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Abstract

We use a Stochastic Differential Equation satisfied by Brownian motion taking values

in the unit sphere Sn−1 ⊂ R
n and we obtain a Central Limit Theorem for a sequence of

such Brownian motions. We also generalize the results to the case of the n-dimensional

Ornstein-Uhlenbeck processes.

Key words: Central Limit Theorem, Brownian motion in the unit sphere in R
n, Ornstein-

Uhlenbeck processes.

1 Introduction

This paper may be regarded as an extension to higher dimensions of the 2-dimensional study
made in [VYH11].

We now consider a sequence of Brownian motions
(

Θ
(k)
t , t ≥ 0

)

, k ∈ N taking values in the

unit sphere Sn−1(⊂ R
n), all starting from the same point on the sphere. In Section 2, we

introduce a general representation of Θ(k) in terms of a Stochastic Differential Equation.
Using this representation, we describe in detail in Section 3 the limit in law, as K → ∞, for
the renormalized sum:

ZK
t ≡ 1√

K

K
∑

k=1

(

Θ
(k)
t −E

[

Θ
(k)
t

])
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of these processes, indexed by t ≥ 0, and taking values in R
n. Of course, one could invoke

the classical Central Limit Theorem (CLT), at least for the finite dimensional marginals of
(

ZK
t , t ≥ 0

)

, as K → ∞. However, with the help of stochastic calculus, there is much more
to say about the description of the asymptotics. Finally, in this Section, we remark that the
CLT can be generalized to Ornstein-Uhlenbeck processes taking values in the unit sphere
Sn−1(⊂ R

n). Three technical points are gathered in an Appendix.
Further extensions may also be obtained, by following e.g. [Itô83] or [Ochi85] and study-

ing for which class of functions f(Θ) we can obtain a functional CLT such as (12) (see below)
for f(Θt), instead of the unique function f∗(Θ) = Θ which we study here.

2 A presentation of Brownian motion in the sphere Sn−1

As remarked in [Str71] and [Yor84] (eq. (4.j), p.34), Brownian motion (Θt, t ≥ 0) in the unit
sphere Sn−1 ⊂ R

n may be viewed as the solution of a Stochastic Differential Equation:

Θt = Θ0 +

∫ t

0

σ0,1(Θs) · dBs −
n− 1

2

∫ t

0

ds Θs . (1)

In (1), Bt ≡
(

B
(i)
t , i ≤ n

)

, t ≥ 0, denotes a n-dimensional Brownian motion starting from

a 6= 0, while (σ0,1(x), x ∈ Sn−1) denotes the family of n× n matrices [Kry80], defined by:

σ0,1(x) = (δi,j − xixj)i,j≤n
, (x ∈ Sn−1) (2)

and/or characterized by:

σ0,1(x) · x = 0, and σ0,1(x) · y = y, if y · x = 0. (3)

Note that σ0,1(x) is symmetric and satisfies: σ0,1(x)σ0,1(x) = σ0,1(x).
Thus, from (3), we deduce that:

σ0,1(x)m = m− (m · x) x, m ∈ R
n, (4)

(

σ0,1(x)m
)

·
(

σ0,1(x)m′) = (m ·m′)− (x · x′) (m ·m′) , m,m′ ∈ R
n. (5)

3 A Central Limit Theorem for a sequence of Brownian

motions in the sphere Sn−1(⊂ R
n)

Let Θ(1), . . . ,Θ(k), . . . be a sequence of such identically distributed Brownian motions in the
sphere Sn−1. We aim for a Central Limit Theorem concerning:

ZK
t ≡ 1√

K

K
∑

k=1

(

Θ
(k)
t −E

[

Θ
(k)
t

])

. (6)
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Adding K equations of the kind of (1) term by term, for
(

Θ
(k)
t , k ≤ K

)

, it is immediate that:

ZK
t = MK

t − n− 1

2

∫ t

0

ds ZK
s , (7)

with

MK
t =

1√
K

K
∑

k=1

∫ t

0

σ0,1(Θ(k)
s ) · dB(k)

s . (8)

Thus, from (7), we obtain:

ZK
t = exp

(−(n− 1)t

2

)
∫ t

0

exp

(

(n− 1)s

2

)

dMK
s . (9)

Now, clearly, the Central Limit Theorem for
(

ZK
t

)

, K → ∞, which we are seeking, will
follow from the limit in law of the martingales

(

MK
t , t ≥ 0

)

, as K → ∞. We now state both
limit results in the following:

Theorem 3.1 a) The sequence of martingales
(

MK
t , t ≥ 0

)

converges in law, as K → ∞,
towards:

M
(∞)
t =

√

1− 1

n

{

Θ(0)

∫ t

0

√
1− e−nsdβs +

∫ t

0

√

1 +
e−ns

n− 1
dB′

s

}

, (10)

where (βs, s ≥ 0) is a 1-dimensional BM and (B′
s, s ≥ 0) is a (n−1)−dimensional BM taking

values in the hyperplane which is orthogonal to Θ(0), and B′ is independent of β.
b) Consequently,

(

ZK
t , t ≥ 0

)

converges in law, as K → ∞, towards:

Z
(∞)
t = exp

(

−n− 1

2
t

)
∫ t

0

exp

(

n− 1

2
s

)

dM (∞)
s . (11)

Proof of Theorem 3.1: Using the Law of Large Numbers, it is not difficult to show that††:

(

MK
t , t ≥ 0

) (law)−→
K→∞

∫ t

0

√

E
[

σ0,1(Θ
(1)
s )
]

· dB(1)
s ≡ (M∞

t , t ≥ 0) , (12)

where Q(s) ≡ E
[

σ0,1(Θ
(1)
s )
]

is a deterministic matrix, depending on s. The RHS of (12) is

a centered Gaussian martingale in R
n. Before computing the square root involved in (12),

we shall first calculate (see (2) for the definition of σ0,1):

E
[

σ0,1(Θ(1)
s )
]

=
(

δi,j − E
[

Θ(i)
s Θ(j)

s

])

i,j≤n
. (13)

††In the Appendix A.1, a more general result, concerning 1√
K

∫ t

0

∑

K

k=1 H
(k)
s · dB(k)

s is presented, where

(B(k), k = 1, . . . ,K) are K independent BMs and (H(k), B(k)) are k ≤ K iid random vectors.
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In order to calculate E
[

Θ
(i)
s Θ

(j)
s

]

as "naturally" as possible, we consider two generic vectors

m and m′ in R
n, and we compute:

ϕm,m′(t) ≡ E [(m ·Θt) (m
′ ·Θt)] . (14)

Using (1) and the (special) properties of the matrices {σ0,1(x)}, we easily deduce from Itô’s
formula, that:

E [(m ·Θt) (m
′ ·Θt)] = (m ·Θ0) (m

′ ·Θ0)− (n− 1)

∫ t

0

ds E [(m ·Θs) (m
′ ·Θs)]

+

∫ t

0

ds E
[(

σ0,1(Θs)m
)

·
(

σ0,1(Θs)m
′)] . (15)

Using (5), (15) simplifies as:

E [(m ·Θt) (m
′ ·Θt)] = (m ·Θ0) (m

′ ·Θ0)− (n− 1)

∫ t

0

ds E [(m ·Θs) (m
′ ·Θs)]

+

∫ t

0

ds (m ·m′ − E [(m ·Θs) (m
′ ·Θs)])

= (m ·Θ0) (m
′ ·Θ0) + (m ·m′) t− n

∫ t

0

ds E [(m ·Θs) (m
′ ·Θs)] . (16)

Consequently, the function ϕm,m′(t) = E [(m ·Θt) (m
′ ·Θt)] is the solution of a first order

linear differential equation, hence:

E [(m ·Θt) (m
′ ·Θt)] = e−nt

{

(m ·Θ0) (m
′ ·Θ0) + (m ·m′)

∫ t

0

ensds

}

. (17)

Now, taking m = ei and m′ = ej , where (ek; k ≤ n) is the canonical basis of Rn, the matrix
Q(s) has elements:

for i 6= j, (Q(s))
i,j

= −E [Θi(s)Θj(s)] = −Θi(0)Θj(0)e
−ns, (18)

for i = j, (Q(s))i,i = 1− E [Θi(s)Θi(s)]

= 1−
{

(Θi(0))
2
e−ns + e−ns

(

ens − 1

n

)}

=

(

1− 1

n

)

+ e−ns

(

1

n
− (Θi(0))

2

)

. (19)

Finally:

Q(s) =

(

1− 1

n

)

Id+ e−ns

(

1

n
δij −Θi(0)Θi(s)

)

i,j≤n

≡
(

1− 1

n

(

1− e−ns
)

)

Id+ e−ns (Θi(0)Θj(0))i,j≤n
. (20)
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Using (20) in the RHS of (12), we obtain:

M
(∞)
t ≡

∫ t

0

√

Q(s) dBs. (21)

Now
√

Q(s) ≡ Λ(s), where (for the explicit calculation, see Appendix A.2):

Λ(s) ≡
√

1− 1

n

√
1− e−nsId+

√

1− 1

n

(

√

1 +
e−ns

n− 1
−

√
1− e−ns

)

σ0,1 (Θ(0))

=

√

1− 1

n

{

√
1− e−nsId+

(

√

1 +
e−ns

n− 1
−

√
1− e−ns

)

σ0,1 (Θ(0))

}

. (22)

Thus, (21) now writes:

M
(∞)
t ≡

∫ t

0

Λ(s) dBs

=

√

1− 1

n

{

∫ t

0

√
1− e−nsdBs +

∫ t

0

[

√

1 +
e−ns

n− 1
−
√
1− e−ns

]

σ0,1 (Θ(0)) dBs

}

.

(23)

We remark here that, with βs ≡ Θ(0) · Bs,

B′
s = Bs −Θ(0)βs ≡ σ0,1 (Θ(0))Bs (24)

is a (n − 1)-dimensional BM taking values in the hyperplane which is orthogonal to Θ(0).
Thus, from (23) we deduce (10).
From (9), letting K → ∞, we obtain (11).
Moreover, changing the variables s = t− u and using the dominated convergence Theorem,
we have:

Z
(∞)
t

(law)
=

√

1− 1

n
exp

(

−n− 1

2
t

)
∫ t

0

exp

(

n− 1

2
s

)

×

×
{

Θ(0)
√
1− e−nsdβs +

√

1 +
e−ns

n− 1
dB′

s

}

(25)

s=t−u
=

(law)

√

1− 1

n

∫ t

0

exp

(

−n− 1

2
u

)







√

1− e−n(t−u)Θ(0)dβu +

√

1 +
e−n(t−u)

n− 1
dB′

u







t→∞−→
√

1− 1

n

∫ ∞

0

exp

(

−n− 1

2
u

)

Θ(0)dβu +

√

1− 1

n

∫ ∞

0

exp

(

−n− 1

2
u

)

dB′
u.

(26)
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Proposition 3.2 The following asymptotic results hold:
a)

Z
(∞)
t

(law)−→
t→∞

Z(∞)
∞ , (27)

where:

Z(∞)
∞ ≡

√

1− 1

n

∫ ∞

0

exp

(

−n− 1

2
u

)

dBu . (28)

b)

Z
(∞)
t − exp

(

−n− 1

2
t

)
∫ t

0

√

1− 1

n
exp

(

n− 1

2
s

)

dBs
L2

−→
t→∞

0. (29)

Part a) of Proposition 3.2 follows from the previous calculations, using (24). In order to
prove part b), it suffices to use the expression (25) and the following Proposition, which
reinforces the convergence in L2 result in (29).

Proposition 3.3 As t → ∞, the Gaussian martingales:

(

G
(0)
t Θ(0), t ≥ 0

)

≡ Θ(0)

(
∫ t

0

√
1− e−nse

n−1
2

sdβs −
∫ t

0

e
n−1
2

sdβs, t ≥ 0

)

, (30)

and

(G′
t, t ≥ 0) ≡

(

∫ t

0

√

1 +
e−ns

n− 1
e

n−1
2

sdB′
s −

∫ t

0

e
n−1
2

s dB′
s, t ≥ 0

)

(31)

converge a.s. and in L2, and the limit variables are Gaussian, with variances, respectively:
(√

πΓ(−1+ 1
n
)

nΓ( 1
2
+ 1

n
)

− n+1
n−1

)

, and
2 2F1(− 1

2
,−1+ 1

n
, 1
n
, 1
1−n

)−1

n−1
.

Proof of Proposition 3.3:
a) The increasing process of the real-valued Gaussian martingale G

(0)
t is:

∫ t

0

e(n−1)s
(√

1− e−ns − 1
)2

ds,

which converges, as t → ∞; thus:

G
(0)
t −→

t→∞

∫ ∞

0

(√
1− e−nse

n−1
2

s − e
n−1
2

s
)

dβs,

where the convergence holds both a.s. and in every Lp. Of course, the limit variable is
Gaussian and its variance is given by (we change the variables u = e−ns and B(a, b) denotes

6



the Beta function with arguments a and b∗∗):

∫ ∞

0

ds e(n−1)s
(√

1− e−ns − 1
)2

=
1

n

∫ 1

0

du u−2+ 1
n

(√
1− u− 1

)2

=
1

n

[
∫ 1

0

du u−2+ 1
n

(

(1− u)− 2
√
1− u+ 1

)

]

=
1

n

{

B

(

−1 +
1

n
, 2

)

− 2B

(

−1 +
1

n
,
3

2

)

− n

n− 1

}

=

√
πΓ(−1 + 1

n
)

nΓ(1
2
+ 1

n
)

− n + 1

n− 1
.

To be rigorous, the integral
∫ 1

0
du u−α

(√
1− u− 1

)2
, which is well defined for 0 < α < 1,

can be extended analytically for any complex α with Re(α) < 3.
b) Likewise, the "increasing process" of the vector-valued Gaussian martingale G′

t is:

∫ t

0

e(n−1)s

(

√

1 +
e−ns

n− 1
− 1

)2

ds

which also converges as t → ∞. The limit variable:

∫ ∞

0

(

√

1 +
e−ns

n− 1
e

n−1
2

s − e
n−1
2

s

)

dB′
s,

is also Gaussian and, by repeating the previous calculation, we easily compute its variance.

Proof of Proposition 3.2:

From Proposition 3.3, by multiplying both processes by e(−
(n−1)t

2 )
√

1− 1
n
, we obtain (29).

Remark 3.4 (The Ornstein-Uhlenbeck case)
In fact, for every process satisfying:

dZs = dBs + h(|Zs|)Zsds, (32)

where (Bt, t ≥ 0) is a n-dimensional Brownian motion (BM) and h : R+ → R is a bounded
function, there is a CLT of the kind of Theorem 3.1. See Appendix A.3 for the proof.

∗∗We recall that (Γ(x), x ≥ 0) denotes the Gamma function and B(a, b) = Γ(a)Γ(b)
Γ(a+b) .
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A Appendix

A.1 Generalization for a class of symmetric matrices

For K independent Brownian motions, and a class of symmetric matrices H(k) such that
(H(k), B(k))k≤K are iid, we have:

M̃
(K)
t ≡ 1√

K

∫ t

0

K
∑

k=1

H(k)
s · dB(k)

s

(law)−→
K→∞

∫ t

0

hsdBs, (33)

with hs a deterministic symmetric positive definite matrix and (Bt, t ≥ 0) a n-dimensional
BM.
Indeed, using m a generic vector in R

n, we have:

m · M̃ (K)
t ≡ m · 1√

K

∫ t

0

K
∑

k=1

H(k)
s · dB(k)

s =
1√
K

K
∑

k=1

∫ t

0

(

H(k)
s m

)

· dB(k)
s

(law)−→
K→∞

N
(

0;

∫ t

0

dsE
[

|H1
s ·m|2

]

)

, (34)

and for the variance, we have:

∫ t

0

dsE
[

|H1
s ·m|2

]

= m ·
∫ t

0

dsE
[

H1
s H̃

1
s

]

m, (35)

and

E
[

H1
s

]

≡ h2
s. (36)

Remark A.1 In our case, we have: Hk
s H̃

k
s = Hk

s .

A.2 Square root of Qs

Q(s) =

(

1− 1

n

)

Id+ e−ns

(

1

n
δij −Θi(0)Θj(0)

)

(i,j≤n)

≡
(

1− 1

n

)

(

1− e−ns
)

Id+ e−ns · σ0,1 (Θ(0)) . (37)

We are searching for a(s) and b(s) such that:

(

a(s)I + b(s)σ0,1 (Θ(0))
)2

= Q(s),

or equivalently:

(a(s))2 I + 2a(s)b(s)σ0,1 (Θ(0)) + (b(s))2 σ0,1 (Θ(0)) = Q(s).
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We compare with (37) and we find:

(a(s))2 =

(

1− 1

n

)

(

1− e−ns
)

; 2a(s)b(s) + (b(s))2 = e−ns.

Solving this system of equations, we easily obtain:







a(s) =
√

1− 1
n

√
1− e−ns

b(s) =
√

1− 1
n

(
√

1− e−ns

n−1
−
√
1− e−ns

)

.
(38)

A.3 The Ornstein-Uhlenbeck case

We consider the n-dimensional Ornstein-Uhlenbeck (OU) process:

Zt = z0 + Bt − λ

∫ t

0

Zsds, (39)

where (Bt, t ≥ 0) is a n-dimensional Brownian motion (BM), z0 ∈ R
n and λ ≥ 0.

Proposition A.2 The Ornstein-Uhlenbeck (OU) process
(

Θ̃t, t ≥ 0
)

in the unit sphere Sn−1

is the solution of the Stochastic Differential Equation

ΘZ
t = ΘZ

0 +

∫ t

0

σ0,1(ΘZ
s ) · dB̂s −

(

n− 1

2
+ λ

)
∫ t

0

ds ΘZ
s , (40)

where
(

B̂t, t ≥ 0
)

is a n-dimensional BM.

Proof of Proposition A.2:

We shall study ϕ̃t ≡ Zt

|Zt| . We remark that the Jacobi matrix and the Hessian matrix associ-

ated respectively to the functions Φ(x) ≡ x
|x| , (x 6= 0) and g(x) ≡ |x| are given by:

(

∂

∂xj

Φi(x)

)

=
1

|x|σ
0,1(x) ;

(

∂2g(x)

∂xi∂xj

)

=
1

|x|σ
0,1(x).

Hence, using (39), ϕ̃ satisfies the following Stochastic Differential Equation

ϕ̃t = ϕ̃0 +

∫ t

0

1

|Zs|
σ0,1(ϕ̃s) · dZs −

n− 1

2

∫ t

0

ds

|Zs|2
ϕ̃s (41)

= ϕ̃0 +

∫ t

0

1

|Zs|
σ0,1(ϕ̃s) · dBs −

∫ t

0

(

n− 1

2

ϕ̃s

|Zs|2
+

λZs

|Zs|
σ0,1(ϕ̃s)

)

ds

= ϕ̃0 +

∫ t

0

1

|Zs|
σ0,1(ϕ̃s) · dBs −

∫ t

0

ϕ̃s

(

n− 1

2

1

|Zs|2
+ λ σ0,1(ϕ̃s)

)

ds. (42)
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We can replace the BM B by another BM:

B
∗
t ≡

∫ t

0

(

σ0,1(ϕ̃s) · dBs + σ1,0(ϕ̃s) · dWs

)

,

where (Wt, t ≥ 0) is a BM independent from B.

Thus,
(

γt ≡
∫ t

0
Zs

|Zs| · dBs, t ≥ 0
)

and B
∗ are two independent BMs, and from Knight’s the-

orem [ReY99], γ is independent from the BM
(

B̂t, t ≥ 0
)

obtained by changing the time

scale of
(

∫ t

0
1

|Zs|dB
∗
s

)

with the inverse of
∫ t

0
ds

|Zs|2 . Finally,
(

ΘZ
t , t ≥ 0

)

may be obtained from

(ϕ̃t, t ≥ 0) by making the same change of time scale.

Corollary A.3 The angular part of a n-dimensional Ornstein-Uhlenbeck process is equal to
the angular part of a Brownian motion, considered under the time scale αt =

e2λt−1
2λ

.

Remark A.4 For the case of a complex-valued OU process, see [Vak11].

Proof of Corollary A.3:

It follows easily from equation (40) by taking the angular part. For the new time scale, it
suffices to remark that, with < · > denoting the quadratic variation of a martingale:

αt ≡<

∫ ·

0

σ0,1(ΘZ
s ) · dB̂s >t=

∫ t

0

(

σ0,1(ΘZ
s )
)2

ds =

∫ t

0

σ0,1(ΘZ
s ) ds .

Remark A.5 Proposition A.2 is easily generalized for every process of the kind:

dZs = dBs + h(|Zs|)Zsds, (43)

for every bounded function h : Rn → R.
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