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A note on exceptional unimodal singularities and K3
surfaces

Masanori Kobayashi, Makiko Mase, and Kazushi Ueda

Abstract

This is a short note on the relation between the graded stable derived categories
of 14 exceptional unimodal singularities and the derived category of K3 surfaces
obtained as compactifications of the Milnor fibers. As a corollary, we obtain a basis
of the numerical Grothendieck group similar to the one given by Ebeling and Ploog

[EP10].

1 Introduction

Let f € Clz,y, z] be a weighted homogeneous polynomial defining one of Arnold’s 14
exceptional unimodal singularities [Arn75]. The list of corresponding weight systems
(a,b,c;h) = deg(x,y,z; f) is given in Table [L1l The quotient ring R = Clz,y, z|/(f)
is the homogeneous coordinate ring of a weighted projective line X in the sense of Geigle
and Lenzing [GL87, Len94|, and the Dolgachev number § = (01,2, d3) of the singularity
is defined as the orders of the isotropy groups of X.

On the other hand, one can choose a distinguished basis (a;)]277*™ of vanishing
cycles of f so that the Coxeter-Dynkin diagram is given by the diagram f(%,vg,vg)
shown in Figure [Tl The triple v = (71, 72, 73) defined in this way is called the Gabrielov
number of the singularity. The strange duality discovered by Arnold [Arn75| states that 14
exceptional unimodal singularities come in pairs ( f, f ) such that the Dolgachev number of
f is equal to the Gabrielov number of f and vice versa. Pinkham [Pin77] and Dolgachev
and Nikulin gave an interpretation of the strange duality in terms of algebraic cycles and
transcendental cycles of K3 surfaces.

Let g(x,y, z,w) € Clz,y, z,w] be a general weighted homogeneous polynomial with
deg(x,y, z,w;9) = (a,b,¢,1;h) and S = Clz,y,z,w]/(g) be the quotient ring. The
Deligne-Mumford stack

Y =Proj S =[(g7'(0)\ 0)/C]

is a compactification of the Milnor fiber of f. The stable derived category of S is defined
as the quotient category

Db

sing

(grS) = D’(gr S)/ D" (gr S)

of the bounded derived category D(gr S) of finitely-generated Z-graded S-modules by the
full triangulated subcategory DP*f(grS) consisting of bounded complexes of projective
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name | (a,b,c;h) 0 ~ dual
E | (6,14,21;42) | (2,3,7) | (2,3,7) | Er2
Eys | (4,10,15;30) | (2,4,5) | (2,3,8) | Z1
Z11 (6,8,15;30) |(2,3,8) | (2,4,5) | E13
FEia4 (3,8,12;24) |(3,3,4) | (2,3,9) | Q1o
Q10 (6,8,9;24) |(2,3,9)](3,3,4) | E4
Zlg (4, 6, 11,22) (2,4,6) (2,4,6) Zlg
Wis | (4,5,10;20) | (2,5,5) | (2,5,5) | Wia
213 (3,5,9,18) |(3,3,5)|(2,4,7) | Qu
Q11 (4,6,7;18) |(2,4,7)|(3,3,5) | Z13
Wis (3,4,8,16) | (3,3,4)|(2,5,6) | Sia
St (4,5,6,16) | (2,5,6) | (3,3,4) | Wis
Q12 (37 5, 6; 15) (37 3, 6) (37 3, 6) Q12
S12 (3,4,5;13) | (3,4,5) | (3,4,5) | Si2
Uio (3,4,4;12) | (4,4,4) | (4,4,4) | Uyp

Table 1.1: 14 exceptional unimodal singularities
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Figure 1.1: The diagram f(fyl,”yg,’yg)
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modules [Buc87, [Hap91], Kra05, [Orl09]. Since S is Gorenstein with parameter zero, one
has an equivalence

Ug : Dging(gr S) % DPcohy

by Orlov |Orl09, Theorem 2.5]. The stable derived category of R = S/(w) is defined simi-
larly as D% _(gr R) = D(gr R)/DP*(gr R), and studied by Kajiura, Saito and Takahashi

sing
[KST09] and Lenzing and de la Pena [LdIP06]. Since R is Gorenstein with parameter —1,
one has a functor

Ug: D’ coh Y, — DY (gr R)

sing

and a semiorthogonal decomposition
Dle(gr R) = (R/m, U(D’coh Vo))

by Orlov [Orl09, Theorem 2.5], where R/mp is the residue field by the maximal ideal
mpg = (z,y, 2) of the origin and ), := Proj R is the substack at infinity.

Let &, : grR — grS be the functor sending an R-module to the same module
considered as an S-module by the natural projection ¢ : S — R. Since R is perfect as an
S-module, the functor ®,, sends a perfect complex of R-modules to a perfect complex of
S-modules and induces the push-forward functor

Ding : Dging(gr R) — Dging(gr S)
studied in [DM| [AP]. Let further ¢ : Y, < ) be the inclusion.
Theorem 1.1. The composite functor

Vg0 dgpe 0 Vg : DPcoh Yy, — DPcoh Y
is isomorphic to the push-forward functor
te : D’ coh Y., — DPcoh Y,

and the image of the residue field R/mpg in Dging(gr R) by Vg o Dging is isomorphic to the
structure sheaf Oy[2] shifted by two.

Let 3 be a fan in IN = Z3 such that the associated toric 3-fold Xy is a weak Fano man-
ifold and the strict transform Y C Xy of Y C P(a, b, ¢, 1) is the minimal resolution of the

coarse moduli space of ) [Kob08]. The McKay correspondence as a derived equivalence
[KV00, BKRO1] gives
Y :Dcohy = D°cohY. (1.1)

Recall that the numerical Grothendieck group N (Y') is the quotient of the Grothendieck
group K(Y) of Y by the radical of the Euler form

x ([E], [F]) = Z dim Ext’(&, F).
The integral cohomology ring
HA(Y,Z) = H(Y, Z) & HX(Y, Z) & H'(Y, 2)
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equipped with the Mukai pairing

((ao, a2, a4), (bo, ba,b4)) = (a2, b2) — (a0, bs) — (as, bo)
is called the Mukai lattice. For a coherent sheaf &, its Mukai vector is defined by
v(€) = ch(E)\/td(Y).
Riemann-Roch theorem states that
X(&,F) = =(v(&),v(F)),
so that AM(Y) can be identified with the image of K(Y') in the Mukai lattice H*(Y,Z)
under the map v : K(Y) — H*(Y,Z).

61+62+d3—1 b
a=0 mn Dsing

Corollary 1.2. There is a full exceptional collection (S,) (gr R) whose

images E, =T o Wg 0 Oy, (Sy) satisfy the following:

e The endomorphism dg algebra of @21;52%371 E, is the trivial extension of the en-
domorphism dg algebra of @ijléﬁégq S...

01462+0d3—1

0 s a spherical collection.

The sequence (£,)
e The Cozeter-Dynkin diagram of the spherical collection is T\(él, 92, 03).
e The spherical collection is a basis of the numerical Grothendieck group N(Y).

e The spherical collection split-generates D cohY .

Recall that an object & is said to be spherical if Hom'(&, &) is isomorphic to C for
i = 0,2 and zero otherwise [STOI, Definition 1.1]. A sequence of objects is called a
spherical collection if each object is spherical. The definition of the trivial extension can
be found in [Seil(], which is called the cyclic completion in [Seg0§]. The endomorphism dg
algebra of EB‘;ZESQMS*I &, is not the trivial extension of the endomorphism dg algebra of
EBZIZJB%H?’ ~1'S,: otherwise, the derived category DPcohY will not depend on the defining
equation of Y. The spherical collection (5@22%52%3_1 has the same properties as the
collection given by Ebeling and Ploog [EP10].

Let (Y, Y) be a pair of K3 surfaces obtained as compactifications of Milnor fibers of
a dual pair of exceptional unimodal singularities. The A-model VHS (H 4 7,V*, 7%, Q4)
associated with Y is an integral variation of pure and polarized Hodge structures of weight
2 in a neighborhood

U={B+V-1weNS(Y)®C| (w,d) >0 for any d € Eff(Y)}

of the large radius limit in the complexified Kéhler moduli space of Y. Here NS(Y) C
N(Y) is the Néron-Severi group of Y, Eff (Y') C N (Y) is the semigroup of effective curves
on Y, Hy 7 is the trivial local system on U with fiber N'(Y) and V4 = d is the associated
trivial flat connection on 4 = Ha 7z ® Op. The polarization Q4 is given by the Mukai
pairing, and the Hodge filtration is such that

U= exp(f+V-1w) = (1, (B+V—-1w), %(5 + \/—_lw)Z)
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spans the (2,0)-part of Ha ¢ = Ha,z ® C.

The K3 surface Y comes in a family ¢ : ) — M where M is an algebraic torus of the
same dimension as U. Let U’ be a neighborhood of the large complex structure limit in
M and U be its universal cover. The local system R2p, Zg carries an integral variation of
polarized mixed Hodge structures, and the B-model VHS Hp 7 is defined as the pull-back
to U of the graded subquotient grl¥ R%@, Zg of weight two. There is a biholomorphic map
¢ : U — U called the mirror map. Iritani has introduced certain subsystems H j‘flzb C Haz
and Hy; C Hp 7z and given an isomorphism

Miry : <*(HY", VA, F5,Qa) = (HY 2, VP, .75, Qp) (1.2)
of integral variations of pure and polarized Hodge structures [Iri, Theorem 6.9].

Corollary 1.3. One has H{") = Ha z and HY ; = Hp z, so that the isomorphism (L2)
gives an isomorphism

Mir)} : g*(HA,Za vAa ﬁAZa QA) :) (HB,Za VB7 yé) QB)
of integral variations of pure and polarized Hodge structures.

The equalities H an = Hy z and Hy'y = Hp 7 fail in general for a K3 hypersurface
in a smooth toric weak Fano variety. A typical example is the case when Y is the quartic
surface in the projective space (cf. [Irl, Section 6.6]). Hodge-theoretic mirror symmetry
for the quartic surface is studied in detail by Hartmann [Har].

The organization of this paper is as follows: We prove Theorem 2.1]in Section 2l which
is slightly more general than Theorem [[.Il In Section [3] we use an exceptional collection
given by Lenzing and de la Pena [LAIP06] to prove Corollary Variations of Hodge
structures is discussed in Section 4]

Acknowledgment: We thank Hiroshi Iritani for very helpful discussions. M. K. is
supported by Grant-in-Aid for Scientific Research (No.21540045). K. U. is supported by
Grant-in-Aid for Young Scientists (No.20740037).

2 Push-forward in stable derived categories

Let k be a field and A = @z‘zo A; be a Noetherian graded k-algebra. We assume that
A is connected in the sense that Ay = k, and write the maximal ideal as my = @221 A,
The graded ring A is said to be Gorenstein if A has a finite injective dimension n and

RHoma(k, A) = k(a)[—n]

for some integer a, which is called the Gorenstein parameter of A. If A = klzy,...,x,]/f
for deg(z1,...,x,; f) = (a1,...,a,;h), then A is Gorenstein with parameter a = a; +
<+ a, — h.

Let gr A be the abelian category of finitely-generated Z-graded right A-modules, and
tor A be the full subcategory consisting of graded modules which are finite-dimensional
over k. The quotient category gr A/ tor A will be denoted by qgr A, which is equivalent to
the abelian category of coherent sheaves on the quotient stack Proj A = [(Spec A\ 0)/G,]
by Serre’s theorem [Orl09, Proposition 2.16].
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Let D°(gr A) be the bounded derived category of gr A. An object of D’(gr A) is said to
be perfect if it is quasi-isomorphic to a bounded complex of projective modules. The full
subcategory of D°(gr A) consisting of perfect complexes will be denoted by DPf(gr A).
The quotient category

b o b erf
Dsing<gr A) =D (gl‘ A)/Dp (gr A)

is called the bounded stable derived category of gr A [Buc87, [Hap91], Kra05], [Or104].

Let D be a triangulated category and N C D be a full triangulated subcategory. The
right orthogonal to N is the full subcategory N’ C D consisting of objects M satisfying
Hom(N, M) = 0 for any N € N. The left orthogonal *N is defined similarly. The
subcategory N is said to be right admissible if the embedding I : N' < D has a right
adjoint functor Q) : D — N. Left admissibility is defined similarly as the existence of a left
adjoint functor, and N is said to be admissible if it is both right and left admissible. A
subcategory N is right admissible if and only if for any X € D, there exists a distinguished
triangle N — X — M — N[1] with N € A and M € N*. Such a triangle is unique
up to isomorphism, and one has Q(X) = N in this case. If N is right admissible,
then the quotient category D/N is equivalent to A't. Analogous statement also holds
for left admissible categories. A sequence (N,...,N,) of triangulated subcategories in
a triangulated category D is called a weak semiorthogonal decomposition if there is a
sequence Dy = N7 C Dy C --- C D, = D of left admissible subcategories such that N is
left orthogonal to D; 1 in D;.

For an integer 4, let gr A>; be the full abelian subcategory of gr A consisting of mod-
ules M such that M, = 0 for e < i. Let further SZ, and PZ; be the full triangulated
subcategories of D’(gr A) generated by the graded torsion modules A/m4(e) for e < —i
and graded free modules A(e) for e < —i respectively. By [Orl09, Lemma 2.4], the sub-
categories S4; and PZ, are right and left admissible respectively in D?gr As;, and let D#
and T4 be their right and left orthogonal subcategories. It follows that one has weak
semiorthogonal decompositions

D’(gr As) = (P4, T, (2.2)

where D2 is equivalent to the quotient category D°(gr As;)/ ng‘ which in turn is equivalent
to D(qer A), and 7,2 is equivalent to the quotient category D(gr As;)/ 73‘_>4i which in turn
is equivalent to D% (gr A). In addition, one has a semiorthogonal decomposition

sing

Tt = (Afma, A/ma(=1),..., A/ma(a+ 1), D7, (2.3)

if a <0 by Orlov [O1]09, Equation (12)].

Let ¢ : S — R be a morphism of graded connected Gorenstein rings such that the
Gorenstein parameters of S and R are ag = 0 and ar = —1 respectively. Let ®,, : gr R —
grS be the exact functor which sends an R-module to the same module considered as an
S-module via ¢. The functor ®,, sends finite-dimensional R-modules to finite-dimensional
S-modules, and induces an exact functor @, : qgr R — qgr.S.

Assume that R has finite projective dimension as an S-module. Then ¢ sends perfect
complexes of R-modules to perfect complexes of S-modules, and induces a functor @, :
DY (gr R) — D5, (gr S) of stable derived categories.

sing



Theorem 2.1. Let ¢ : S — R be a morphism of graded connected Gorenstein rings with
Gorenstein parameters as = 0 and agr = —1 such that R s perfect as an S-module. Then
the composite functor

Db(qgr R) :) D{% — 76R :> DSing(gr R) %) DSing

(grS) = 757 = D§ = D(qgr S)

is isomorphic to the functor @y, : D’ qgr R — DPqgr S, and the image of R/mg € T, by

TR Db (gr R) 2% Db (grS) = TS = DS =5 D¥(qgr S)

sing sing

is isomorphic to Oldim S — 1], where O is the image of the free module S € gr S by the
projection gr S — qgr S and [dim S — 1] is the shift in the derived category.

Proof. The first statement is clear from the definitions of the functors ®,, and ®g,,. For
the second statement, note that the image of R/mg € T, by the composition

~ q>sing
76R _>Db (gI'R) —>DSing(grS)

sing
is S/mg. Its image by the equivalence

Db

sing

(grS) = D’(gr S>0) /P2y = Ty
is characterized as the object N € 7T° such that there is a distinguished triangle
N — S/mg — M — N[1]

with M € Pg;. Since S is Gorenstein with parameter zero, one has
kEl—dimS] ¢=0
Hom(S/msg, S(i)) = { [-dim3] ¢ =0,

0 otherwise,

which shows that the cone N = Cone(S/mg[—1] — S[dim S — 1]) belongs to 7,° and
satisfies the desired property with M = S[dim S]. Tt is clear that S/mg[—1] € D°(gr Aso)
goes to 0 € Db(qgr A) and S[dim S — 1] € D(gr Ag) goes to O[dim S — 1] € Db(qgr A),
so that N € T° = Dy C D(gr As) goes to O[dim S — 1] € D?(qgr A), and Theorem 2.1]
it proved. O

3 Spherical collections on K3 surfaces

Let X be the weighted projective line with weight p = (p1, p2, p3) in the sense of Geigle
and Lenzing |[GL87]. The abelian category cohX of coherent sheaves on X is equiva-
lent by Serre’s theorem [GL87, Section 1.8] to the quotient category grT/torT of the
abelian category grT of finitely-generated L-graded T-modules by the full subcategory
tor T consisting of torsion modules. Here L is the abelian group of rank one gener-
ated by four elements 7, ¥, 3, and ¢ with relations p;¥; = po¥s = p3¥3s = ¢, and
T = Clxy, xo, 3] /(2" + 25 + 25°) is an L-graded ring of Krull dimension two. Let
(Pt = o,ulM, ..oV Uk, U o)L oY 0(-6 - )

a=1
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Uy

Uy

Figure 3.1: The full strong exceptional collection on X,

be the full strong exceptional collection given by Lenzing and de la Pena [LdIP06, Propo-
sition 3.9], where Ui(j ) are defined by
UY = coker(O(—(pi — 1)) < O((—pi + 1 + §)7).
Let (Sﬁ)gflp 27371 he the right dual collection to (P, )P P2*”~! which is characterized
by the property
dim Hom(Pav Sﬁ) = Oa, p1+ps+ps—B>

and given explicitly as
(Se)p™ ™™ = (O(=9)2, O(=T)[1], 577, 81V, O(=)[1], 8777, ... 537, 0),

where A

SV = coker(O(—(pi — j — 2)T) = O(—(pi — j — 1)T)).
The total morphism algebra of the collection (P,)?7**?~! is isomorphic to the path
algebra of the quiver shown in Figure[3.1l where two dotted arrows represent two relations.
In terms of quiver representations, P, are projective modules and S, are simple modules,
and one has

Sas i =0,
dim Hom'(S,,, Sg) = { #(solid arrows from 8 to o) i =1,
#(dotted arrows from 8 to a) i =2.

Let K be the total space of the canonical bundle of X. Since the collection (S, )P P2 Ps~1

a=1

is full, the push-forward (1,S,)P 27" generates the derived category DP cohyx K of co-

herent sheaves on I supported on the image of the zero section ¢ : X — K.



Theorem 3.1 (Segal [Seg08, Theorem 4.2], Ballard [Bal, Proposition 4.14]). Let S be
an object of D®coh X and 1,S be the push-forward of S along the zero-section. Then the
endomorphism dg algebra of 1.S s the trivial extension of the endomorphism dg algebra

of S.
It follows that
Hom'(1,8,, 1.85) = Hom'(S,,, S5) @ Hom* (S5, S.,)",
so that

2 ifa=g,

—1 if @ and (8 are connected by a solid arrow,

X (xS0, 1:Sp) = (3.1)

if & and 8 are connected by two dotted arrows,

0 otherwise

for1<o,f<pi+p+ps—1

Let Y be a very general hypersurface of degree h in P(a,b,c, 1), where (a,b,c;h)
is a weight system in Table [Tl The divisor V., = {w = 0} C Y at infinity is a
weighted projective line whose weight is given by the Dolgachev number of the singularity;
(p1,p2,p3) = (01,02, 03). Since the formal neighborhood of ), in Y is isomorphic to the
formal neighborhood of X in I, one has an equivalence

D" cohx K 22 D cohy, Y (3.2)

of triangulated categories. We fix an isomorphism of the formal neighborhoods and iden-
tify Db cohy_ Y with D cohx K. Since

Hom*((’)y, L*Sa) = H*<L*Sa> = H*<Sa) = Hom*<8p1+p2+p3*17 SOt)v

one has '
dim Homl((’)y[l], L*Sa) = 5i15047p1+p2+p3—1’ (33)

so that the Euler form on the spherical collection (Oy[1], 1,81, . . ., t.Sy,) is identical to the
spherical collection in Figure 3.3 given by Ebeling and Ploog [EP10].

Lemma 3.2. The spherical collection
(Oy, 151, - ., 1:Sp)
split-generates D? coh Y.

Proof. The line bundle Oy(—kYs) is contained in the full triangulated subcategory of
Db coh Y generated by the above spherical collection for any k& € N, since the cokernel
of the inclusion Oy(—k)Ys) — Oy is supported on V., and hence contained in cohy, ).
For any coherent sheaf &, there is a surjection

©o - Oy(—noyoo)@ko — &



for sufficiently large ny and kg (i.e. the hyperplane section )., is ample). Let & = ker ¢y
be the kernel of this morphism. Then there is a surjection

Y1 - Oy(—nlyoo)@kl — 51

for sufficiently large n; and k;, and one can set & = ker ¢;. By repeating this process,
one obtains a distinguished triangle

Skl = F =& e k1),

where &1 is a coherent sheaf and
F = {Oy(—nkyoo)@mk RN Oy(_nk:—lyoo)@mk_l M R ﬂ) (’)y(_noyoo)@ko}

for any £ > 0. Since ) is smooth, the homological dimension of coh) is equal to the
dimension of ), and this triangle splits for £ > dim ). It follows that any coherent sheaf
is a direct summand of a complex of locally-free sheaves contained in the full triangulated
subcategory of D’ coh) generated by (Sg)’éfop 2371 and Lemma B2 is proved. O

Let Y be the minimal resolution of the coarse moduli space of ). It can be realized as
an anticanonical K3 hypersurface in a toric weak Fano manifold X [Kob0§|. It contains
the Milnor fiber as an open subset, and the complement is a chain of a chain of (—2)-curves
intersecting as in Figure It follows that the transcendental lattice of Y is isomorphic
to the Milnor lattice of Y. By the McKay correspondence as a derived equivalence [KV00,
BKRO1], one has an equivalence

T:D’cohy = DPcohY (3.4)

of triangulated categories. Set & = Oy [1] and &, = Yor,(S,) fora = 1,..., p1+pa+ps—1.

p1+p2+p3—1
a=0

Proposition 3.3. The numerical Grothendieck group N (Y) is spanned by ([E,])
and isomorphic to the lattice T (p1, p2, p3).

Proof. The numerical Grothendieck group N (Y)) is generated by the class [Oy] of the
structure sheaf, the Néron-Severi group NS(Y'), and the class [O,] of a skyscraper sheaf.
The structure of NS(Y) for very general Y is well studied (see e.g. [Bel02]), and generated
by the irreducible components of the divisor £ = F, UU:’:1 ?;l E]Z at infinity. Both the
structure sheaves of irreducible components of E and a skyscraper sheaf O, on E belong
to D’cohp Y, which is equivalent to D°cohy_ Y by the functor Y. Since D°cohy_ Y is
generated by ([1.S,])P P2 77 the collection ([£4])2C7*7 7" generates NS(Y) and [O,)],

a=1 a=1

so that the collection ([E,])PL > generates N'(Y). Since rank N'(Y) = py + py + ps,

a=0
the collection ([E,])PZF*™57! is a basis of N'(Y). It is clear from (31 and (33) that

a=0 _

N (Y) is isomorphic to T'(p1, p2, p3) as a lattice, and Proposition is proved. O

It is an interesting problem to see if the collection (£,)P#*™*~! can be related to

the collection of Ebeling and Ploog [EP10] shown in Figure by an autoequivalence of
DbcohY.
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E3
EgS*l
e o o E
E% E21 EI];I_l
Ez2—1
E;

EY

Figure 3.2: The configuration of (—2)-curves at infinity

Figure 3.3: A spherical collection of Ebeling and Ploog
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4 Variations of Hodge structures

We discuss Hodge-theoretic aspect of mirror symmetry for K3 surfaces in this section
[AM97, [Dol96, Mor97, [KKPOS| Iri]. Let N = Z3 be a free abelian group of rank three
and M = Hom(IN,Z) be the dual group. Let further (A, A*) be a pair of a reflexive
polytope A € Ngr = N ® R and its polar dual polytope A* C Mpg. Recall that the
fan polytope of a fan is the convex hull of primitive generators of one-dimensional cones.
Choose a pair (2, i]) of fans in N and M, such that the fan polytopes of ¥ and ¥ are
A and A* respectively, and the corresponding toric varieties X and X are smooth. Let
{b1,...,bm} C N be the set of generators of one-dimensional cones of the fan . One has
the fan sequence

0—>L—>Z’”£>N—>O

and the divisor sequence
0—>MB—>(Z’”)*—>]L*—>O
where [ sends the i-th coordinate vector to b; and
Pic(X) = H*(X;7Z) = LL*.
Set M =L*®C* and T = M ® C* so that one has the exact sequence
1 =T — (CH™ - M — 1.

The uncompactified mirror Y, of a general anticanonical hypersurface Y € X is defined
by

Vo={yeT|Waly) =) o’ =1}
i=1
where a = (v, ..., ap) € (C*)™. Let ¢ : i) — (C*)™ be the second projection from

D = {(y,a) € T x (C)™ | Waly) = 1}.
The quotient of the family & : 23 — (C*)™ by the free T-action

te(y,(aq,..., ) = (t’ly, (tblal, o ,tbmam))

will be denoted by ¢ : 9) — M where M = (C*)™/T. Choose an integral basis py, ..., p,
of L* = Pic X such that each p; is nef. This gives the corresponding coordinate ¢y, ..., g,
on M =L*®C*. Let U’ ¢ M be a neighborhood of ¢, = -+ = ¢, = 0 and U be
its universal cover. The B-model VHS (Hp 7,V?, %5, Qp) on U consists of the pull-
back Hp 7 of the local system grgVR2¢! Z@, the Gauss-Manin connection V2 on 5 =
Hg 7 ® Oy, the Hodge filtration .% 5, and the polarization ()5 given by

QB(wl,(,ug) = / w1 Uw2.

o

The subsystem of Hp, 7 consists of vanishing cycles of W, will be denoted by H} ;.
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On the A-model side, let

.
H amb

(Y;C) =Im(.* : H*(X;C) —» H*(Y;C))

be the subspace of H*(Y;C) coming from the cohomology classes of the ambient toric
variety, and set

U={o=8+V-1we H> ,(Y;C)| (w,d) >0 for any d € Eff(Y)}.

where Eff(Y) is the semigroup of effective curves. This open subset U is considered as
a neighborhood of the large radius limit point. Since Y is chosen to be general, the
restriction map ¢* : NS(X) — NS(Y) is surjective, so that U here coincides with U
given in Section [l Let (¢")7_; be the coordinate on H2 , (Y';C) dual to the basis (p;)_;;
o=3,0D

The ambient A-model VHS (A}, VA, .F°, Q) consists ([Iti, Definition 6.2], cf. also
[CK99. Section 8.5]) of the locally-free sheaf 724 = H? , (Y) ® Op, the Dubrovin connec-
tion

vA — d+ Z(pl-og) do’ : oy — 4 R Qllj,
i=1

the Hodge filtration
FIP = H2P(Y) @ Oy,

amb

and the Mukai pairing
QA : %4 X %4 — OU,

which is symmetric and V4'-flat. Let Ly (o) be the fundamental solution of the quantum
differential equation, i.e. the End(H? (Y C))-valued functions satisfying

amb
V& Ly (0) = 0, i=1,...,r

and Ly (o) = id+0(0o). Since Y is a K3 surface, the quantum cup product o, coincides
with the ordinary cup product, and the fundamental solution is given by

L(o) = exp(—o).

Let H) ¢ = Ker V4’ be the C-local system associated with V4’ and define the integral
local subsystem H'y , C H) ¢ as

H, , = {Ly (ch(g) td(X)) ' ce K(Y)} .
Since L is a fundamental solution, the morphism

L: AU) — HLU)
w w
s — L(s)

of Oy-modules is flat (i.e. VA'L — LVA = 0 ) and induces an isomorphism H, = H/,
of C-local systems. This isomorphism is compatible with Hodge filtrations since the

13



generator e’ of .Z?2 goes to 1 € .#"2. It preserves the polarizations since L is an isometry
of the Mukai lattice, and it is obvious from the definition that L preserves the integral
structures. The local system H jm; is defined as the local subsystem of H, 7 corresponding
to N(Y)2mb = {7 | £ e N(X)} C N(Y).

Let u; € H*(X;Z) be the Poincaré dual of the toric divisor corresponding to the one-
dimensional cone R-b; € ¥ and v = uy + - - - + u,, be the anticanonical class. Givental’s
I-function is defined as the series

I _ _ploggq/z de* oo<v+kz) HT1H2 (uj_'_kz)
X,Y(qa z)=e Z q 0 (duj
dermx) e o0 +k2) TTL, THiZ2 i (u) + kz)

which is a multi-valued map from U’ (or a single-valued map from U) to the classical
cohomology ring H*(X; C[z71]). Givental’s J-function is defined by

Jy(1,2) = Ly(1,2) (1) = exp(7/2).

If we write

(=7),
then Givental’s mirror theorem [Giv96, [Giv98| [CGOT] states that
Euler(wy') U Ix,y (g, 2) = F(q) - tsJy (s(q), 2)

where Euler(wy') € H?(X;Z) is the Euler class of the anticanonical bundle of X, and the
mirror map s(q) : U — HZ2_ (Y;C) is defined by

amb
. G(Q))
s(q) =" ==].
0= (7
The relation between 7 = ¢(¢) and ¢ = § + v/—1lw is given by 7 = y/—10, so that
m(c) > 0 corresponds to exp(7) ~ 0. The functions F'(q), G(q) and H(q) satisfy the
Gelfand-Kapranov-Zelevinsky hypergeometric differential equations, and give periods for

the B-model VHS (7%, VEZ, #2, Qp). The isomorphism of integral structures is due to
Iritani:

Ixy(q,2) = F(q) GiQ) HZ(Qq)

Theorem 4.1 (Iritani [Iri, Theorem 6.9]). There is an isomorphism
Miry : < (HY. VA, 23, Qu) /o HX (X Z) > (Hy 5, VP, 74, Q)
of integral variations of pure and polarized Hodge structures.
The following lemma concludes the proof of Corollary [L3k

Lemma 4.2. If A is a reflexive fan polytope associated with any of 14 exceptional uni-
modal singularities, then one has equalities

amb ~v
HA 7z = HA,Z

and
HY = Hpz

of integral local systems.

14



Proof. The equality H3™ = H 4 z holds since NS(Y') = * NS(X) and the point class also
belongs to *N(X). For the equality HY ;= Hp 7, note that both the fibers of Hp 7
and Hy' ; = H an are isomorphic to T (%), where & = § is the Gabrielov number of the
singularity associated with Y (i.e. the Dolgachev number of the singularity associated
with V). It follows that the determinants of the Gram matrices of the generators of Hp 7
and Hp', are the same. Since HJ ; is a sublattice of Hp z, this implies H} ;, = Hp 7
and the lemma is proved. O
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