
The Engineering Economist, 52: 195–214

Copyright © 2007 Institute of Industrial Engineers

ISSN: 0013-791X print / 1547-2701 online

DOI: 10.1080/00137910701503902

FINANCIAL OPTIONS FROM REGULATING REAL ESTATE
FOR HABITAT CONSERVATION
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This article offers an analysis of financial incentives for landowners, con-
servation bank managers, and land developers under habitat regulations
for land use. A financial option theory approach is used with call and put
options as contracts for habitat conservation and exchange. The market for
habitat is modeled as a stochastic game to derive the option price on habi-
tat that allows for arbitrage between land with and without permission to
develop. This analysis applies to a variety of policies including transfer-
able development rights, conservation, and mitigation banking to protect
wetland and upland habitat and wildlife.

INTRODUCTION

Habitat loss is the largest threat to biodiversity (Wilcove et al., 1998). Cur-
rent rates of biodiverse species extinction are estimated at several orders of
magnitude above background or natural extinction rates (Lawton and May,
1995; Pimm et al., 1995). Habitat and biodiversity loss is currently ad-
dressed through several habitat policies at local, national, and international
levels. Conserving habitat involves land management decisions including
purchase of land or easements.

The following regulatory policies include incentive-based strategies on
a national scale for habitat conservation in the United States: Transfer-
able Development Rights, Safe Harbors Act, Conservation and Mitigation
Banking, Candidate Conservation Agreements, Habitat Conservation Plans
and Natural Community Conservation Plans of the Endangered Species Act
(ESA). On an international scale, the Migratory Species Agreement has led
to efforts to ensure that terrestrial and aquatic space is maintained in several
countries, supporting the species as it moves between locations seasonally.
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What financial and economic incentives exist for landowners to support
such policies for habitat? An analytical model is provided to study eco-
nomic and environmental aspects of these conservation policies that act to
give the landowner a financial call and put option. This article describes the
sale of a land habitat option as a game to evaluate landowners’ incentives
and to provide an application of Ziegler’s approach of option pricing in the
environmental realm. Development results in permanent, irreversible de-
struction of habitat, with one chance for regulations to work. Irreversibility
is another characteristic that is addressed using option theory.

The basic premise of conservation banking and transferable develop-
ment rights is as follows. Conservation banks allow developers to develop
if habitat that is threatened and protected is mitigated by ensuring the con-
servation in perpetuity of a compensating amount of equivalent habitat
elsewhere. A landowner may conserve more habitat or hold more credits
than is required and hold this surplus to sell to others who wish to develop
and need to fulfill the mitigation requirements now or in the future. This
ability to store or sell the surplus over the amount required by regulations
is referred to as mitigation banking. The price of the credits is based on
supply and demand (California Resources Agency, 1999).

The banker (landowner) has an economic incentive to encourage the
wildlife species (perhaps endangered) through land management that in-
creases either the quality of habitat, the ability of land to protect endan-
gered species, or both, because they are saleable in land habitat form. The
amount of credits the banker can sell depends upon the quality and type
of habitat and the number of endangered species supported by the parcel
of land. The success of International Paper Company’s Southlands Mit-
igation Bank consists of maintaining pine tree habitat for red-cockaded
woodpeckers (Environmental Defense Fund, 1999). There is potential to
reduce the cost of compliance with the ESA to landowners and provide
a financial incentive for conservation. Conservation banking compensates
landowners for providing a public good and enables a market to determine
the amount of compensation.

A Transferable Development Rights (TDR) program works by desig-
nating a zone where development is restricted in exchange for the right to
transfer that development to a receiving zone where development is per-
mitted. There is a maximum level of development within the development
zone and rights are distributed to landowners within the region. Landowners
who keep their actual development levels below their allotted development
rights level can sell their surplus development rights to other landowners
or they can use them to offset development on other properties (Boyd,
1999).

The value of a TDR and banked mitigation habitat is decided by a mar-
ket and allows the regulator to implement habitat goals while maximizing
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benefits of development. To facilitate trading and minimize transactions
costs, regulators can establish a TDR bank or exchange, which brings to-
gether willing buyers and sellers such that each can find mutual gains
through trade (Tripp and Dudek, 1989). Through promoting the growth of
species and habitat on land that is not zoned for development and bank-
ing the growth increase, the owner of this land may allow the release for
development of land otherwise encumbered by environmental laws and
effectively transfer between land with and without permission to develop.
The Pinelands in New Jersey contain 1.1 million acres arranged through a
TDR program in place since 1983.

This article adds a formal link of land habitat policy with financial option
transactions that contributes to the existing literature. There have been a
few studies that apply option theory to natural resources rather than capital
assets. A seminal paper by Arrow and Fisher (1974) noting irreversibility
and uncertainty in natural resource preservation has preceded more recent
efforts that model stochastic processes for resource decisions. For exam-
ple, Chang (2005) examines forest rotation in an analytical model, whereas
Yap (2004) investigates forest management with an empirical application
in the Philippines. Li (1998) examines fish harvesting in an analytical rather
than empirical model. Oil has been examined by several authors, including
Paddock, Siegel, and Smith (1988), who evaluated prices from a real option
model for offshore oil leases; Lund and Oksendal (1991), who examined
stochastic specifications for oil; Gibson and Schwartz (1990), who focused
on oil contingent claims prices; and Dixit and Pindyck (1994), who ana-
lyzed oil with option theory. There have been a few papers, by Bar-Illan
and Strange (1992), Capozza and Li (2002), Majd and Pindyck (1987),
and Williams (1993), that focus on the time of building without addressing
habitat as an aspect of land use or policy aspects. In those articles, when
resource exploitation is subject to irreversibility and uncertainty, extracting
the resource becomes more conservative and the level of efficiency of effort
increases.

The stochastic form in most applications is Brownian motion and ge-
ometric Brownian motion to depict both the price and resource evolution
over time. The assumed stochastic form governs the decision to invest by
a single decision-maker. In the case of Paddock et al. (1988) such an as-
sumption leads to highly correlated values that cannot predict actual market
prices and industry bids, which appear to be twice as large in magnitude
(Quigg, 1993). Perhaps the offshore oil leases of Paddock et al. (1988) can
be characterized as not readily observed like land-based oil wells, and that
would be the reason for assumed stochastic processes not matching market
transactions. The market price provides a comparison between real option
values and transaction prices that occur due to more than one decision-
maker involved in the market.
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For a natural resource–like habitat without a readily observed commod-
ity value, simply assuming an underlying stochastic functional form is
only an assumption. There have not been papers formally addressing any
attempt to model the nonmarket values of habitat through an option ap-
proach with a generic stochastic form. It would be better to allow for the
market transaction of demand and supply for habitat on land to set the price.

Hence, the game structure of analysis proves useful for modeling a
market setting involving exchange between more than one land market
participant. Grenadier (1996, 2005) presents a game model expanding on
Williams (1993) to focus on the equilibrium nature of sequential develop-
ment with developers as leaders or followers where development decisions
of each participant impact all other participants. The equilibrium struc-
ture is different from traditional option pricing that assumes that an asset
can be replicated by instantaneously trading because the land market has
transactions costs. However, the focus is on developed land rent rather than
undeveloped parcels for environmental use of land and leaves room for
more research.

The context of land management with actual applications to a policy
that relates to habitat and environmental resource protection has not been
addressed in the literature. This article adds to the literature by applying
two lines of theory in a direct way to land management for environmental
protection of habitat that relates to policies. In this context, land contains a
real option to develop at later dates where the exercise price is the cost of
development and option maturity is infinite. While the context is set in the
United States, the principles apply elsewhere too. The few studies on TDRs
cover the legal aspects in a qualitative way (Machemer and Kaplowitz,
2002; Miller, 1999). Metrick and Weitzman (1998) provide a summary of
the types of species saved through the Endangered Species Act based on
utility.

The finance literature contains approaches to investments as options from
Merton (1973) and Black and Scholes (1973). The asset pricing model of
Merton (1973) does not depend on solving an optimization decision prob-
lem. Rather, for the financial assets evaluated (bonds and options rather
than real assets like land), their value is defined according to an underly-
ing stochastic process and no arbitrage condition. A second-order partial
differential equation is solved where the total return on value equals the
risk-free return plus a risk adjustment term that is an additional rate of return
required for each unit of volatility. The no-arbitrage condition provides a
framework for pricing assets and indicating how the asset and interest rate
depend on the state for a state-dependent return at a terminal date. Merton
(1973) uses boundary conditions for the Ito process.

Ziegler (1975) defines option pricing as a game between buyer and seller,
drawing on Merton’s price options results. The game theoretic aspect of
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his analysis is that the players are rational and the bank anticipates that the
investor will exercise an optimal strategy. While Merton (1973) relied on
the stochastic process to prove the price of a call option, the present article
proves the price through the sale of an option with game theory parallel
to Ziegler (1975) but applied to habitat conservation of land. This game
structure has an advantage of a greater simplicity, both conceptually and
computationally, that does not depend on hedging and includes information
on the part of each player. Referencing Aumann’s theorem of information of
the players helps the transaction and market clearing price (Aumann, 1976).
One innovation of the current article’s method relates to the interpretation
of the fair price of an option as an equilibrium price for the solution to the
game that describes the sale of the option in the game. The Nash equilibrium
of the game is conditional on the firm’s exercise strategy and other players’
strategies.

MODEL

First, a static problem of the landowner involved with habitat on land is
presented. Then dynamics and uncertainty are added into a market speci-
fication.

Deterministic Landowner’s Problem

Assume there is an area Z0 of habitat that is valuable and should be pro-
tected. The environmental regulator determines from demand for devel-
opment that an amount Z̄ must be conserved through one of the policies
described in the introduction and that the difference [Z0 − Z̄ ] can be sold
for development. In addition, more of the initial area Z0 can be sold if
an equivalent amount of currently unpreserved similar habitat is put irre-
versibly into preservation as part of the policies described in the introduc-
tion as mitigation banking and transferable development rights.

An index for determining the amount of acreage to be compensated
between habitats is the compensation ratio. The compensation ratio con-
tains the compensating amount of equivalent habitat for the amount of
acreage used in development. The units of measure are in number of acres
of restored or preserved habitat in the numerator and the number of acres
affected by development in the denominator. The compensation ratio is set
by the environmental regulator on the basis of ecological considerations
such as similarity between sites of soil, vegetation, and species supported.
Assume that the compensation ratio is constant and for simplicity equal to
1. This regulator then has the power to control use, location, and timing of
land for development.
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There is demand for land for development in the original area. The
demand curve is P = f (L) where L is the amount supplied and P is what
developers are willing to pay for an extra acre (unit of area). Clearly, P is
decreasing in L . Absent any mitigation, the supply of land for development
would be [Z0 − Z̄ ] and the market price would be P = f [Z0 − Z̄ ]. Habitat
policy allows the supply of land for development to be increased by the
amount of land available for conserving or mitigating habitat.

The cost of conservation or the TDR is the purchase of land to be set
aside and banked. As more equivalent land is purchased and set aside,
the cost of finding such land will rise. Assume that the cost curve of land
for conservation is C(M), where C is the cost of an extra unit and M is
the amount used for conservation. So at a market price of P per unit of
land, the total supply is the amount of the initial area allowed to be used
for development [Z0 − Z̄ ] plus the amount supplied for conservation at
a market price P , which is the value of M given by C(M) = P . Hence,
market equilibrium with conservation when the price is such that demand
and supply are equal shows

f (Z0 − Z̄ + M) = C(M) (1)

This means supplying Z0 − Z̄ inelastically and C(M) from mitigation
banking at a lower price than where the market would clear in absence of
mitigation banking. The impact of the banking provision is to lower the
cost of development and to increase the supply of land for development,
without the target habitat falling below Z̄ , assuming that the land is readily
available to conserve. The precise amount by which these changes occur
will depend on the slope of C(M), which in turn depends on the amount of
equivalent land available, its cost, and the compensation ratio. Any value
greater than 1 will increase the cost of mitigation and raise the slope of
C(M). Ecological factors will affect the equilibrium price and the amount
of development that occurs, and the final equilibrium is a function of both
economic and ecological aspects such as flora and fauna species.

Suppose that there is a recognized population of species W0 that must
be preserved. It might be that W0 can grow on Z0 or more land, where W0
is clearly an increasing function of Z . If the population rises above W0,
then the excess over W0 entitles the landowner to release more land for
development or, through TDRs, transfer to another landowner the right to
use previously restricted land for development. If land is used for develop-
ment on the basis of a population increase, then the higher population has
to be maintained; otherwise, the landowner is not obligated to maintain the
larger population. This feature is known as a Safe Harbor provision (under
the Endangered Species Act) and assures the landowner that he cannot be
made worse off by promoting the growth of wildlife habitat. This provision
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gives an option-like structure to the landowner. A stochastic process may
characterize the uncertainty of population of species in terms of its corre-
spondence to Z . Such uncertainty may lead one to allocate more land as
habitat just to guarantee enough wildlife somewhere on the land to meet
policy requirements.

By allocating more land as habitat and increasing the wildlife population,
the developer would have a larger bankable surplus. The banking of habitat
and species becomes a vehicle for trade between two different land markets.
The spontaneous increase in population of species means that some land
can be released for development. There is an assumption of diminishing
marginal productivity as the marginal product of habitat decreases as land
increases.

The landowner will presumably support the extra population if the value
of the land released for development exceeds the cost of land and resources
needed to support the wildlife population increase. The amount of land
needed to support a population of W is Z0(W0) when no additional habitat
is allocated for preservation, W = f (Z0,0). The amount of land released
from ESA regulations when one new population unit is increased is Q. The
market value of the land that can be released as a result of banking and
what the banked population is worth is P Q.

There is a cost to supporting a higher population because more resources
and land are needed. The minimum cost of supporting a population of W
is given by the cost function

C(W, P) = min
f (Z )

[P Z ] (2)

The profit π that a landowner makes from the sale of land when the popu-
lation rises by one unit is therefore

π = P · Q − ∂C(W, P)

∂W
(3)

where the second term of the right-hand side is the marginal cost of the
population increase. The Safe Harbor provision provides the incentive for
the landowner to support a population increase since it is the maximum of
profit. The landowner does not have the incentive without the provision.
The maximization with and without the Safe Harbor provision is depicted
as the maximum and zero, respectively.

max π = P · Q − ∂C(W, P)

∂W
, 0 (4)
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The Safe Harbor provisions give the landowner a call and put option
on the profits from population growth that can be uncertain in terms of
the amount of W corresponding to Z . A call option on a good conveys
the right but not the obligation to purchase (call) or sell (put) the good at
the exercise price at any time up to the expiration date. The option has
value if the market price exceeds the exercise price. An option is a contract
giving its buyer the right to buy (call) or sell (put) a share of a stock (of
habitat, land) on specified terms either at a fixed time of maturity or during
a certain period of time in the future. An option is perpetual if there is
no expiration date. Depending on the type of option (call, put, European,
American, etc.), there are different boundary conditions that characterize
the option and transactions associated with it.

Using the Merton (1973) approach, a stochastic process would be spec-
ified for the evolution of Z and habitat quality in terms of how much W
it has. The ecological process of habitat is stochastic due to complex bio-
logical, chemical, and physical factors affecting evolution of an ecosystem
(Castelle, Connelly, and Emers, 1992). The option value described above
would then be specified from a second-order partial differential equation
with boundary conditions for the Ito process to determine value. The mean
growth rate of W in relation to Z could provide the drift term and the
instantaneous standard deviation could gauge the variance for the Brow-
nian motion form. The boundary conditions may not be precisely defined
for habitat that has no formal market without the environmental policy.
As Quigg (1993) and Brennan and Schwartz (1985) found, it is hard to
gauge the threshold levels for entering and exiting investment (in copper
or oil, as examples) or not if the expectations do not match the actual
values.

Habitat is not a readily transacted commodity without an observable
price. Thus, it would be difficult to peg the actual option price without
accounting for the actual exchange between players in a market with de-
rived demand for habitat from the development requirement to conserve
habitat in exchange for development rights. A real-world example of a miss-
ing market for values on habitat is park fees (at state or national parks).
Park fees are set arbitrarily, without the true demand or consumer sur-
plus measures for aesthetics and recreation of nature. Empirical evidence
from a wetlands mitigation bank set up in California indicates the value
per acre was $6000 and then jumped to $7000 once there was a mar-
ket for habitat credits associated with each acre (Eliot and Holderman,
1988). The suggestion below Equation (1) that the price for land set
aside for habitat with the presence of a formal market would be lower
than without the market may not be true if the full values of aesthetics,
existence, and recreation that habitat provides are expressed in market
demand.



Regulating Real Estate for Habitat Conservation 203

The presence of the policies such as Transferable Development Rights
or Conservation Banks creates a formal market to transact the habitat. The
conclusion to draw from this section is that simply relying on a stochastic
process to gauge the value of a form of capital that is not readily transacted
without a market is difficult to do. Thus, the Merton (1973) approach may
not lead to the right interpretation of value of habitat in the context that
would help with the policies devoted to conservation. The next section
focuses on the market context of habitat value in a game structure to convey
both demand and supply players in the exchange.

Stochastic Process of Habitat and the Market for Conservation

For modeling the habitat market created through the TDR and conservation
banking policies, there is one financial intermediary, such as the conserva-
tion bank manager on the supply side; one private investor (land developer)
on the demand side; one riskless asset (bond), yielding interest at rate r ; and
the stock of mitigated land M supporting W whose value follows a geomet-
ric Brownian motion (GBM). GBM is justified to represent the variability
of value as a function of the ecological uncertainty.

The market sale of the habitat option as a game has the specification of
payoffs emphasizing expectations according to GBM with the drift equal
to the interest rate. The game helps define the price of the option without
hinging on hedging concepts and accounts for supply and demand of a typ-
ically nonmarket commodity: nature. Both parties have prior information
about the GBM. Some private information may differ in terms of knowl-
edge of habitat amenities that are not readily sold commodities. Perhaps
more scientific information is needed (a bank manager may have available
more than the investor or not) regarding the drift term of the GBM. Once
the sale of the option is arranged, the agents implicitly make their posterior
belief common knowledge, and hence they end up with a common value
for the drift, μ.

A conservation bank manager or landowner wants to sell a perpetual
American option with an exercise price of E to a land investor (developer).
The option is referred to as American because the option to sell is in the
future and the option is perpetual because it has no expiration. The option
is issued on a habitat asset Z whose value St , the price process, satisfies
the stochastic differential equation

d St = μSt dt + σ St d Kt ; S0 = S (5)

where K = (Kt )t≥0 is a standard Brownian motion. Note that S depends on
the habitat and W ;S(Z , M, W ). Let r be the rate of interest. A pseudo price
process X is also presented parallel to Merton (1973) and Black and Scholes
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(1973) where an option is evaluated according to the equivalent Martingale
measure, whose existence and uniqueness in a complete market is related
to absence of arbitrage by the fundamental theorems of asset pricing. The
geometric Brownian motion form of X , depicted in Equation (6), has a
standard normal cumulative density function. Recall that a market is said to
be complete with respect to time if each bounded measurable non-negative
payoff function fT can be replicated; i.e., there exists an admissible self-
financing portfolio ∏ such that X

∏ = fT , where X
∏

indicates the value
of the portfolio ∏ at time T . So, the price process X that will help in the
analysis satisfies the stochastic differential equation

d Xt = r Xt dt + σ Xt d Kt ; X0 = S (6)

Replicating an option—i.e., trading continuously the stock and the bond
to guarantee for any time t the random value of the option, with probabil-
ity one—has game theoretic aspects embedded in it. Which price should
the conservation manager or landowner ask for the option? The possible
equilibrium price P of the option depends on the initial value of the share
S0, on the number of years before expiration ∞, and on the exercise price
E .

The method for option pricing in this game has three steps:

1. A game is defined with players, actions, preferences, and payoffs.
2. The Nash equilibria of the game are found and a unique one

implies a financial transaction.
3. The price of this unique equilibrium is the fair price with an

explicit calculation.

The set of players is N = player I, player II = conservation bank man-
ager, land investor. The value of the option in time t is v(St , E) and the
discounted value is e−r tv(St , E). An upper bound, H , is the largest value
of the habitat stock. The strategies for the option holder are a put [0, H ] or
a call [H ,∞] and can be indexed by H ≥ 0. The stopping time is defined
as τH , of first entry of a GBM in [0, H ] for put options and the time of first
entry in [H ,∞] for call options.

Initially, the conservation bank manager can choose whether or not to
sell the option at price P . Price equals ∞ if the option is not sold. Simul-
taneously, the land investor can decide a maximum price P̄ at which he is
willing to buy the option, and he can choose a random stopping time, τH . In
Equations (7) and (8), the set of actions Ai available to the players is based
on optimal range for both the bank manager and the investor between the
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exercise price and the current value of the option

AI = {P|P ∈ �+} ∪ {∞} (7)

AI I = τ × {P̄|P̄ ∈ �+} (8)

where τ refers to stopping times with respect to the natural GBM of habitat
value.

Assume that both the conservation bank manager and the land investor
are risk neutral. The interest rate r and the habitat volatility coefficient
σ 2 are common knowledge for those in the habitat market. The price of
the underlying stock is S0. At this price, both players are ready to act
and are indifferent between the amount of cash S0 and any Martingale J
with expected value S0 from the price process. The discounted pseudo price
process is Jt := e−r t Xt that they are indifferent to with S0. The assumptions
stated in this paragraph imply a relationship with Merton’s (1973) logic of
obtaining the value of an option. However, through the game model, the role
of information and game actions affect rewards of players on the demand
and supply sides. Hence, the derivation of the option value is different and
the game model approaches a real market transaction of habitat.

The solutions of (5) and (6) are given by the formulas related to GBM
as a tractable stochastic process

Xt = exp

{(
r − 1

2
σ 2

)
t + σ Kt

}
S0 (9)

St = exp{(μ − r )t}Xt = exp

{(
μ − 1

2
σ 2

)
t + σ Kt

}
S0 (10)

Hence the discounted price process is

e−r t St = e(μ−r )t Jt (11)

There cannot be a consensus on a value if μ �= r . In fact, if both players
agree on a value μ > r for the drift, then the conservation bank manager
would not sell the stock, and if μ < r the land investor would not buy.

The two players could have different opinions about the drift term since
the conservation bank manager has more experience than the land investor
with habitat and wildlife influencing S. The drift term μ is viewed as a
random variable whose distribution may be perceived differently by the
two players before the sale. By offering the stock for sale, the bank reveals
common knowledge that its posterior estimate of the drift μ is less than
or equal to r . On the other hand, by showing an interest in purchasing
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the stock, the land investor reveals common knowledge that its posterior
estimate is greater or equal to r .

Aumann’s (1976) theorem states that if the prior is the same, and the
posteriors are common knowledge, then the posteriors must coincide. Thus,
the conservation bank manager and the land investor will end up with a
common opinion on the drift μ, and necessarily the value agreed upon for
μ must equal r .

The expected utility payoffs pi that represent them: for every pair a,b of
profiles of actions are pi (a) ≥ pi (b). Since the transaction is being carried
out in a formal market for habitat, this leads the players to assess the value
of the drift μ as r , and hence the take into account what is noted at the
pseudo price process X. Therefore, μ becomes r , and S can be identified
with X.

In view of the previous steps, the players’ preferences can be represented
according to the theory of Von Neumann Morgenstern expectations of the
utility functions

uI : (P, (τH , P̄)) → P − e−rτH v(XτH , E) (12)

uI I : (P, (τH , P̄)) → e−rτH v(XτH , E) − P (13)

if P ≤ P̄; i.e., in case a transaction is carried out, and uI = uI I = 0 other-
wise. The maximization of the value of an option in this game that gives an
arbitrage-free value of the payoff to the player can be considered a proxy
for expected utility. And, over the expected utility approach, the option
pricing approach has the advantage that it automatically takes into account
the time value of money and the price of risk (Ziegler, 1975). Observe that
τH is a first entrance time for the process X . In fact, player I (conservation
bank manager) receives P and will pay at the random strike time τH the
amount v(XτH , E). What player I receives, player II (land investor) pays,
and vice versa.

From these considerations, the payoffs of the players are clearly equal
to zero if there is no habitat market transaction and are

pI (P, (τH , P̄)) : = E[P − e−rτH v(XτH , E)] (14)

pI I (P, (τH , P̄)) : = E[e−rτH v(XτH , E) − P] (15)

in case of a habitat market transaction.
The second step of determining the habitat option price is solving for

the Nash equilibria that will show how the fair price of an option is an
equilibrium price of the game described above for both players to optimize
in the habitat market transaction.
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PROPOSITION 1: The fair price of a perpetual American option with
strike price E is

P∗ = sup
H∈�+

E[exp{−rτH }v(XτH , E)], (16)

where τH is the first entrance time of the pseudo price process X in [0, H],
for a put, or in [H, ∞], for a call, and E is the expectation operator.

The price P* is an equilibrium price for the game described above, as
follows:

If there exists an optimal exercise policy, namely, if there exists H∗ such
that

P∗ = E[exp{−rτH∗}v(XτH∗, E)]

then

(P∗, (τH∗, P∗)) (17)

is a Nash equilibrium. If there exists no optimal exercise policy, then for
every ε > 0 there exists Hε such that

(P∗ − ε, (τH∗, P∗ − ε)) (18)

is an ε-equilibrium, where Hε is such that

E[exp{−rτHε
}v(XτHε

, E)] ≥ P∗ − ε

PROOF: In order to prove that Equation (17) is a Nash equilibrium, Player
I gets zero with the strategy, and also if he raises the price, since the
transaction would be cancelled. He gets less than zero if he lowers the
price, and hence he has no unilateral deviations. Player II gets zero with
the strategy, and also if he lowers the bid, since the transaction would be
cancelled. Obviously, he has no interest in bidding more. Once the purchase
is carried out, he has no interest in not exercising optimally.

Suppose now that the supremum in (16) is not achieved. Similar argu-
ments yield that Equation (17) is an ε-equilibrium. In fact, let Hε be such
that exercising at τHε

yields an expected discounted value of the option
greater or equal to P* −ε (for simplicity, assume it gives exactly P* −ε).
The strategy in Equation (17) yields zero to both players, and no player
has an interest in deviating unilaterally from the stated price. Furthermore,
once player II has acquired the option, the exercise strategy indicated is
ε-optimal, and no strategy can guarantee to increase his payoff by more
than ε.
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The proposition and the proof are a formal representation of the market
interaction for habitat where supply and demand sides transact. The proof
corresponds to that case of a price that is reasonable for both sides trying
to optimize, given the information they have about the habitat. The formal
presentation enables the price to reflect supply and demand rather than a
park fee price arbitrarily set without any tie to true supply and demand for
the natural resources in the park such as habitat.

The third step of determining the habitat option price is computation
of equilibrium prices of the game for the market exchange of habitat. The
option price follows the definition of fair price, E[e−rτH v(XτH ; E)] |H=H∗ ,
that will be agreeable according to the optimization by both players.

For a perpetual American put option v(Xt , E) = max{0, E − Xt} and
τH = inf{t ≥ 0 : Xt ≤ H}, H∗ exists and it is finite where the demand side
believes the price of the underlying habitat will not decrease and has the
right to sell the asset at the strike price.

Consider H ∈ [0, E] because a put is never exercised if Xt > E and
recall that X0 = S0. If S0 ≤ H then τH = 0 and G∗ = E − S0, where G∗ is
the price of the put option on habitat. For that reason, consider S0 > H . Ac-
cording to Proposition 1, (G∗,(τH∗, G∗)) with G∗ = E[e−rτH max{0, E −
XτH }]|H=H∗ is a Nash equilibrium. Then

E[e−rτH max{0, E − XτH }] = E[e−rτH max{0, E − XτH }](1(τH<+∞)

+ 1(τH=+∞))] = E[e−rτH max{0, E − XτH }1(τH<+∞)] = (E − H )E[e−rτH ]

(19)

because if τH is finite, XτH = H and H ≤ E , so (E − H ) ≥ 0. The pre-
vious paragraph and Equation (19) are based on both players optimiz-
ing while gauging habitat value with the actions they are taking. For the
developer, the derived demand for habitat is from his demand for devel-
opment and the corresponding amount of habitat he needs to meet the
TDR or conservation bank policy requirements. The conservation bank
supplier is expected to anticipate that the developer will exercise when
it is optimal for development plans and the amount of habitat he needs
as a result. The put and call options simply provide context of a finan-
cial agreement (contract) between demand and supply sides in the habitat
market.

Making use of the Laplace transform formula for the times of first exit
from an open set for a Brownian motion leads to

(E − H )E[e−rτH ] = (E − H )

(
H
S0

) 2r
σ2

(20)
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Equation (20) indicates that the optimal exercise strategy for the devel-
oper is one that maximizes the difference between the strike price and the
current value of the underlying habitat asset.

H∗ is the maximum of this expression indicating an upper bound thresh-
old for investing in habitat with GBM structure:

H∗ = 2r
σ 2 + 2r

E (21)

so that the equilibrium price of the habitat option is E − S0 if S0 ≤ H and

σ 2

σ 2 + 2r
E

(
2r

σ 2 + 2r
E
S

) 2r
σ2

(22)

if S0 > H . Instead of asserting this form through boundary conditions that
may not be defined for habitat that is not readily transacted outside of the
habitat policy framework, Equations (21) and (22) draw on the position
of each player and their optimal strategies in a market transaction based
on development and bank objectives and information. The equilibrium is
where supply and demand clear the market in a manner of call and put
options as the format for involving more than one party in the market
exchange of the habitat asset. Therefore, while it is similar in form to
Merton (1973), it is not derived through smooth pasting and value-matching
assertions without the market interaction.

For a perpetual American call option on habitatv(Xt , E) = max{0, Xt −
E} and τH = inf{t ≥ 0 : Xt ≥ H}, H∗ does not exist since the devel-
oper wants the price of the underlying asset to rise in the future and
E[exp{−rτH }v(XτH , E)] is increasing in H (H∗ = +∞). Consider H ∈
[E, +∞] because a call is never exercised if Xt < E because that implies
that profit is maximized and the landowner could hold onto the habitat
option and retain the option to make a gain up to the exercise price. The
following equations relate market exchanges to call and put options in the
habitat market where the underlying asset transacted at any time is influ-
enced by supply and demand for habitat as a derived demand to meet habitat
requirements for development plans. According to Proposition 1, for every
ε > 0 there exists Hε such that

(F∗ − ε, (τHε
, F∗ − ε)) (23)

i s an ε-equilibrium where F∗ is the price of call option on habitat expressed
as follows

F∗ = lim
H→∞

E[exp{−rτH }v(XτH , E)] (24)
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and the value Hε is such that

E[exp{−rτHε
}v(XτH , E)] ≥ F∗ − ε (25)

We have

E[e−rτH max{0, XτH − E}] = E[e−rτH max{0, XτH − E}]
·1(τH <+∞)] = (H − E)E[e−rτH ] (26)

The previous equations characterize how the transaction would take
place, in terms of the difference between the strike price and underlying
habitat asset value as a call option relates to the buyer wanting the price
of the underlying asset to rise and a put option where the price may fall,
based on variation in supply and demand for habitat. The Laplace transform
formula for the times of first exit from an open set for a Brownian motion
helps characterize the put option for the transaction with the following:

(H − E)E[e−rτH ] = S0

(
1 − E

H

)
→H→+∞ S0 (27)

where the asset price is expressed with the relationship between discounted
and current value. Thus, ∀ε > 0, we can find Hε such that

(S0 − ε, (τHε
, S0 − ε)) (28)

is an ε-equilibrium of the game. According to Proposition 1, the value Hε

must be such that E[exp{−rτH }v(XτH , E)] ≥ P∗ − ε. In this case Hε must
be such that

S0

(
1 − E

Hε

)
≥ S0 − ε (29)

and hence Hε = S0 E
ε

.
The price of a call option on habitat F∗ = S0 has been proven here

through game theory utilizing demand and supply side interaction and the
role of information for an asset does not usually have an observable price
in the absence of the market created by the habitat policies. The market
context can offer a direct way of viewing how the price would be derived
rather than the assumptions that would have to be made through the option
pricing method of Merton (1973) for assets that have observable prices.
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CONCLUSIONS

The habitat regulatory policies for land appear capable of attaining con-
servation goals and providing compensation for the removal of land from
the development market. Such policies can reduce the impact of habitat
conservation on market prices while still maintaining the amount of land
targeted by conservationists.

The analytics show a release of land for development while preserving
the initial habitat intact can provide an incentive for a landowner to invest
in increasing the wildlife population. This incentive is particularly strong
in the case in which the opportunity cost to the landowner of allocating
land to wildlife is below the market price of land zoned for development.
Conservation banking and TDRs effectively allow the landowner to arbi-
trage between these markets and provides the landowner with an economic
opportunity that is otherwise completely absent. Finding an endangered
species on his land may in this case be in the landowner’s interest. If none
of his land is zoned for development, then he can nevertheless earn some of
the premium from development by others with derived demand for habitat
to meet development requirements of the policies.

The option value conveyed by the Safe Harbor provisions introduced
under the ESA allows a landowner to support and bank an increased pop-
ulation only if advantageous to do so. Thus, the landowner has a free call
option on the increased population, as another advantage of conservation
banking. The TDR, together with conservation banking, acts to redistribute
gains away from owners of land that can be developed and whose develop-
ment is restricted by the ESA or other habitat policy toward owners of land
not so zoned. The recipient landowners who support and bank the habitat
for wildlife can sell credits to others for their development potential in a
formal habitat market. The interpretation of the fair price of a habitat option
as an equilibrium price is the solution to the game that describes the sale
of the option in the habitat market.

There is an important irreversibility associated with releasing land for
development, as developed land cannot be restored or reverted to its original
habitat, and in particular to a condition where it can support endangered
species. The seminar article by Arrow and Fisher (1974) with a qualitative
discussion of irreversibility and uncertainty in natural resource preservation
still applies. Policy-makers therefore need to ensure that conserved acreage
for habitat is committed in perpetuity if land is developed in exchange
through TDR and conservation banking.

Without such policies, there has not been a formal market for habitat and
therefore it is not a transacted commodity with an observable price. There-
fore, it is difficult to observe a trend of prices to base financial forecasting
of a stochastic process. Hence, the framework for financial assets (stocks,



212 L. Fernandez

bonds, and options) with their value defined according to an underlying
stochastic process and no arbitrage condition may be difficult to apply to
habitat where boundary conditions for the Ito process as Merton (1973)
outlines are hard to pin down without a price trend.

The presence of the policies such Transferable Development Rights or a
Conservation Bank creates a formal market to transact the habitat between
players in a market with derived demand for habitat from the development
requirement to conserve habitat in exchange for development rights. The
game option pricing method directly represents market exchange between
supply and demand sides, enabling some additional interpretations beyond
other option pricing methods. Whatever asymmetric information exists
between the conservation banker/landowner and land investor, the game
setup helps derive the habitat option price.

Ziegler (1975) defines option pricing as a game between buyer and seller,
drawing on Merton’s price options results. The game theoretic aspect of
Ziegler’s analysis is that the players are rational and the bank anticipates
that the investor will exercise an optimal strategy. Whereas Merton (1973)
relied on the stochastic process to prove the price of a call option, the present
article proves the price through the sale of an option with game theory par-
allel to Ziegler (1975) but applied to habitat conservation of land. The game
theoretic aspect of his analysis is that the players are rational and the bank
anticipates that the investor will exercise an optimal strategy. This game
structure has an advantage of a greater simplicity, both conceptually and
computationally, that does not depend on hedging and includes informa-
tion on the part of each player. Referencing Aumann’s (1976) theorem of
information of the players helps the transaction and market clearing price.
One innovation of this article’s method relates to the interpretation of the
fair price of an option as an equilibrium price for the solution to the game
that describes the sale of the option in the game.
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