset of 571 author names from the population for
manual disambiguation of author identities. The procedure for establishing
the ground truth for this sample is described in the appendix.

To account for systematic differences between the different node role
types, we stratified the sample by node role type and sized the sample strata
to be able to make statements on sample proportions with at least a con-
fidence interval of 10%, and a level of confidence of 95%. Sample sizes are
reported in the two rightmost columns in table 1. We sampled an additional
33% of author names for each groundtruth stratum. This provided us with a
training set for verifying our intuition about a low-name-redundancy cut-off
parameter that excludes extremely uncommon names from any disambigua-
tion attempt in order to avoid introducing unnecessary error (see respective
subsection in sec. 4).

Note that the groundtruth sample when aggregated across the node role
strata does not reflect the actual proportions of node role types in the pop-
ulation (shown in the rightmost column in table 1), simply because their
relative proportions in the ground truth sample are not representative for
their relative proportion in the population3. Consequently, when interpret-

3This is a consequence of choosing the minimal necessary sample size for each stra-
tum because establishing ground truth is an expensive time-consuming process. Those
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Figure 3: Probability density distribution of average article redundancy for
author names.

ing results for the aggregate groundtruth set one has to keep in mind that
one can make straightforward statistical estimates only within each stratum,
i.e. for a specific node role type. The comparison of the distribution of the
average article redundancy of the sample with that of the population, as
depicted in fig 3, shows that the sample aggregate is biased toward higher
average article redundancies, a reflection of the fact that node role types
most affected by name redundancy are overrepresented in the ground truth
sample.

4 Algorithm

The basic idea of our algorithm is simple: two papers authored by an author
with the same name are highly likely to be works of the same author if the
two papers share common co-authors. Following [7] we use overlap of two
coauthor sets by at least one last name as sufficient to merge two author

minimal strata sizes have been calculated following p.131 in [10], and those numbers fall
off significantly for large population sizes. Hence, in order to have a groundtruth sample
representative of the relative node role proportions in the population, one would have to
match the required minimal sampling number for the least frequent node role type R7, by
sampling e.g. for the most frequent node role type R2, 275 author names instead of the
102 author names included in our ground truth sample.
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identities. The result is the growth of connected components in co-author
overlap graphs.

Furthermore, if a paper cites another, and both papers are authored by
an author with the same name, then very often this a is self-citation reflecting
the research continuity of that author. Although weaker than co-authorship,
we have found signal from self-citation to be very accurate.

Finally, we have found that authors with last names that are unique in
our data set are best disambiguated by considering every occurrence of such
a name as referring to the same individual. The most uncommon last names
will show up in our data set with raw name redundancy of 1. Intuitively,
because often the same name is written with last name plus 2 or 3 different
variations of initials, such as first initial, first and middle initials, or solely
middle initial, we might want to include names with raw name redundancies
of 2 or even 3 into that set of ’unique’ names.

We do not use affiliation and city information when available in our
dataset since it is difficult to associate those with authors in a principled
manner. We also do not use any text or topic content such as title, journal
or keywords because of our dataset being from a narrow subfield of chem-
istry. These features may be discriminative for a large heterogeneous dataset
like PubMed, but are less useful for a narrow research area where a lot of
articles share the same keywords and are published in a few journals. We
have investigated the applicability of tf-idf similarity of the abstracts and it
indeed turned out to be less informative.

Thus we use in our method of disambiguation co-authors and self-citation
on those names whose redundancy is beyond a certain value that we call the
low redundancy cut-off, which we determine from the training data set to
verify our intuition.

K Metric

The ground truth specifies for a set of articles with the same author name
subgroupings or clusters of articles, each cluster for a different individual
with that author name. In order to compare this ’true’ clustering with ei-
ther the trivial clustering for the undisambiguated data (all papers with the
same author name form one group) or with the clustering resulting from an
automated disambiguation attempt, we need a measure of the agreement be-
tween those clusterings. The accuracy of a clustering with respect to the true
clustering, can be quantified in a number of different ways. The metric we
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found most relevant is the “K metric” used in [2]. Given the true clusters for
a name there are two quantities of interest for an empirical clustering: the
average cluster purity (ACP) and the average author purity (AAP). Cluster
purity is high when an empirical cluster contains articles mostly by the same
individual. But cluster purity does not quantify how fragmented a cluster is.
In the extreme case a true cluster may be split into many singleton clusters,
each with high cluster purity. Author purity quantifies the correctness of the
splits. For a true cluster if all the articles are in the same empirical cluster
the author purity is perfect. The K metric combines the cluster and author
purities. It is defined as the geometric mean of the average cluster purity
and the average author purity.

For a name let there be N articles (N nodes in the article graph con-
structed by our algorithm) which in reality represent t individuals. Suppose
the jth individual, or cluster, contains nj articles. So

∑t
j=1 nj = N . Suppose

the grouping of the same articles produced by our algorithm has e clusters
where the ith cluster has ni articles. Thus

∑e
i=1 ni = N . The average cluster

purity(ACP) and the average author purity (AAP) are defined as follows.

ACP =
1

N

e∑
i=1

t∑
j=1

n2
ij

ni

AAP =
1

N

t∑
j=1

e∑
i=1

n2
ij

nj

Here nij is the number of articles that are in true cluster j as well as in
empirical cluster i. So

∑e
i=1

∑t
j=1 nij = N .

K =
√
ACP×AAP

The K values for our data are widely distributed. For this reason we have
used quantiles in parameter learning and algorithm evaluation, rather than
averages to aggregate the K distributions. Further, we have weighted the
distribution of K values with the size of the article set for each names since
this size is indicative of the importance of disambiguating that name.

Parameter Learning

Our disambiguation algorithm has one parameter, the low redundancy cut-
off. Last names with redundancy scores below this threshold are assumed to
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Figure 4: Quantiles of weighted K values for the training authors for each
low redundancy cut-off.

refer to the same individual. This parameter was learned from the training
set of author names without using self-citation information. The result of a
series of runs with different low name redundancy cut-off on the training data
is shown in fig 4. For each cut-off value, last names with raw redundancy
less than or equal to it were trivially disambiguated by considering each of
them to be one single identity. For last names above the cut-off, co-author
overlap was used for disambiguation. A cut-off value of zero meant all names
were disambiguated via co-author overlap. The weighted median K curve in
fig 4 shows 3 to be the best low redundancy cut-off value. For the lower end
of the K distribution, 3 is also the optimal cut-off as shown by the weighted
first quantile in fig 4. This confirms our intuition that a name with such low
raw redundancy is better disambiguated by merging all appearances of the
name.

5 Results

In this section we present what we learned from the ground truth data,
namely the extent of node distortions due to author name homonymy. We
derive an estimate for the error rate in the entire population, which com-
prises almost all of the nodes in the giant component of the undisambiguated
co-author network. We also use the ground truth data to measure the im-
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Figure 5: Kernel density estimates for error types for undisambiguated author
names in ground truth data set.

Table 2: Role Specific Distortions by Homonymy
R1 R2 R3 R4 R5 R6 R7
[%] [%] [%] [%] [%] [%] [%]

correct 98.0 80.4 51.5 22.5 88.9 72.7 32.1
reduce 0 7.8 11.9 16.9 6.9 10.4 28.6
split 1.0 3.9 10.9 11.2 4.2 13.0 17.9.
delete 1.0 7.8 25.7 49.4 0 3.9 21.4

provements made by using our version of the disambiguation algorithm. In
addition we discuss changes in network structure when moving from the
undisambiguated network to the disambiguated version, demonstrating how
name disambiguation is critical for the resolution of mesoscopic network fea-
tures. Finally, we report an observation that suggests a method to assess and
compare the level of disambiguation in a coauthor network, without having
to invest into the expensive creation of a ground truth data set.

Distortions in Undisambiguated Network

Based on the true identity of authors established for the author names in
the groundtruth data set, we can derive estimates for the errors made by
not disambiguating author names for homonymy. We distinguish three error
types to reflect the different effects correcting them would have on the actual
nodes in the network. ’Split’ means that the ground truth suggests that a
node is split into at least two authors with a minimum of two papers each.
’Reduce’ means a node is to be reduced in size since additional authors were
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found each of which has no more than one paper, and hence does not survive
initial filtering of data when building the network. Finally ’delete’ means a
node is split into separate identities none of which has more than one paper,
deleting the node entirely from the network, again due to filtering out of
one-paper authors when building the network.

Table 2 shows, for the nodes in the ground truth data set, the different
kinds of errors that were made by representing all instances of an author
name by the same node, as if they all referred to the same individual. Based
on these results we obtain the following estimates4 of the proportion of cor-
rect nodes in the giant component of the non-disambiguated network: of the
R1 non-hub nodes, almost all, 98%(±0) correctly represent a single author,
followed by the R5 hub nodes with 88.9%(±1.1) correctly representing a sin-
gle author. For R2 and R6 nodes the non-disambiguated network represents
a large majority of nodes correctly, with 80.4% (±1.7), and 72.7.%(±2.9),
respectively. Those rates go dramatically down for R3, R7 and R4 nodes,
with 51.5.%(±4.6), 32.1.%(±12.5), and 22.5%(±8.0) of nodes correctly rep-
resenting a single author.

These results confirm our suspicion that the issue of name homonymy
causes misrepresentation of individual authors especially for those nodes that
determine the inter-cluster connectivity of the clustered network. So, whereas
the most numerous node role types in the network, R1 and R2, have small
error rates, and the overall estimated error rate across all node role types
is about 20%, the error estimate for those nodes of role types that most
crucially determine the mesoscopic structure of the collaboration network,
those that link between clusters that represent research groups, rise to 68%,
and 78% for R7, and R4 nodes, respectively.

Fig 5 indicates how the different error types are distributed over the range
of average article redundancies of the author names. The density estimates of
the various errors due to false merges peak for author names that have very
high average article redundancies, i.e. authors publishing exclusively with
colleagues that also have very common last names, leading to distortions in
the respective parts of the co-author network.

4Approximate error margins given for a 95% confidence interval
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Table 3: Quantiles of Weighted K
median 25% minimum

nondis dis nondis dis nondis dis

R1 1.0 1.0 1.0 1.0 0.71 0.61
R2 1.0 1.0 1.0 1.0 0.44 0.68
R3 0.85 1.0 0.65 0.89 0.39 0.56
R4 0.5 1.0 0.4 0.89 0.28 0.58
R5 1.0 1.0 1.0 1.0 0.62 0.57
R6 1.0 1.0 1.0 0.98 0.41 0.59
R7 0.54 0.93 0.28 0.89 0.2 0.69

Evaluation of Disambiguation Algorithm

Table 3 compares for author names in the groundtruth sample the weighted
K quantiles before and after disambiguation. Results are reported for the
node role specific strata of the sample. The median of weighted K shows
significant improvements after disambiguation for node roles R4 and R7,
further improvements at the lower 25% quantile level for R3, R4, and R7,
and a slight decrease for R6 nodes. There are also significant improvements of
the minimum values of the weighted K distributions for all node role types,
except R1 and R5. Excluding those author names that do not show any
change in K, the median gains (or losses) in K by node role type for those
author names that did change are as follows: R1: −0.2, R2: 0.25, R3: 0.28,
R4: 0.42, R5: 0.01, R6: 0.01, R7: 0.42.

Fig 6 visualizes for all author names in the groundtruth sample the im-
provement obtained by disambiguation using our algorithm. Circles repre-
sent author names, the sizes represent the number of papers coauthored by
authors with that name, and the colors represent the K obtained for that
author name. The figure highlights the critical gains in resolution for author
names with high average article redundancies. The bubble plots underline
how in particular those author names with average article redundancies be-
tween 0.85 and 1.0 (that correspond to the peak in fig 3 that we interpret
as the East Asian team component in our data) suffers from lack of resolu-
tion due to name homonymy, and that the coauthor based disambiguation
method studied here achieves very good improvements for that component.
Only a small fraction of author names with K lower than 0.8 remain.
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Figure 6: Comparison of error due to homonymy based on groundtruth sam-
ple. Left: undisambiguated. Right: disambiguated.
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Figure 7: Frequency distribution of node role types.

Resulting Changes in Network Structure

Rebuilding the co-author network from the disambiguated author data, we
obtain a network almost unchanged in size, with 18, 411 nodes instead of
18, 419, but with a significantly smaller giant component of 14, 057 nodes
(76.4%) instead of previously 17, 250 (93.7%). In fig 7 the node role dis-
tributions for the giant components of the undisambiguated and the disam-
biguated network are compared. Disambiguation strongly affects the distri-
bution of node role types in the entire population, reducing the proportions
of the inter-cluster linking nodes R2 (−14%), R3 (−69%), R4 (−89%), R6
(−33%) and R7 (−75%), and increasing the proportions of those nodes with
no connections to other clusters, R1 (+66%) and R5 (+69%). The resulting
node role distributions for hub nodes and non-hub nodes show steady declines
with increasing external linking. This new result would match with the naive
intuition to expect smaller and less interlinked nodes to be more numerous,
since a larger node (author with more papers) and a more externally linked
node (author moving between groups or participating in inter-group collab-
orations) requires more resources, and hence should be more rare. Those
smaller and less interlinked nodes would typically represent students pub-
lishing a couple of papers with a research group and its PI, before they move
on, either to another research field or leaving science. The previous distribu-
tion, with peaks for R2 and R6 type nodes, looked counterintuitive in need
for explanation for its deviation from this simple assumption.
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Figure 8: Collaboration Networks. Left: undisambiguated; Right: after
author name disambiguation

Fig 8 shows on the left hand side the global network of intensive inter-
group collaboration derived in [17] based on the non-disambiguated data.
The right hand side in contrast depicts the network build from the disam-
biguated data. Note that nodes in this network represent co-author clusters,
which we interpret as the footprints of collectives of closely collaborating
authors. The disambiguated network is smaller in size, containing only 181
instead of 326 clusters that are less densely interlinked (node degree mean
= 3.9 for the undisambiguated network vs. a node degree mean = 2.8 for
the disambiguated network). We observe changes in particular in the sub-
network of Asian affiliated groups (represented by light green nodes) whose
relative size shrinks from including 43% of clusters to including only 19% of
clusters. This is presumably a consequence of the fact that, based on our
groundtruth sample, for authors with average article redundancies of 0.85
and higher, splitting (35%), weakening (31%), and deletion (19%), are the
dominant results of disambiguation. By contrast, disambiguation affects au-
thors with average article redundancies below 0.85 much less, with splitting
(9%), weakening (6%), and deletion (5%) affecting a much smaller portion of
nodes in the ground truth. Further, due to the observed reduction of satellite
connector nodes (R4) and global hubs (R7) in the network (nodes that, as
the ground truth suggests, had particular high average article redundancies
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in the non-disambiguated network as shown in figure 6), the interlinking of
Asian affiliated groups has been drastically reduced.

It may be worthwhile to note that for the ground truth data the major
part of the remaining error in the disambiguated data can be attributed to
over splitting (15.9% of names), not over merging (2.6% of names) or the
combination of over merging and over splitting (4.6% of names), with similar
levels of severity of error as measured by K found for over merging and over
splitting. We conclude that for the algorithmic approach presented here,
in spite of very good improvements, perfect resolution remains a challenge.
There is the issue of overmerging, because using co-author overlap as the
central feature for disambiguation leads to the circular problem of disam-
biguating the co-authors first (how informative is it when on two papers the
author “LEE, H” has a coauthor with last name “LI”, given that “LI” is an
extremely common name in our data set?). And there is the issue of over
splitting from relying on continuity in co-authorship (and self-citation) alone
to suggest author identity. Discontinuities in coauthor overlap arise because
of e.g. team dynamics - small student dominated teams and rapid turnover
of team members will imply coauthor discontinuity for the senior lead au-
thor; author mobility - career moves, joining a new group or building up
new group may induce an abrupt change in coauthors; or the research focus
of an author - if that focus is broad, he or she may coauthor with disjoint
groups of coauthors. The influence of such factors may well differ between
data sets due to their characteristics, e.g. the extent of the temporal period
they cover, like in our case we analyze data covering 22 years, allowing for
numerous career movements of the authors represented.

Groundtruth Independent Evaluation

In this section we investigate the effect of disambiguation on the role spe-
cific raw name redundancy distributions presented in fig. 1 for the undis-
ambiguated network. If our naive expectation of a random distribution of
raw name redundancies among nodes of different node role types is justi-
fied5, then successful disambiguation should be reflected in close agreement
between those distributions for the different role types in a network. Indeed,

5This assumption would be violated in a situation where cultural differences in naming
traditions are correlated with cultural differences in scientific collaboration, leading to dif-
ferent between-cluster linking patterns and consequently to differences in the distribution
of name redundancies across node roles for parts of the network.
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Figure 9: Cumulative probability distributions of name redundancies after
disambiguation.

when we plot these distributions for the disambiguated network, fig 9, we
find a dramatic change in that now all curves have become much more sim-
ilar, all reflecting a long tailed distribution of raw name redundancies, but
without very heavy tails. This suggests that very common names have be-
come more equally distributed between node roles. Also in contrast to the
earlier diagram, the distributions with a slightly heavier tail belong to the
less outwardly linked node role types (R1, R2, and R5), indicating that some
of the high redundancy names that were previously legitimately included in
the strong outward linking node role types, may have suffered from over-
splitting; the dominant error type remaining for our algorithm, as discussed
above. We suggest that such a node role dependent name redundancy anal-
ysis might be a very useful tool for assessing the degree of distortion in a
co-author network due to name homonymy and for comparing the effect of
various algorithmic disambiguation attempts.
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6 Conclusion

We show that author name homonymy is a serious problem for the anal-
ysis of large-scale co-author networks. We derive error estimates from a
ground truth sample that is statistically representative of different types of
nodes in the network distinguished by their role for the connectivity of the
clustered network. Those estimates confirm that a large majority of those
nodes that determine the interlinking between co-author clusters in the undis-
ambiguated network include false merges of author identities due to name
homonymy. The Asian component of the global group collaboration network
is most affected, due to the commonality of last names in Chinese and Korean
naming traditions, the homogeneity of these traditions in a geographical area
resulting in exclusively common name co-author teams, and the strong rep-
resentation of Chinese and Korean groups among the Asian affiliated groups
in the scientific field studied here. This explains the peculiar dense clustering
observed for those groups in our previous work [17].

The disambiguation algorithm presented here deals effectively with those
distortions. It rests on a co-author overlap feature that has been found
to be very effective in previous work [7]. To increase performance we add
self-citation as a feature, and a cut-off parameter to protect last names of
low name commonality from the negative effects of disambiguation. Apply-
ing this algorithm produces significant improvements, in particular for those
nodes with a critical role in inter-cluster connectivity. The great advantage of
this algorithm is its scalability for large data sets and its broad applicability
as it uses only a minimal set of data features (co-authors and self-citation).

We further suggest that we can gain insights on the distortion of net-
work structure due to name homonymy without investing in the expensive
creation of a ground truth sample. The distinction of classes of network
nodes to reflect the mesocopic structure of a clustered network following [3]
in combination with the quantification of name redundancy introduced in
this work, provides a powerful lens to assess network distortion and the re-
duction of distortion in the network after disambiguation. The refinement
and quantification of this potentially very useful analytic tool is left to future
work.
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A Groundtruth Data

We have manually established the ground truth for the author names in the
node role stratified sample described in section 3. To find information on
the actual identities of authors with the same combination of last name and
initials, we looked up full names and institutional affiliations, if given, in
the full text version of articles. We further used biographic information and
affiliation information gleaned from personal homepages and institutional
web pages, as well as topic information from article titles and abstracts to
establish topical closeness.

Obviously, even the ’ground truth’ is not necessarily the truth, because
due to lack of evidence legitimate merges of identities may have been left
out, and occasionally subjective judgements on topic closeness or similarity
of institutional affiliation may have led to invalid merge decisions.
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