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Abstract

Ascending numbers are determined for 64 knots with at most n = 10
crossings. After proving the theorem about the signature of alternating knot
families, we distinguished all families of knots obtained from generating alter-
nating knots with at most 10 crossings, for which the unknotting number can
be confirmed by using the general formulae for signatures. For 11 families of
knots general formulae are obtained for their ascending numbers.
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number.

1. Introduction

About Conway notation of knots the reader can consult the seminal paper by
J. Conway [2], where this notation is introduced, the paper by A. Caudron [3], and
books [4, 5]. In particular, drawings of all knots up to n = 10 crossings according
to Conway notation, where every knot is represented by a single diagram, are given
in the Appendix C of the book ”Knots and links” by D. Rolfsen [4].

In Sections 2,3 and 4 we compute ascending numbers for 64 knots with at most
n = 10 crossings and determine upper and lower bounds of ascending numbers for
all knots up to n = 10 crossings. For twist knots, i.e., knots of the family p 2
(p ≥ 1) in the Conway notation, the ascending number is one, and for all other
knots a(K) ≥ 2, i.e., a(K) ≥ max(u(K), 2). This means, that if there is a diagram

K̃ of a K with a(K̃) = u(K), then a(K) = a(K̃) = u(K). Except for several knots,
the unknotting numbers of knots with at most n = 10 crossings are known, and
they are given in ”Tables of knot invariants” by C. Livingston and J.C. Cha [6].
Bridge numbers of knots with n ≤ 10 crossings are given in the same tables, but
they are not useful for our purpose because for all knots with n ≤ 10 the bridge
number is 2 or 3. In order to improve upper bound given by the inequality (1)
following from minimal crossing numbers, we computed ascending numbers of all
minimal diagrams. As an additional improvement, for some knots we obtained
upper bounds from ascending numbers of some of their non-minimal diagrams. For
all computations we used the program ”LinKnot” [5].

In Section 5 we prove the theorem on signature enabling computation of gen-
eral formulae for the signature of alternating knot families given by their Conway
symbols. These general formulae enabled us to recognize the families of knots ob-
tained from alternating generating knots with at most n = 10 crossings for which
unknotting numbers are determined by signatures computed in Section 6.
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In Section 7 we consider some families of knots with ascending numbers that
coincides with the unknotting number.

The ascending number of a link L is described in the paper ”Ascending number
of knots and links” by M. Ozawa [1]. In our paper we restrict the consideration of
ascending numbers to knots, so we repeat the definitions of basic terms from [1]. A
knot diagram is based if a base point (different from the crossing points) is specified
on the diagram, and oriented if an orientation is assigned to it. Let K be a knot
and K̃ be a based oriented diagram of K. The descending diagram of K̃, denoted
by d(K̃), is obtained as follows: beginning at the basepoint of K̃ and proceeding
in the direction specified by the orientation, change the crossings as necessary so
that each crossing is first encountered as an over-crossing. Note that d(K̃) is the
diagram of a trivial knot.

Definition 1. Let K be a knot and let K̃ be a based oriented diagram of K. The
ascending number ofK is defined as the number of different crossings between K̃ and
d(K̃) and denoted by a(K̃). The ascending number of K is defined as the minimum

number of a(K̃) over all based oriented knot diagrams K̃ of K, and denoted by
a(K) [1].

Among theorems proved in [1], we relate four of them giving upper and lower
bounds for ascending numbers of knots:

1. for a non-trivial knot K, we have

a(K) ≤ ⌊
c(K)− 1

2
⌋ (1)

where c(K) is the minimum crossing number of K, and ⌊x⌋ integer part of x;

2. for every non-trivial knot K, we have

a(K) ≥ u(K)

where u(K) is the unknotting number of K;

3. the ascending number of a knot K is one iff K is a twist knot;

4. for a knot K, we have
a(K) ≥ b(K)− 1

where b(K) is the bridge number of K.

2. Ascending numbers of knots up to 8 crossings

Ascending numbers of knots up to n = 8 crossings are given in the tables from
paper [1] and illustrated by the corresponding based oriented knot diagrams giving
the minimal ascending number, where the knot diagrams, which are the same as
minimal crossing diagrams, are omitted. Among knots with the minimal diagram
giving the ascending number we recognized two more knots: 76 = 2 2 1 2 and 812 =
2 2 2 2, illustrated in Fig. 1. For knots 816 = .2.2 0 and 817 = .2.2 we succeeded

2



to find their non-minimal diagrams with diagram ascending number equal 2, so
a(816) = 2 and a(817) = 2. In the corresponding tables every knot is given in
classical Conway notation Con [4], followed by unknotting number u [6], upper
bound for ascending number ad (obtained mostly from minimal diagrams), and
ascending number a. For knots with unknown ascending numbers a sequence is
given, beginning with lower bounds and ending with the best known upper bound
(e.g., [2, 3]). For knots up to n = 8 crossings, the computation of ascending numbers
corresponding to all minimal diagrams gives no improvement of the upper bound
obtained from the crossing number, but for many knots with n = 9 or n = 10
crossings it results in the upper bound equals 3, instead of the upper bound 4
obtained from the crossing number.

Figure 1: (a) Knot 76; (b) knot 812.

Figure 2: (a) Knot 816; (b) knot 817.

K Con u ad a K Con u ad a

31 3 1 1 1 71 7 3 3 3
41 2 2 1 1 1 72 5 2 1 3 1
51 5 2 2 2 73 4 3 2 3 2
52 3 2 1 2 1 74 3 1 3 2 3 2
61 4 2 1 2 1 75 3 2 2 2 3 2
62 3 1 2 1 2 2 76 2 2 1 2 1 2 2
63 2 1 1 2 1 2 2 77 2 1 1 1 2 1 2 2
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K Con u ad a K Con u ad a

81 6 2 1 3 1 812 2 2 2 2 2 2 2
82 5 1 2 2 3 [2, 3] 813 3 1 1 1 2 1 3 2
83 4 4 2 3 2 814 2 2 1 1 2 1 3 2
84 4 1 3 2 3 2 815 2 1, 2 1, 2 2 3 2
85 3, 3, 2 2 3 [2, 3] 816 .2.2 0 2 3 2
86 3 3 2 2 3 2 817 .2.2 1 3 2
87 4 1 1 2 1 3 [2, 3] 818 8∗ 2 2 2
88 2 3 1 2 2 3 2 819 3, 3,−2 3 3 3
89 3 1 1 3 1 3 [2, 3] 820 3, 2 1,−2 1 2 2
810 2 1, 3, 2 2 3 [2, 3] 821 2 1, 2 1 − 2 1 2 2
811 3 2 1 2 1 3 2

3. Ascending numbers of knots with 9 crossings

According to [1], for knots with n = 9 crossings ascending numbers are known
only for six knots: a(93) = 3, a(94) = 2, a(96) = 3, a(97) = 2, a(947) = 2, and
a(948 = 2, and they were determined by M. Okuda. For knots 947 and 948 they can
be determined from their minimal diagrams. Hence, for 23 new non-trivial knots∗

with n = 9 crossings we obtained their ascending numbers. Based oriented diagrams
corresponding to these knots are illustrated in Figs. 3-10. All these alternating knots
with n = 9 crossings are given by their non-minimal based oriented diagrams giving
their ascending numbers. For all remaining knots with n = 9 crossings, except for
the knot 940, by computing diagram ascending numbers for all minimal crossing
diagrams (or for some non-alternating diagrams in the case of knots 929 and 939)
we succeeded to reduce the set of possible values of the ascending number to [2, 3]
(meaning, 2 or 3).

K Con u ad a K Con u ad a

91 9 4 4 4 926 3 1 1 1 1 2 1 3 [2, 3]
92 7 2 1 4 1 927 2 1 2 1 1 2 1 3 [2, 3]
93 6 3 3 4 3 928 2 1, 2 1, 2+ 1 3 [2, 3]
94 5 4 2 4 2 929 .2.2 0.2 2 4 [2, 3]
95 5 1 3 2 4 2 930 2 1 1, 2 1, 2 1 3 [2, 3]
96 5 2 2 3 4 3 931 2 1 1 1 1 1 2 2 3 [2, 3]
97 3 4 2 2 4 2 932 .2 1.2 0 2 3 [2, 3]
98 2 4 1 2 2 3 2 933 .2 1.2 1 3 [2, 3]
99 4 2 3 3 4 3 934 8∗2 0 1 3 2
910 3 3 3 3 4 3 935 3, 3, 3 3 4 3
911 4 1 2 2 2 3 [2, 3] 936 2 2, 3, 2 2 3 [2, 3]
912 4 2 1 2 1 3 2 937 3, 2 1, 2 1 2 3 2
913 3 2 1 3 3 4 3 938 .2.2.2 3 4 3
914 4 1 1 1 2 1 3 2 939 2 : 2 : 2 0 1 4 [2, 3]
915 2 3 2 2 2 3 2 940 9∗ 2 4 [2, 3, 4]
916 3, 3, 2+ 3 4 3 941 2 0 : 2 0 : 2 0 2 3 [2, 3]
917 2 1 3 1 2 2 3 [2, 3] 942 2 2, 3,−2 1 2 2
918 3 2 2 2 2 4 2 943 2 1 1, 3,−2 2 3 [2, 3]
919 2 3 1 1 2 1 3 2 944 2 2, 2 1,−2 1 2 2
920 3 1 2 1 2 2 3 [2, 3] 945 2 1 1, 2 1,−2 1 2 2
921 3 1 1 2 2 1 3 2 946 3, 3,−3 2 2 2
922 2 1 1, 3, 2 1 3 [2, 3] 947 8∗ − 2 0 2 2 2
923 2 2 1 2 2 2 4 2 948 2 1, 2 1,−3 2 2 2
924 3, 2 1, 2 1 3 [2, 3] 949 −2 0 : −2 0 : −2 0 3 3 3
925 2 2, 2 1, 2 2 3 2

∗For knots 91 and 92 is trivial to conclude that a(91) = 4, and a(92) = 1.
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Figure 3: (a) Knot 95; (b) knot 98; (c) knot 99.

Figure 4: (a) Knot 910; (b) knot 912; (c) knot 913.

4. Ascending numbers of knots with 10 crossings

For knots with n = 10 crossings, none of ascending numbers (except for the twist
knot 101 = 8 2 with a(101) = 1) were known. In this paper we computed ascending
numbers for 39 knots with n = 10 crossings. For some of remaining knots, by using
all minimal or some non-minimal diagrams we succeeded to improve upper and
lower bound for ascending numbers to the set [2, 3].

Because among 10-crossing knots there are some with unknown unknotting num-
ber ([2, 3], meaning 2 or 3), the corresponding bounds for ascending number are
denoted by (2, 3) instead of [2, 3], and (2, 3, 4) instead of [2, 3, 4]. If in any of these
cases unknotting number is equal to its lower bound, this will be a counterexample
to the Bernhard-Jablan Conjecture [5, 7, 8].

Based oriented diagrams of 38 knots with n = 10 crossings for which we suc-
ceeded to compute their ascending numbers are illustrated in Figs. 11-23.
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Figure 5: (a) Knot 914; (b) knot 915; (c) knot 916.

Figure 6: (a) Knot 918; (b) knot 919; (c) knot 921.

K Con u ad a K Con u ad a

101 8 2 1 4 1 1084 .2 2.2 1 4 [2, 3, 4]
102 7 1 2 3 4 [3, 4] 1085 .4.2 0 2 4 [2, 3]
103 6 4 2 4 2 1086 .3 1.2 0 2 4 [2, 3]
104 6 1 3 2 4 2 1087 .2 2.2 0 2 4 [2, 3, 4]
105 6 1 1 2 2 4 [2, 3, 4] 1088 .2 1.2 1 1 3 [2, 3]
106 5 3 2 3 4 3 1089 2 1.2 1 0 2 3 [2, 3]
107 5 2 1 2 1 4 2 1090 .3.2.2 2 4 [2, 3, 4]
108 5 1 4 2 3 [2, 3] 1091 .3.2.2 0 1 4 [2, 3]
109 5 1 1 3 2 3 [2, 3] 1092 .2 1.2.2 0 2 4 [2, 3, 4]
1010 5 1 1 1 2 1 4 2 1093 .3.2 0.2 2 4 [2, 3]
1011 4 3 3 [2, 3] 4 (2, 3) 1094 .3 0.2.2 2 4 [2, 3]
1012 4 3 1 2 2 4 [2, 3] 1095 .2 1 0.2.2 1 4 [2, 3, 4]
1013 4 2 2 2 2 3 2 1096 .2.2 1.2 2 4 [2, 3, 4]
1014 4 2 1 1 2 2 4 [2, 3] 1097 .2.2 1 0.2 2 4 [2, 3, 4]
1015 4 1 3 2 2 4 [2, 3] 1098 .2.2.2.2 0 2 4 [2, 3, 4]
1016 4 1 2 3 2 4 [2, 3] 1099 .2.2.2 0.2 0 2 4 [2, 3, 4]
1017 4 1 1 4 1 4 [2, 3, 4] 10100 3 : 2 : 2 [2, 3] 4 (2, 3)
1018 4 1 1 2 2 1 4 2 10101 2 1 : 2 : 2 3 4 [3, 4]
1019 4 1 1 1 3 2 4 [2, 3] 10102 3 : 2 : 2 0 1 4 [2, 3, 4]
1020 3 5 2 2 4 2 10103 3 0 : 2 : 2 3 4 3
1021 3 4 1 2 2 4 [2, 3] 10104 3 : 2 0 : 2 0 1 4 [2, 3, 4]
1022 3 3 1 3 2 4 [2, 3] 10105 2 1 : 2 0 : 2 0 2 4 [2, 3, 4]
1023 3 3 1 1 2 1 4 [2, 3] 10106 3 0 : 2 : 2 0 2 4 [2, 3]
1024 3 2 3 2 2 4 2 10107 2 1 0 : 2 : 2 0 1 4 [2, 3, 4]
1025 3 2 2 1 2 2 4 [2, 3] 10108 3 0 : 2 0 : 2 0 2 4 [2, 3]
1026 3 2 1 1 3 1 4 [2, 3] 10109 2.2.2.2 2 4 [2, 3, 4]
1027 3 2 1 1 1 2 1 4 [2, 3] 10110 2.2.2.2 0 2 4 [2, 3, 4]
1028 3 1 3 1 2 2 4 [2, 3] 10111 2.2.2 0.2 2 4 [2, 3, 4]
1029 3 1 2 2 2 2 3 [2, 3] 10112 8∗3 2 3 [2, 3]
1030 3 1 2 1 1 2 1 4 [2, 3] 10113 8∗2 1 1 3 [2, 3]
1031 3 1 1 3 2 1 4 2 10114 8∗3 0 1 3 [2, 3]
1032 3 1 1 1 2 2 2 3 [2, 3] 10115 8∗2 0.2 0 2 4 [2, 3, 4]
1033 3 1 1 1 1 3 1 4 [2, 3] 10116 8∗2 : 2 2 4 [2, 3]
1034 2 5 1 2 2 4 2 10117 8∗2 : 2 0 2 4 [2, 3]
1035 2 4 2 2 2 4 2 10118 8∗2 : .2 1 4 [2, 3, 4]
1036 2 4 1 1 2 2 4 2 10119 8∗2 : .2 0 1 4 [2, 3, 4]
1037 2 3 3 2 2 4 2 10120 8∗2 0 :: 2 0 3 4 [3, 4]
1038 2 3 1 2 2 2 4 2 10121 9∗2 0 2 4 [2, 3, 4]
1039 2 2 3 1 2 2 4 [2, 3] 10122 9∗.2 0 2 3 [2, 3]
1040 2 2 2 1 1 2 2 4 [2, 3] 10123 10∗ 2 3 [2, 3]
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Figure 7: (a) Knot 923; (b) knot 925; (c) knot 934.

Figure 8: (a) Knot 935; (b) knot 937; (c) knot 938.

K Con u ad a K Con u ad a

1041 2 2 1 2 1 2 2 3 [2, 3] 10124 5, 3,−2 4 4 4
1042 2 2 1 1 1 1 2 1 3 [2, 3] 10125 5, 2 1,−2 2 3 [2, 3]
1043 2 1 2 2 1 2 2 3 [2, 3] 10126 4 1, 3,−2 2 3 [2, 3]
1044 2 1 2 1 1 1 2 1 3 [2, 3] 10127 4 1, 2 1,−2 2 3 [2, 3]
1045 2 1 1 1 1 1 1 2 2 3 [2, 3] 10128 3 2, 3,−2 3 3 3
1046 5, 3, 2 3 4 [3, 4] 10129 3 2, 2 1,−2 1 3 [2, 3]
1047 5, 2 1, 2 [2, 3] 4 (2, 3, 4) 10130 3 1 1, 3,−2 1 3 [2, 3]
1048 4 1, 3, 2 3 4 [2, 3, 4] 10131 3 1 1, 2 1,−2 1 3 [2, 3]
1049 4 1, 2 1, 2 3 4 3 10132 2 3, 3,−2 1 3 2
1050 3 2, 3, 2 2 4 [2, 3, 4] 10133 2 3, 2 1 − 2 1 3 2
1051 3 2, 2 1, 2 [2, 3] 4 (2, 3, 4) 10134 2 2 1, 3,−2 3 3 3
1052 3 1 1, 3, 2 2 4 [2, 3] 10135 2 2 1, 2 1,−2 2 3 2
1053 3 1 1, 2 1, 2 3 4 3 10136 2 2, 2 2 − 2 1 2 2
1054 2 3, 3, 2 [2, 3] 4 (2, 3, 4) 10137 2 2, 2 1 1,−2 1 2 2
1055 2 3, 2 1, 2 2 4 2 10138 2 1 1, 2 1 1,−2 2 3 [2, 3]
1056 2 2 1, 3, 2 2 4 [2, 3] 10139 4, 3,−2 1 4 4 4
1057 2 2 1, 2 1, 2 2 4 [2, 3] 10140 4, 3,−3 2 3 [2, 3]
1058 2 2, 2 2, 2 2 3 [2, 3] 10141 4, 2 1,−3 1 3 [2, 3]
1059 2 2, 2 1 1, 2 1 3 [2, 3] 10142 3 1, 3,−2 1 3 4 3
1060 2 1 1, 2 1 1, 2 1 3 [2, 3] 10143 3 1, 3,−3 1 3 [2, 3]
1061 4, 3, 3 [2, 3] 4 (2, 3, 4) 10144 3 1, 2 1,−3 2 3 [2, 3]
1062 4, 3, 2 1 2 4 [2, 3, 4] 10145 2 2, 3,−2 1 2 3 2
1063 4, 2 12 1 2 4 [2, 3] 10146 2 2, 2 1,−3 1 2 2
1064 3 1, 3, 3 2 4 [2, 3, 4] 10147 2 1 1, 3,−3 1 2 2
1065 3 1, 3, 2 1 2 4 [2, 3, 4] 10148 (3, 2) (3,−2) 2 3 [2, 3]
1066 3 1, 2 1, 2 1 3 4 [3, 4] 10149 (3, 2) (2 1,−2) 2 3 [2, 3]
1067 2 2, 3, 2 1 2 4 [2, 3, 4] 10150 (2 1, 2) (3,−2) 2 3 [2, 3]
1068 2 1 1, 3, 3 2 4 [2, 3, 4] 10151 (2 1, 2) (2, 1,−2) 2 3 [2, 3]
1069 2 1 1, 2 1, 2 1 2 3 [2, 3] 10152 (3, 2) − (3, 2) 4 4 4
1070 2 2, 3, 2+ 2 3 [2, 3] 10153 (3, 2) − (2 1, 2) 2 4 [2, 3, 4]
1071 2 2, 2 1, 2+ 1 3 [2, 3] 10154 (2 1, 2) − (2 1, 2) 3 4 [3, 4]
1072 2 1 1, 3, 2+ 2 4 [2, 3, 4] 10155 −3 : 2 : 2 2 3 [2, 3]
1073 2 1 1, 2 1, 2+ 1 3 [2, 3] 10156 −3 : 2 : 2 0 1 3 [2, 3]
1074 3, 3, 2 1+ 2 4 [2, 3, 4] 10157 −3 : 2 0 : 2 0 2 3 [2, 3]
1075 2 1, 2 1, 2 1+ 2 3 [2, 3] 10158 −3 0 : 2 : 2 2 3 [2, 3]
1076 3, 3, 2 + + [2, 3] 4 (2, 3) 10159 −3 0 : 2 : 2 0 1 2 2
1077 3, 2 1, 2 + + [2, 3] 4 (2, 3) 10160 −3 0 : 2 0 : 2 0 2 2 2
1078 2 1, 2 1, 2 + + 2 3 [2, 3] 10161 3 : −2 0 : −2 0 3 3 3
1079 (3, 2) (3, 2) [2, 3] 4 (2, 3, 4) 10162 −3 0 : −2 0 : −2 0 2 3 [2, 3]
1080 (3, 2) (2 1, 2) 3 4 3 10163 8∗ − 3 0 2 2 2
1081 (2 1, 2) (2 1, 2) 2 4 [2, 3] 10164 8∗2 : −2 0 1 3 [2, 3]
1082 .4.2 1 4 [2, 3] 10165 8∗2 : . − 2 0 2 3 [2, 3]
1083 .3 1.2 2 4 [2, 3, 4]
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Figure 9: (a) Knot 942; (b) knot 944; (c) knot 945.

Figure 10: (a) Knot 946; (b) knot 949.

Figure 11: (a) Knot 103; (b) knot 104; (c) knot 106.

5. Signature and alternating knot families

Definition 2. Let S denote the set of numbers in the unreduced† Conway sym-
bol C(L) of a link L. Given C(L) and an arbitrary (non-empty) subset S̃ =
{a1, a2, . . . , am} of S, the family FS̃(L) of knots or links derived from L is con-

structed by substituting each ai ∈ S̃, ai 6= 1 in C(L) by sgn(a)(|a|+n), for n ∈ N+.

For even integers n ≥ 0 this construction preserves the number of components,
i.e., we obtain (sub)families of links with the same number of components. If all
parameters in a Conway symbol of a knot or link are 1,2, or 3, such a link is called
generating.

†The Conway notation is called unreduced if 1’s denoting elementary tangles in vertices are not
omitted in symbols of polyhedral links.
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Figure 12: (a) Knot 107; (b) knot 1010; (c) knot 1011.

Figure 13: (a) Knot 1013; (b) knot 1018; (c) knot 1020.

K. Murasugi [9] defined signature σK of a knot K as the signature of the matrix
SK+SK

T , where SK
T is the transposed matrix of SK , and SK is the Seifert matrix

of the knot K.
For alternating knots, signature can be computed by using a combinatorial for-

mula derived by P. Traczyk [10]. We will use this formula, proved by J. Przytycki,
in the following form, taken from [11], Theorem 7.8, Part (2):

Theorem 1. If D is a reduced alternating diagram of an oriented knot, then

σD = −
1

2
w +

1

2
(W −B) = −

1

2
w +

1

2
(|Ds+| − |Ds−|),

where w is the writhe of D, W is the number of white regions in the checkerboard
coloring of D, which is for alternating minimal diagrams equal to the number of cy-
cles |Ds+| in the state s+, and B is the number of black regions in the checkerboard
coloring of D equal to the number of the cycles |Ds−| in the state s−.

Introducing orientation of a knot, every n-twist (chain of digons) becomes par-
allel or anti-parallel. For signs of crossings and checkerboard coloring we use the
conventions shown in Fig. 24.

Lemma 1. By replacing n-twist (n ≥ 2) by (n+2)-twist in the Conway symbol of
an alternating knot K, the signature changes by −2 if the replacement is made in a
parallel twist with positive crossings, the signature changes by +2 if the replacement
is made in a parallel twist with negative crossings, and remains unchanged if the
replacement is made in an anti-parallel twist.

Proof: According to the preceding theorem:
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Figure 14: (a) Knot 1024; (b) knot 1031; (c) knot 1034.

Figure 15: (a) Knot 1035; (b) knot 1036; (c) knot 1037.

1. by adding a full twist in a parallel positive n-twist the writhe changes by +2,
the number of the white regions W remains unchanged, the number of black
regions B increases by +2, and the signature changes by −2;

2. by adding a full twist in a parallel negative n-twist the writhe changes by −2,
the number of white regions W increases by 2, the number of black regions B
remains unchanged, and the signature increases by 2;

3. by adding a full twist in an anti-parallel positive n-twist the writhe changes
by +2, the number of white regions W increases by 2, the number of black
regions B remains unchanged, and the signature remains unchanged;

4. by adding a full twist in an anti-parallel negative n-twist the writhe changes
by −2, the number of white regions W remains unchanged, the number of
black regions B increases by 2, and the signature remains unchanged.

Theorem 2. The signature σK of an alternating knot K given by its Conway
symbol is

σK =
∑

P

−2[
ni

2
]ci + 2c0,

where the sum is taken over all parallel twists ni, ci ∈ {1,−1} is the sign of cross-
ings belonging to a parallel twist ni, and 2c0 is an integer constant which can be
computed from the signature of the generating knot.

The proof of this theorem follows directly form the preceding Lemma, claiming
that only additions of twists in parallel twists in a Conway symbol result in the
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Figure 16: (a) Knot 1038; (b) knot 1049; (c) knot 1053.

Figure 17: (a) Knot 1055; (b) knot 1080; (c) knot 10124.

change of signature, and that by every such addition, signature changes by −2ci.
Notice that the condition that we are making twist replacements in the standard
Conway symbols, i.e., Conway symbols with the maximal twists, is essential for
computation of general formulae for the signature of alternating knot families.

Example 1: For the family of Montesinos knots with the Conway symbol of
the form (2p1 + 1) (2p2), (2p3) (2p4), (2p5 + 1) 1, (2p6 + 1) (Fig. 25), beginning with
the generating knot 3 2, 2 2, 3 1, 3, the parallel twists with negative signs are 2p2 and
2p6 + 1, the parallel twist with positive signs is 2p5 + 1, and the remaining twists
are anti-parallel. Hence, the signature is σ = −2p2 + 2p5 − 2p6 + 2c0. Since the
writhe of the generating knot G = 3 2, 2 2, 3 1, 3 is w = −4 and its checkerboard
coloring has W = 9 white and B = 9 black regions, its signature is 2. Evaluating
the formula σ = 2p2 − 2p52p6 + 2c0 for σG =, p2 = 1, p5 = 1, and p6 = 1, we
obtain c0 = 0. Hence, the general formula for the signature of knots belonging to
the family (2p1 + 1) (2p2), (2p3) (2p4), (2p5 + 1) 1, (2p6 + 1) is 2p2 − 2p5 + 2p6.

Example 2: For the family of polyhedral knots with the Conway symbol of
the form (2p1 + 1) : (2p2) : (2p3) (p1 ≥ 1, p2 ≥ 1, p3 ≥ 1), beginning with the
knot 3 : 2 : 2 (Fig. 26), all twists are parallel twists with positive crossings, and
the formula for the signature is −2p1 − 2p2 − 2p3 − 2, i.e., c0 = 2. Constant c0 is
computed from the signature of the generating knot 3 : 2 : 2 which is equal to −4.

Example 3: Let us consider pretzel knots and links (Fig. 27) given by Conway
symbol p1, . . . , pn (n ≥ 3). We obtain knots if all pi (i = 1, ..., n) are odd and n

is an odd number, or if one twist is even, and all the others are odd. If all twists
are odd and n is an odd number, all twists are anti-parallel, and the signature
is σK = n − 1 for every such knot. If n = 3, for the pretzel knots of the form

11



Figure 18: (a) Knot 10128; (b) knot 10132; (c) knot 10133.

Figure 19: (a) Knot 10134; (b) knot 10135; (c) knot 10136.

(2p1 + 1), (2p2 + 1), (2q), the twists 2p1 + 1 and 2p2 + 1 are parallel with positive
crossings, the twist 2q is antiparallel, and the signature is σK = 2p1 + 2p2. For
n ≥ 4, for pretzel knots consisting of an even number of odd twists and one even
twist, 2p1 + 1, . . ., 2p2k + 1, 2q, all odd twists are parallel with positive crossings,
the even twist 2q is anti-parallel, and the signature is σK = 2p1+2p2+ . . .+2p2k+1.
For n ≥ 4, for pretzel knots consisting of an odd number of odd twists and one even
twist, 2p1+1, . . ., 2p2k+1+1, 2q, all twists are parallel with positive crossings, and
the signature is σK = 2p1 + 2p2 + . . .+ 2p2k+1 + 2q. Hence, for this class of pretzel
knots we simply conclude that their unknotting number is given by the formula
uK = p1 + p2 + . . .+ p2k+1 + q.

Example 4: Let us consider knots of the form t1, . . . tn + t (n ≥ 3), where ti
and t are twists (Fig. 28a). If the twists of an odd length are denoted by p, and
twists of an even length by q, we have six possible cases:

1. if the tangle t1, . . . , tn consists of 2k odd twists p1, . . . , p2k, and the tangle t

is an odd twist p, the signature is given by the formula 2k + 2[p2 ]

2. if the tangle t1, . . . , tn consists of 2k+1 odd twists p1, . . . , p2k, and the tangle
t is an even twist q, the signature is given by the formula 2k + q

3. if the tangle t1, . . . , tn consists of 2k+ 1 odd twists p1, . . . , p2k+1 and an even
twist q1, and the tangle t is an odd twist p, the signature is given by the
formula

∑2k+1
i=1 2[pi

2 ]

4. if the tangle t1, . . . , tn consists of 2k+ 1 odd twists p1, . . . , p2k+1 and an even

12



Figure 20: (a) Knot 10137; (b) knot 10139; (c) knot 10142.

Figure 21: (a) Knot 10145; (b) knot 10146; (c) knot 10147.

twist q1, and the tangle t is an even twist q, the signature is given by the
formula

∑2k+1
i=1 2[pi

2 ] + q1

5. if the tangle t1, . . . , tn consists of 2k odd twists p1, . . . , p2k and an even twist
q1, and the tangle t is an odd twist p, the signature is given by the formula∑2k

i=1 2[
pi

2 ] + q1

6. if the tangle t1, . . . , tn consists of 2k odd twists p1, . . . , p2k and an even twist
q1, and the tangle t is an even twist q, the signature is given by the formula∑2k

i=1 2[
pi

2 ].

Example 5: As a more complex example, we provide general formulae for the
signature of knots of the type (t1, . . . , tm) (t′1, . . . , tn) (m ≥ 2, n ≥ 2), where twists
are denoted by ti or t

′
i (Fig. 28b). If the twists of an odd length are denoted by p,

and twists of an even length by q, we have seven possible cases:

1. if the first tangle t1, . . . , tm consists of 2k odd twists p1, . . . , p2k, and the second
tangle t′1, . . . , t

′
n consists of 2r + 1 odd twists p′1, . . . , p

′
2r+1, the signature is

given by the formula
2r+1∑

i=1

2[
p′i
2
] + 2k

2. if the first tangle t1, . . . , tm consists of 2k odd twists p1, . . . , p2k, and the
second tangle t′1, . . . , t

′
n consists of 2r odd twists p′1, . . . , p

′
2r, the signature is

13



Figure 22: (a) Knot 10152; (b) knot 10159; (c) knot 10160.

Figure 23: (a) Knot 10103; (b) knot 10161; (b) knot 10163.

given by the formula
2k∑

i=1

2[
pi

2
]−

2r∑

i=1

2[
p′i
2
]

3. if the first tangle t1, . . . , tm consists of 2k odd twists p1, . . . , p2k and one
even twist q1, and the second tangle t′1, . . . , t

′
n consists of 2r + 1 odd twists

p′1, . . . , p
′
2r+1, the signature is given by the formula

2k∑

i=1

2[
pi

2
] + q1 + 2r

4. if the first tangle t1, . . . , tm consists of 2k+1 odd twists p1, . . . , p2k+1 and one
even twist q1, and the second tangle t′1, . . . , t

′
n consists of 2r + 1 odd twists

p′1, . . . , p
′
2r+1, the signature is given by the formula

2k+1∑

i=1

2[
pi

2
] + 2r

5. if the first tangle t1, . . . , tm consists of 2k odd twists p1, . . . , p2k and one even
twist q1, and the second tangle t′1, . . . , t

′
n consists of 2r odd twists p′1, . . . , p

′
2r

and one even twist q′1, the signature is given by the formula

2k∑

i=1

2[
pi

2
]−

2r∑

i=1

2[
p′i
2
]
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Figure 24: (a) Positive crossing and negative crossing (b) parallel positive twist;
(c) parallel negative twist; (d) antiparallel positive twist; (e) antiparallel negative
twist.

Figure 25: Knot family (2p1 + 1) (2p2), (2p3) (2p4), (2p5 + 1) 1, (2p6 + 1) beginning
with knot 3 2, 2 2, 3 1, 3.

6. if the first tangle t1, . . . , tm consists of 2k odd twists p1, . . . , p2k and one
even twist q1, and the second tangle t′1, . . . , t

′
n consists of 2r + 1 odd twists

p′1, . . . , p
′
2r+1 and one even twist q′1, the signature is given by the formula

2k∑

i=1

2[
pi

2
]−

2r+1∑

i=1

2[
p′i
2
]− q′1

7. if the first tangle t1, . . . , tm consists of 2k+1 odd twists p1, . . . , p2k+1 and one
even twist q1, and the second tangle t′1, . . . , t

′
n consists of 2r + 1 odd twists

p′1, . . . , p
′
2r+1 and one even twist q′1, the signature is given by the formula

2k+1∑

i=1

2[
pi

2
]−

2r+1∑

i=1

2[
p′i
2
] + q1 − q′1.

6. Unknotting numbers of knot families

K. Murasugi [9] proved the lower bound for the unknotting number of knots,

u(K) ≥ |σK |
2 . Using this criterion, for many (sub)families of knots we can confirm

that their BJ-unknotting numbers, i.e., unknotting numbers computed according to
Bernhard-Jablan Conjecture [5] represent the actual unknotting numbers of these

15



Figure 26: Knot family (2p1 + 1) : (2p2) : (2p3) beginning with knot 3 : 2 : 2.

Figure 27: Pretzel knot p1, p2, . . . , pn.

(sub)families. In the following table is given the list of (sub)families with this
property obtained from knots with at most n = 8 crossings, where in the first
column is given the first knot belonging to the family, in the second its Conway
symbol, in the third the general Conway symbol, in the fourth the general formula
for the signature, in the fifth the unknotting number confirmed by the signature,
and in the sixth the conditions for this unknotting number‡.

K Con Fam σ u Cond

31 3 (2p1 + 1) 2p1 p1

41 2 2 (2p1) (2p2) 0
52 3 2 (2p1 + 1) (2p2) 2p2 p2

62 3 1 2 (2p1 + 1) 1 (2p2) 2p1 p1 p1 ≥ p2

63 2 1 1 2 (2p1) 1 1 (2p2) 2p1 − 2p2 |p1 − p2| p1 6= p2

74 3 1 3 (2p1 + 1) 1 (2p2 + 1) 2
75 3 2 2 (2p1 + 1) (2p2) (2p3) 2p1 + 2p3 p1 + p3

76 2 2 1 2 (2p1) (2p2) 1 (2p3) 2p3 p3 p2 ≤ p3

77 2 1 1 1 2 (2p1) 1 1 1 (2p2) 0
85 3, 3, 2 (2p1 + 1), (2p2 + 1), (2p3) 2p1 + 2p2 p1 + p2 p1 ≥ p3 or p2 ≥ p3

86 3 3 2 (2p1 + 1) (2p2 + 1) (2p3) 2p1

88 2 3 1 2 (2p1) (2p2 + 1) 1 (2p3) 2p1 − 2p3 p3 − p1 p3 − p1 > p2

89 3 1 1 3 (2p1 + 1) 1 1 (2p2 + 1) 2p1 − 2p2 |p1 − p2| p1 6= p2

810 3, 2 1, 2 (2p1 + 1), (2p2) 1, (2p3) 2p1 − 2p2 + 2p3 p1 − p2 + p3 p3 > p2

811 3 2 1 2 (2p1 + 1) 2p2) 1 (2p3) 2p2 p2 p2 ≥ p3

812 2 2 2 2 (2p1) (2p2) (2p3) (2p4) 0
813 3 1 1 1 2 (2p1 + 1) 1 1 1 (2p2) 2p2 − 2 p2 − 1 p2 − 1 > p1

814 2 2 1 1 2 (2p1) (2p2) 1 1 (2p3) 2p1 p1 p2 ≤ p3

815 2 1, 2 1, 2 (2p1) 1, (2p2) 1, (2p3) 2p1 + 2p2 p1 + p2

816 .2.2 0 .(2p1).(2p2) 0 2p1 + 2p2 − 2 p1 + p2 − 1
817 .2.2 .(2p1).(2p2) 2p1 − 2p2 |p1 − p2| p1 = 1, p2 > 1

or p2 = 1, p1 > 1

‡Conditions for unknotting numbers are determined from the experimental results obtained for
knots up to n = 20 crossings.
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Figure 28: (a) Knot t1, . . . tn + t; (b) knot (t1, . . . , tm) (t′1, . . . , t
′
n).

K Con Fam σ u Cond

910 3 3 3 (2p1 + 1) (2p2 + 1) (2p3 + 1) 2p2 + 2
913 3 2 1 3 (2p1) (2p2) 1 (2p3 + 1) 2p1 + 2
915 2 3 2 2 (2p1) (2p2 + 1) (2p3) (2p4) 2p1

916 3, 3, 2+ (2p1 + 1), (2p2 + 1), (2p3)+ 2p1 + 2p2 + 2p3 p1 + p2 + p3

917 2 1 3 1 2 (2p1) 1 (2p2 + 1) 1 (2p3) −2p2 p2 p1 + p3 ≤ p2

918 3 2 2 2 (2p1 + 1) (2p2) (2p3) (2p4) 2p2 + 2p4 p2 + p4

919 2 3 1 1 2 (2p1) (2p2 + 1) 1 1 (2p3) 0
920 3 1 2 1 2 (2p1 + 1) 1 (2p2) 1 (2p3) 2p1 + 2p3 p1 + p3 p1 + p3 ≥ p2

921 3 1 1 2 2 (2p1 + 1) 1 1 (2p2) (2p3) 2
922 2 1 1, 3, 2 (2p1) 1 1, (2p2 + 1), (2p3) −2p2 p2 p1 + p3 − 1 ≤ p2

923 2 2 1 2 2 (2p1) (2p2) 1 (2p3) (2p4) 2p1 + 2p4 p1 + p4

924 2 1, 3, 2+ (2p1) 1, (2p2 + 1), (2p3)+ 2p1 − 2p2

925 2 2, 2 1, 2 (2p1) (2p2), (2p3) 1, (2p4) −2p3

926 3 1 1 1 1 2 (2p1 + 1) 1 1 1 1 (2p2) 2p1 p1

927 2 1 2 1 1 2 (2p1) 1 (2p2) 1 1 (2p3) 2p3 − 2p2 p3 − p2 p2 < p3

928 2 1, 2 1, 2+ (2p1) 1, (2p2) 1, (2p3)+ 2p1 + 2p2 − 2p3 p1 + p2 − p3 p3 ≤ p1 or p3 ≤ p2

929 .2.2 0.2 .(2p1).(2p2) 0.(2p3) −2p2

930 2 1 1, 2 1, 2 (2p1) 1 1, (2p2) 1, (2p3) 2p2 − 2p3 p3 − p2 p1 + p2 ≤ p3

931 2 1 1 1 1 1 2 (2p1) 1 1 1 1 1 (2p2) 2p1 − 2p2 − 2 p1 + p2 − 1 p1 + p2 > 2
932 .2 1.2 0 .(2p1) 1.(2p2) 0 2p2

933 .2 1.2 .(2p1) 1.(2p2) −2p2 + 2 p2 − 1 p2 − p1 ≥ 2

934 8∗2 0 88(2p1) 0 0
935 3, 3, 3 (2p1 + 1), (2p2 + 1), (2p3 + 1) 2
936 2 2, 3, 2 (2p1) (2p2), (2p3) 1, (2p4) 2p3 + 2p4 p3 + p4 p2 ≤ p4

937 2 1, 2 1, 3 (2p1) 1, (2p2) 1, (2p3 + 1) 0
938 .2.2.2 .(2p1).(2p2).(2p3) 2p2 + 2
939 2 : 2 : 2 0 (2p1) : (2p2) : (2p3) 0 2
941 2 0 : 2 0 : 2 0 (2p1) 0 : (2p2) 0 : (2p3) 0 0
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K Con Fam σ u Cond

1022 3 3 1 3 (2p1 + 1) (2p2 + 1) 1 (2p1 + 1) 2p1 − 2p3 p3 − p1 p3 − p1 > p2

1023 3 3 1 1 2 (2p1 + 1) (2p2 + 1) 1 1, (2p3) 2p2 − 2p3 + 2 p2 − p3 + 1 p3 ≤ p2

1024 3 2 3 2 (2p1 + 1) (2p2) (2p3 + 1) (2p4) 2p2

1025 3 2 2 1 2 (2p1 + 1) (2p2) (2p3) 1 (2p4) 2p1 + 2p3 p1 + p3 p4 ≤ p3

1026 3 2 1 1 3 (2p1 + 1) (2p2) 1 1 (2p3 + 1) 2p2 − 2p3 |p2 − p3| p3 − p2 > p1 or p2 > p3

1027 3 2 1 1 1 2 (2p1 + 1) (2p2) 1 1 1(2p3) 2p1 − 2p3 + 2 |p1 − p3 + 1| p3 ≤ p1, p2 = 2
or p3 − p1 > p2 + 1

1028 3 1 3 1 2 (2p1 + 1) 1 (2p2 + 1) 1 (2p3) −2p3 + 2 p3 − 1 p1 + p2 + 1 < p3

1029 3 1 2 2 2 (2p1 + 1) 1 (2p2) (2p3) (2p4) 2p1

1030 3 1 2 1 1 2 (2p1 + 1) 1 (2p2) 1 1 (2p3) 2
1031 3 1 1 3 2 (2p1 + 1) 1 1 (2p2 + 1) (2p3) −2p3 + 2
1032 3 1 1 1 2 2 (2p1 + 1) 1 1 1 (2p2) (2p3) 2p1 − 2p3 |p1 − p3| p1 > p2 + p3

or p2 = 2, p3 > p1

1033 3 1 1 1 1 3 (2p1 + 1) 1 1 1 1 (2p2 + 1) 0
1037 2 3 3 2 (2p1) (2p2 + 1) (2p3 + 1) (2p4) 2p1 − 2p4

1038 2 3 1 2 2 (2p1) (2p2 + 1) 1 (2p3) (2p4) −2p4

1039 2 2 3 1 2 (2p1) (2p2) (2p3 + 1) 1 (2p4) 2p1 + 2p3 p1 + p3 p1 + p2 + p3 ≤ p4

1040 2 2 2 1 1 2 (2p1) (2p2) (2p3) 1 1 (2p4) 2p1 + 2p3 − 2p4 |p1 + p3 − p4| p4 < p3

or p4 > p1 + p2 + p3

1041 2 2 1 2 1 2 (2p1) (2p2) 1 (2p3) 1 (2p4) 2p3 p3 p2 + p4 ≤ p3

1042 2 2 1 1 1 1 2 (2p1) (2p2) 1 1 1 1 (2p3) −2p3 + 2
1043 2 1 2 2 1 2 (2p1) 1 (2p2) (2p3) 1 (2p4) 2p1 − 2p4

1044 2 1 2 1 1 1 2 (2p1) 1 (2p2) 1 1 1 (2p3) 2p1 p1 p2 + p3 ≤ p1 + 1
1045 2 1 1 1 1 1 1 2 (2p1) 1 1 1 1 1 1 (2p2) 0
1050 3 2, 3, 2 (2p1 + 1) (2p2), (2p3 + 1), (2p4) 2p2 + 2p3 p2 + p3 p4 ≤ p2

1051 3 2, 2 1, 2 (2p1 + 1) (2p2), (2p3) 1, (2p4) 2p2 + 2p4 − 2p3

1052 3 1 1, 3, 2 (2p1 + 1) 1 1, (2p2 + 1), (2p3) −2p2 − 2p3 + 2 p2 + p3 − 1 p3 − p1 ≥ 2
1053 3 1 1, 2 1, 2 (2p1 + 1) 1 1, (2p2) 1, (2p3) 2p2 + 2
1054 2 3, 3, 2 (2p1) (2p2 + 1), (2p3 + 1), (2p4) 2p1 − 2p3 − 2p4 p3 + p4 − p1 p4 > p1 + p2

1055 2 3, 2 1, 2 (2p1) (2p2 + 1), (2p3) 1, (2p4) 2p1 + 2p3 p1 + p3

1056 2 2 1, 3, 2 (2p1) (2p2) 1, (2p3 + 1), (2p4) 2p1 + 2p3 p1 + p3 p4 ≤ p1 + p2

1057 2 2 1, 2 1, 2 (2p1) (2p2) 1, (2p3) 1, (2p4) 2p1 + 2p4 − 2p3 p1 + p4 − p3 p3 < p4

1058 2 1 1, 2 1 1, 2 (2p1) 1 1, (2p2) 1 1, (2p3) 0
1059 2 2, 2 1 1, 2 (2p1) (2p2), (2p3) 1 1, (2p4) 2p4 p4 p2 + p3 − 1 ≤ p4

1060 2 1 1, 2 1 1, 2 (2p1) 1 1, (2p2) 1 1, (2p3) 0
1064 3 1, 3, 3 (2p1 + 1) 1, (2p2 + 1), (2p3 + 1) 2p1 − 2p2 − 2p3 p2 + p3 − p1 max(p2, p3) > p1

1
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K Con Fam σ u Cond

1065 3 1, 3, 2 1 (2p1 + 1) 1, (2p2 + 1), (2p3) 1 2p2 − 2p3 + 2
1066 3 1, 2 1, 2 1 (2p1 + 1) 1, (2p2) 1, (2p3) 1 2p1 + 2p2 + 2p3 p1 + p2 + p3

1068 2 1 1, 3, 3 (2p1) 1 1, (2p2 + 1), (2p3 + 1) 2p1 − 2
1067 2 2, 3, 2 1 (2p1) (2p2), (2p3 + 1), (2p4) 1 2p1

1069 2 1 1, 2 1, 2 1 (2p1) 1 1, (2p2) 1, (2p3) 1 2p1

1070 2 2, 3, 2+ (2p1) (2p2), (2p3 + 1), (2p4)+ 2p3

1071 2 2, 2 1, 2+ (2p1) (2p2), (2p3) 1, (2p4)+ 2p4 − 2p3

1072 2 1 1, 3, 2+ (2p1) 1 1, (2p2 + 1), (2p3)+ −2p2 − 2p3 p2 + p3 p1 − 1 ≤ p2 + p3

1073 2 1 1, 2 1, 2+ (2p1) 1 1, (2p2) 1, (2p3)+ 2p2 p2 p3 = 1
1074 3, 3, 2 1+ (2p1 + 1), (2p2 + 1), (2p3) 1+ 2
1075 2 1, 2 1, 2 1+ (2p1) 1, (2p2) 1, (2p3) 1+ 0
1076 3, 3, 2 + 2 (2p1 + 1), (2p2 + 1), (2p3) + (2p4) 2p1 + 2p2

1077 3, 2 1, 2 + 2 (2p1 + 1), (2p2) 1, (2p3) + (2p4) 2p1 + 2p3 − 2p2

1078 2 1, 2 1, 2 + 2 (2p1) 1, (2p2) 1, (2p3) + (2p4) 2p1 + 2p2 p1 + p2 p4 ≤ p1 + p2

1079 (3, 2) (3, 2) ((2p1 + 1), (2p2)) ((2p3 + 1), (2p4)) 2p1 + 2p2 − 2p3 − 2p4

1080 (3, 2) (2 1, 2) ((2p1 + 1), (2p2)) ((2p3) 1, (2p4)) 2p1 + 2p2 + 2p3 p1 + p2 + p3

1081 (2 1, 2) (2 1, 2) ((2p1) 1, (2p2)) ((2p3) 1, (2p4)) 2p1 − 2p3

1083 .3 1.2 .(2p1 + 1) 1.(2p2) −2p2 + 2 p2 − 1 p2 > p1 + 1
1084 .2 2.2 .(2p1) (2p2).(2p3) 2p1 + 2p3 p1 + p3 p2 = 1 or p3 ≥ 2
1086 .3 1.2 0 .(2p1 + 1) 1.(2p2) 0 2p2

1087 .2 2.2 0 .(2p1) (2p2).(2p3) 0 2p1 − 2p3

1088 .2 1.2 1 .(2p1) 1.(2p2) 1 0
1089 .2 1.2 1 0 .(2p1) 1.(2p2) 1 0 2
1090 .3.2.2 .(2p1 + 1).(2p2).(2p3) 2p2 − 2p3 p3 − p2 p3 > p1 + p2

1091 .3.2.2 0 .(2p1 + 1).(2p2).(2p3) 0 2p1 − 2p2 − 2p3 + 2 p2 + p3 − p1 − 1 p1 ≤ p3, p2 > 1
1092 .2 1.2.2 0 .(2p1) 1.(2p2).(2p3) 0 2p1 + 2p2 p1 + p2 p3 − 1 ≤ p1

1093 .3.2 0.2 .(2p1 + 1).(2p2) 0.(2p3) −2p2 − 2p3 p2 + p3 p1 < p2 or p3 > p1 + 1
1094 .3 0.2.2 .(2p1 + 1) 0.(2p2).(2p3) 2p1 + 2p2 − 2p3 p1 + p2 − p3 p1 − p3 ≥ 1 or p2 − p3 ≥ 1
1095 .2 1 0.2.2 (2p1) 1 0.(2p2).(2p3) 2p1 − 2p2 − 2 p2 − p1 + 1 p1 = p3 = 1
1096 .2.2 1.2 .(2p1).(2p2) 1.(2p3) 0
1097 .2.2 1 0.2 .(2p1).(2p2) 1 0.(2p3) 2
1098 .2.2.2.2 0 .(2p1).(2p2).(2p3).(2p4) 0 2p1 + 2p3 p1 + p3 p4 ≤ p1 or p4 ≤ p3

1099 .2.2.2 0.2 0 .(2p1).(2p2).(2p3) 0.(2p4) 0 2p1 + 2p4 − 2p2 − 2p3

10100 3 : 2 : 2 (2p1 + 1) : (2p2) : (2p3) 2p1 + 2p2 + 2p3 − 2 p1 + p2 + p3 − 1 p2 > 1 or p3 > 1
10101 2 1 : 2 : 2 (2p1) 1 : (2p2) : (2p3) 2p1 + 2
10102 3 : 2 : 2 0 (2p1 + 1) : (2p2) : (2p − 3) 0 2p3 − 2p2 p2 − p3 p3 = 1, p2 − p1 > 1
10103 3 0 : 2 : 2 (2p1 + 1) 0 : (2p2) : (2p3) 2p2 + 2p3 − 2
10104 3 : 2 0 : 2 0 (2p1 + 1) : (2p2) 0 : (2p3) 0 2p1 − 2p2 − 2p3 + 2 p1 − p2 − p3 + 1 p1 > p2, p3 = 1

or p1 > p3, p2 = 1

1
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K Con Fam σ u Cond

10105 2 1 : 2 0 : 2 0 (2p1) 1 : (2p2) 0 : (2p3) 0 2p1 p1 p1 > p2 + p3

10106 3 0 : 2 : 2 0 (2p1 + 1) 0 : (2p2) : (2p3) 0 2p1 + 2p3 − 2p2 p1 + p3 − p2 p2 + 1 ≤ p1

10107 2 1 0 : 2 : 2 0 (2p1) 1 0 : (2p2) : (2p3) 0 2p1 − 2
10108 3 0 : 2 0 : 2 0 (2p1 + 1) 0 : (2p2) 0 : (2p3) 0 −2p2 − 2p3 + 2 p2 + p3 − 1 p2 > p1 + 2 or p3 > p1 + 2
10109 2.2.2.2 (2p1).(2p2).(2p3).(2p4) 2p1 + 2p3 − 2p2 − 2p4 p1 + p3 − p2 − p4 p1 ≥ p2 + p4

10110 2.2.2.2 0 (2p1).(2p2).(2p3).(2p4) 0 −2p4 p4 p4 ≥ p1 + p3

10111 2.2.2 0.2 (2p1).(2p2).(2p3) 0.(2p4) 2p2 + 2p3 p2 + p3 p2 + p3 ≥ p4 ≥ p1

10112 8∗3 8∗(2p1 + 1) 2p1 p1 p1 ≥ 2
10113 8∗2 1 8∗(2p1) 1 2p1 p1 p1 ≥ 2
10114 8∗3 0 8∗(2p1 + 1) 0 0
10115 8∗2 0.2 0 8∗(2p1) 0.(2p2) 0 0
10116 8∗2 : 2 8∗(2p1) : (2p2) 2p1 + 2p2 − 2 p1 + p2 − 1 p1 ≥ 2 or p2 ≥ 2
10117 8∗2 : 2 0 8∗(2p1) : (2p2) 0 2p2

10118 8∗2 : .2 8∗(2p1) : .(2p2) 0 2p1 − 2p2 |p1 − p2| p1 ≥ 2, p2 = 1
p2 ≥ 2, p1 = 1 or |p1 − p2| ≥ 2

10119 8∗2 : .2 0 8∗(2p1) : .(2p2) 0 −2p2 + 2 p2 − 1 p2 − p1 ≥ 2
10120 8∗2 0 :: 2 0 8∗(2p1) 0 :: (2p2) 0 4

10121 9∗2 0 98(2p1) 0 2
10122 9∗.2 0 9∗.(2p1) 0 0

In the following table we provide the same results for link families obtained from generating links with at most n = 9
crossings.

K Con Fam σ u Cond

22
1

2 (2p1) −2p1 + 1 p1

52
1

2 1 2 (2p1) 1 (2p2) −2p1 + 1 p1 p1 > p2

62
2

3 3 (2p1 + 1) (2p2 + 1) −2p1 − 1

62
3

2 2 2 (2p1) (2p2) (2p3) −2p1 − 2p3 + 1 p1 + p3

72
2

3 1 1 2 (2p1 + 1) 1 1 (2p2) −2p1 + 2p2 |p1 − p2|

72
3

2 3 2 (2p1) (2p2 + 1) (2p3) −2p1 + 1

72
4

3, 2, 2 (2p1 + 1), (2p2), (2p3) −2p1 − 2p3 + 1 p1 + p3 p2 = 1

72
5

2 1, 2, 2 (2p1) 1, (2p2), (2p3) 2p2 + 2p3 − 2p1 + 1

72
6

.2 .(2p1) −2p1 + 1

82
4

3 2 3 (2p1 + 1) (2p2) (2p3 + 1) −2p1 − 2p3 − 1

82
5

3 1 2 2 (2p1 + 1) 1 (2p2) (2p3) −2p1 − 1

82
7

2 1 2 1 2 (2p1) 1 (2p2) 1 (2p3) −2p1 − 2p3 + 1 p1 + p3 p1 + p3 ≥ p2

82
9

2 2, 2, 2 (2p1) (2p2), (2p3), (2p4) −2p3 − 2p4 + 1

82
10

2 1 1, 2, 2 (2p1) 1 1, (2p2), (2p3) 2p3 − 1 p3 p1 = p2 = 1

82
11

3, 2, 2+ (2p1 + 1), (2p2), (2p3)+ −2p1 + 1

82
12

2 1, 2, 2+ (2p1) 1, (2p2), (2p3)+ −2p1 + 2p2 − 1 p1 − p2 + 1 p2 = 1

2
0



K Con Fam σ u Cond

82
13

.2 1 .(2p1) 1 −1

82
14

.2 : 2 .(2p1) : (2p2) 1

92
6

3 3 1 2 (2p1 + 1) (2p2 + 1) 1 (2p3) −2p1 + 2p3 − 1 p3 − p1 p3 ≥ p1 + p2

92
7

3 2 1 1 2 (2p1 + 1) (2p2) 1 1 (2p3) −2p1 + 1 p1 + 1 p2 = 1, p3 ≤ p1 + 2

92
8

3 1 3 2 (2p1 + 1) 1 (2p2 + 1) (2p3) −2p1 + 2p3 − 1 p1 − 1 p1 ≥ p2 + p3

92
9

3 1 1 1 3 (2P − 1 + 1) 1 1 1 (2p2 + 1) −2p1 + 1 p1 p1 − p2 ≥ 1

92
11

2 2 2 1 2 (2p1) (2p2) (2p3) 1 (2p4) −2p1 − 2p3 + 1 p1 + p3 p3 ≥ p4

92
12

2 2 1 1 1 2 (2p1) (2p2) 1 1 1 (2p3) −2p1 + 2p3 − 1 p3 − p1 p3 > p1 + p2

p1 − p3 + 1 p2 = 1, p1 > p3

92
15

3 2, 2, 2 (2p1 + 1) (2p2), (2p3), (2p4) −2p2 − 2p4 + 1

92
16

3 1 1, 2, 2 (2p1 + 1) 1 1, (2p2), (2p3) 2p2 + 2p3 − 3
917 2 3, 2, 2 (2p1) (2p2) 1, (2p3), (2p4) −2p2 + 2p3 + 2p4 − 1

92
18

2 2 1, 2, 2 (2p1) (2p2) 1, (2p3), (2p4) −2p1 − 2p4 + 1 p1 + p4 p3 = 1

92
21

3 1, 3, 2 (2p1 + 1) 1, (2p2 + 1), (2p3) −2p1 + 2p2 + 2p3 − 1 p2 + p3 − p1 p3 > p1

92
22

3 1, 2 1, 2 (2p1 + 1) 1, (2p2) 1, (2p3) −2p1 − 2p2 − 1

92
23

3, 3, 2 1 (2p1 + 1), (2p2 + 1) (2p3) 1 −2p1 − 2p2 + 2p3 − 1 p1 + p2 − p3 + 1 p1 ≥ p3 or p2 ≥ p3

92
24

2 1, 2 1, 2 1 (2p1) 1, (2p2) 1, (2p3) 1 −2p1 − 2p2 − 2p3 − 1 p1 + p2 + p3

92
25

2 2, 2, 2+ (2p1) (2p2), (2p3), (2p4)+ −2p2 + 1

92
26

2 1 1, 2, 2+ (2p1) 1 1, (2p2), (2p3)+ −1

92
27

3, 2, 2 + 2 (2p1 + 1), (2p2), (2p3) + (2p4) −2p1 − 2p3 + 1

92
28

2 1, 2, 2, 2 + 2 (2p1) 1, (2p2), (2p3) + (2p4) −2p1 + 2p2 + 2p3 − 1

92
29

(3, 2) (2, 2) (2p1 + 1), (2p2)) ((2p3), (2p4)) 2p1 + 2p2 − 2p3 − 2p4 − 1

92
30

(2 1, 2) (2, 2) ((2p1) 1, (2p2)) ((2p3), (2p4)) −2p1 − 2p3 − 2p4 + 1 p1 + p3 + p4

92
32

.3 1 .(2p1 + 1) 1 −1

92
33

.2 2 .(2p1) (2p2) −2p1 + 1

92
34

.3.2 .(2p1 + 1).(2p2) −2p1 + 2p2 − 1 p1 p1 > 1, p2 = 1

92
35

.3.2 0 .(2p1 + 1).(2p2) 0 −2p1 − 2p2 + 1 p1 + p2

92
36

.3 : 2 .(2p1 + 1) : (2p2) −2p1 + 2p2 − 1 p1 − p2 + 1 p1 > 1, p2 = 1

92
37

.3 : 2 0 .(2p1 + 1) : (2p2) 0 −2p1 + 2p2 − 1

92
38

.2 1 : 2 0 .(2p1) 1 : (2p2) 0 −2p1 + 3

92
39

.2.2.2 0 .(2p1).(2p2).(2p3) 0 −2p1 + 2p2 + 2p3 − 1 p2 + p3 − p1 p3 > p1

92
40

2 : 2 : 2 (2p1) : (2p2) : (2p3) −2p1 − 2p2 − 2p3 + 3

92
41

2 : 2 0 : 2 0 (2p1) : (2p2) : (2p3) 0 −2p1 + 2p2 + 2p3 − 1 p2 + p3 − p1 p2 > p1 or p3 > p1

92
42

8∗2 8∗(2p1) −2p1 + 1 p1 p1 ≥ 2

63
1

2, 2, 2 (2p1), (2p2), (2p3) −2p1 + 2p2 − 2p3

73
1

2, 2, 2+ (2p1), (2p2), (2p3)+ −2p1 + 2

82
3

3 1, 2, 2 (2p1 + 1) 1, (2p2), (2p3) −2p1 + 2p2 + 2p3 − 2

83
3

2, 2, 2 + 2 (2p1), (2p2), (2p3) + (2p4) −2p1 − 2p3 + 2

83
4

(2, 2) (2, 2) ((2p1), (2p2)) ((2p3), (2p4)) −2p1 − 2p2 + 2p3 + 2p4

83
5

.3 .(2p1 + 1) −2p1

83
6

.2 : 2 0 .(2p1) : (2p2) 0 −2p1 + 2p2

2
1



93
1

2 1 2, 2, 2 (2p1) 1 (2p2), (2p3), (2p4) −2p1 − 2p3 − 2p4 + 2

93
2

2 1 1 1, 2, 2 (2p1) 1 1 1, (2p2), (2p3) −2p1 + 2p3

93
3

3, 2, 2, 2 (2p1 + 1), (2p2), (2p3), (2p4) −2p1 − 2p4 + 2

93
4

2 1, 2, 2, 2 (2p1) 1, (2p2), (2p3), (2p4) −2p1 + 2p2 + 2p4 − 2

93
6

3 1, 2, 2 (2p1 + 1) 1, (2p2), (2p3)+ −2p1 + 2p2 − 2

93
7

2, 2, 2 + 3 (2p1), (2p2), (2p3) + (2p4 + 1) −2p1 + 2

93
8

(2, 2+) (2, 2) ((2p1), (2p2)+) ((2p3), (2p4)) −2p1 + 2p3 + 2p4

93
9

(2, 2) 1 (2, 2) ((2p1), (2p2) 1 ((2p3), (2p4)) −2p1 − 2p4 + 2

93
10

.2 1 1 .(2p1) 1 1 −2p1

93
11

.2 1 : 2 (−2p1) 1 : 2 −2p1 + 2

93
12

.(2, 2) .((2p1), (2p2)) −2p1 + 2

84
1

2, 2, 2, 2 (2p1), (2p2), (2p3), (2p4) −2p1 − 2p4 + 3

7. Ascending numbers of alternating knot families

Our next goal was to compute ascending numbers of alternating knots belonging
to some families with known unknotting numbers and to find their based oriented
diagrams showing the ascending number. These results for the families beginning
with knots with n ≤ 8 crossings are described in Theorems 5.1-5.4, for the families
beginning with knots with n = 9 crossings in Theorems 5.5-5.9, and for the families
beginning with knots with n = 10 crossings in Theorems 5.10-5.15.

For all these families, except for the first and the last family, ascending numbers
are computable only from non-minimal diagrams. Hence, in Figs. 29-38 every
family is represented by its minimal diagram (a), and non-minimal based oriented
diagram (b) giving the corresponding ascending number.

Theorem 3. For knots 31 = 3, 51 = 5, 71 = 7, 91 = 9, . . . of the family 2p + 1
(p ≥ 1), the minimal ascending number is a(K) = u(K) = p, and it is realized on
the minimal diagrams (Fig. 29).

Theorem 4. For knots 73 = 4 3, 93 = 6 3, . . . of the family (2p) 3 (p ≥ 2) the
minimal ascending number is a(K) = u(K) = p, and it is realized on the non-
minimal diagrams of the form ((((1, (−1, (((12p−2),−1),−1))), 1),−1),−1,−1) (Fig.
30b), where by 12p−2 is denoted the sequence 1, . . . , 1 of the length 2p− 2.

Theorem 5. For knots 75 = 3 2 2, 96 = 5 2 2, 99 = 4 2 3, . . . of the family (2p +
1) 2 (2q) (p ≥ 1, q ≥ 1), the minimal ascending number is a(K) = u(K) = p + q,
and it is itself on the non-minimal diagrams of the form (2p + 1),−2 1, (2q) (Fig.
31b).

Theorem 6. For knots 815 = 2 1, 2 1, 2, 1049 = 4 1, 2 1, 2, . . . of the family (2p) 1,
(2q) 1, 2 (p ≥ 1, q ≥ 1) minimal ascending number is a(K) = u(K) = p+ q, and it
is itself on the non-minimal diagrams of the form (2p) 1, (2q) 1,−2, 1 (Fig. 32b).

For the knot family 2p+ 1 (p ≥ 1) the absolute value of the signature of a knot
2p + 1 (p ≥ 1) is 2p. For the knot family (2p) 3 (p ≥ 2) the absolute value of the
signature is 2p. For the family of knots (2p+ 1) 2 (2q) (p ≥ 1, q ≥ 1) the absolute
value of the signature is 2p + 2q. For the family of knots (2p) 1, (2q) 1, 2 (p ≥ 1,
q ≥ 1) the absolute value of the signature is 2p+ 2q.

K. Murasugi [9] proved the lower bound for the unknotting number for knots

u(K) ≥ |σK |
2 . For the family of knots 2p+1 (p ≥ 1), from Murasugi’s Theorem 1.1,

half of the signature is p, for the family of knots (2p) 3 (p ≥ 2) from Theorem 1.2
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half of the signature is p, for the family of knots (2p+ 1) 2 (2q) (p ≥ 1, q ≥ 1) from
Theorem 1.3 it is p+q, and for the family of knots (2p+1) 2 (2q) (p ≥ 1, q ≥ 1) from
Theorem 1.4 half of the signature is p+q. The proof of the Theorems 1.1-1.4 follows
from the fact that in each of the families the unknotting number is equal to a half
of the absolute value of the signature, and it is realized on the minimal diagrams
of the knots belonging to the families from Theorems 1.1-1.4, respectively. Hence,
unknotting number for these families is equal to the minimal diagram unknotting
number. For all these families, we effectively constructed corresponding diagrams
giving minimal ascending number equal to the unknotting number, so it follows

that for each of the knots from these families a(K) = u(K) = |σK |
2 .

We provide similar theorems for certain families beginning with nine and ten
crossing knots. Their proof is analogous to the proof of Theorems 5.1-5.4. For
rational knot family 5 (2p) (p ≥ 2) from Theorem 5.5 the absolute value of the
signature is 2p; for rational knot family (2p+1) 4 (2q) (p ≥ 1, q ≥ 1) from Theorem
5.6 the absolute value of the signature is 2p+2q; for knot family (2p+1) 4 (2q) (p ≥ 1,
q ≥ 1) from Theorem 5.7 the absolute value of the signature is 2p+ 4; for rational
knot family 3 2 2 (2p) (p ≥ 1) from Theorem 5.8 the absolute value of the signature
is 2p + 2; for rational knot family (2p) 2 1 2 (2q) (p ≥ 1, q ≥ 1) from Theorem 5.9
the absolute value of the signature is 2p+2q; for knot family (2p) 3, (2q) 1, 2 (p ≥ 1,
q ≥ 1) from Theorem 5.10 the absolute value of the signature is 2p + 2q; for knot
family (2p) 3, (2q) 1, 2 (p ≥ 1, q ≥ 1) from Theorem 5.11 the absolute value of the
signature is 2p+ 4. By similar arguments, applied to non-alternating knots we can
conclude that for knot family (2p) 2 1, (2q+1),−2 (p ≥ 1, q ≥ 1) from Theorem 5.12
the absolute value of the signature is 2p+ 2q, and for knot family −3 0 : (2p) 0 : 2 0
(p ≥ 1) from Theorem 5.13 the absolute value of the signature is 2p+ 2.

Theorem 7. For knots 94 = 5 4, . . . of the family 5 (2p) (p ≥ 2), the minimal
ascending number is a(K) = u(K) = p, and it is realized on the non-minimal
diagrams of the form ((1, (−1, (((((1, (1, (−1,−1))), 1),−1),−1),−1))), 12p−2) (Fig.
33b), where by 12p−2 is denoted the sequence 1, . . . , 1 of the length 2p− 2.

Theorem 8. For knots 97 = 3 4 2, . . . of the family (2p+1) 4 (2q) (p ≥ 1, q ≥ 1) the
minimal ascending number is a(K) = u(K) = p + q, and it is realized on the non-
minimal diagrams of the form (((−1, (1, ((((−1, ((12p), 1)),−1), 1), 1))),−1), (−1)2q)
(Fig. 34b), where by 12p−2 and (−1)2q−2 are denoted the sequence 1, . . . , 1 of the
length 2p− 2, and −1, . . . ,−1 of the length 2q − 2, respectively.

Theorem 9. For knots 916 = 3, 3, 2+, . . . of the family 3, 3, (2p)+ (p ≥ 1) the
minimal ascending number is a(K) = u(K) = p+ 2, and it is realized on the non-
minimal diagrams of the form −(1, 1) 1 1,−(1, 1) 1 1, ((−1)2p+1) 1 (Fig. 35b), where
by 12p+1 is denoted the sequence 1, . . . , 1 of the length 2p+ 1.

Theorem 10. For knots 918 = 3 2 2 2, . . . of the family 3 2 2 (2p) (p ≥ 1), the mini-
mal ascending number is a(K) = u(K) = p+1, and it is realized on non-minimal di-
agrams of the form (((((1, (−1, (((−1, (1, 1)),−1),−1))), 1),−1),−1), (−1)2p) (Fig.
36b), where by 12p is denoted the sequence −1, . . . ,−1 of the length 2p.

Theorem 11. For knots 923 = 2 2 1 2 2, . . . of the family (2p) 2 1 2 (2q) (p ≥ 1,
q ≥ 1), the minimal ascending number is a(K) = u(K) = p+ q, and it is realized on
the non-minimal diagrams of the form ((((((((1, (1, (12p))),−1),−1), 1), 1),−1),−1),

23



(−1)2q) (Fig. 37b), where by 12p and (−1)2q are denoted the sequence 1, . . . , 1 of
the length 2p, and −1, . . . ,−1 of the length 2q, respectively.

Theorem 12. For knots 1050 = 2 3, 2 1, 2, . . . of the family (2p) 3, (2q) 1, 2 (p ≥ 1,
q ≥ 1), the minimal ascending number is a(K) = u(K) = p+ q, and it is realized on
the non-minimal diagrams of the form (((−1, (−1,−(12p))), 1), 1), ((((−(12q), 1),−1), 1),
1),−(1, 1), 1 (Fig. 38b), where by 12p and 12q are denoted the sequence 1, . . . , 1 of
the length 2p, and 1, . . . , 1 of the length 2q, respectively.

Theorem 13. For knots 1080 = (3, 2) (2 1, 2), . . . of the family (3, 2) ((2p) 1, 2) (p ≥
1), the minimal ascending number is a(K) = u(K) = p+2, and it is realized on the
non-minimal diagrams of the form (((1,−(1, 1)), 1),−(1, 1), 1) (((((−(12p), 1),−1), 1), 1),
−(1, 1), 1) (Fig. 39b), where by 12p is denoted the sequence 1, . . . , 1 of the length
2p.

Figure 29: Family 2p + 1 (p ≥ 1) and its corresponding minimal based oriented
diagram giving the ascending number p.

Figure 30: (a) Family (2p) 3 (p ≥ 2) with the ascending number p (b).
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Figure 33: (a) Family 5 (2p) (p ≥ 2) with the ascending number p (b).

Figure 34: (a) Family (2p+1) 4 (2q) (p ≥ 1, q ≥ 1) with the ascending number p+q

(b).

Figure 35: (a) Family 3, 3, (2p)+ (p ≥ 1) with the ascending number p+ 2 (b).

Figure 36: (a) Family 3 2 2 (2p) (p ≥ 1) with the ascending number p+ 1 (b).
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Figure 37: (a) Family (2p) 2 1 2 (2q) (p ≥ 1, q ≥ 1) with the ascending number p+ q

(b).

Figure 38: (a) Family (2p) 3, (2q) 1, 2 (p ≥ 1, q ≥ 1) with the ascending number
p+ q (b).

Figure 39: (a) Family (3, 2) ((2p) 1, 2) (p ≥ 1) with the ascending number p+2 (b).
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