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Nodal dynamics determine the controllability of complex networks
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Structural controllability has been proposed as an analytical framework for making predictions
regarding the control of complex networks across myriad disciplines in the physical and life sciences
(Lui et al., Nature:473(7346), 167-173, 2011). While the integration of control theory and network
analysis represents an important advance, we show that the application of the structural controlla-
bility framework to most if not all real-world networks leads to the conclusion that a single control
input, applied to the power dominating set (PDS), is all that is needed for structural controllability,
a result consistent with the well known fact that controllability (and its dual, observability) are
generic properties of systems. We argue that more important than structural controllability are
the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and

whether it possesses almost pole-zero cancellations.

How can we control complex networks of dynamical
systems [IH7]? Is it sufficient to control a few nodes, or
are inputs needed at a large fraction of the nodes in the
network? Which nodes need to be controlled? A recent
paper by Liu et al. suggests that we can address these
problems using the concept of structural controllability,
and in doing so we may be able to forge new connec-
tions between control theory and complex networks [§].
Two important results from this analysis are (1) that the
number of driver nodes, Np, necessary to control a net-
work is determined by the network’s degree distribution
and (2) that Np tends to comprise a substantial frac-
tion of the nodes in inhomogeneous networks such as the
real-world examples considered therein. However, both
conclusions hinge on a critical assumption of the model
that Liu et al. have developed: they assume that the de-
fault structures of the dynamical systems at the nodes of
the network are degenerate in the sense that they have
infinite time constants. This assumption implies that,
unless otherwise specified by a self-link in the network, a
node’s state never changes absent influence from inbound
connections.

However, the real networks considered in the paper by
Liu et al—including food webs, power grids, electronic
circuits, regulatory networks, and neuronal networks—
manifest dynamics at each node that have finite time con-
stants [OHI2]. Here we show that a single time-dependent
input, applied to the graph’s power dominating set (PDS)
[13], is all that is ever needed for structural controlla-
bility, irrespective of network topology given arbitrary
linear dynamics at each node. Thus for many if not all
naturally occurring network systems, structural control-
lability does not depend on degree distribution and can
always be conferred with a single control input.

Large interconnected systems are commonly repre-
sented as complex networks [14] [15]. For many biological

and physical networks, each node in the network corre-
sponds to a dynamical system. Often, the dynamics of
these nodes are modeled well by a system of ordinary
differential equations [16] [1I'7]:

N P
Ty = —piT; + Z a;xei(t) + Z biju;(t), (1)
k=1 i=1

where z; is a state at node ¢, N is the number of nodes, P
is the number of inputs, and the n? elements a;;, populate
the adjacency matrix. Here, the term —p;x; represents
the intrinsic dynamics at the node, absent external in-
fluences. The external inputs, u;(t), enter the system
through the coupling matrix {b;;}. For analyzing con-
trollability, it is reasonable, as a first step, to consider
purely linear dynamics as shown in Eq. —an approach
clearly articulated and well motivated by Liu et al. [§].
The term —p; is the pole of the linear dynamical sys-
tem, and 7, = 1/p; is the associated time constant.
Rewriting in terms of transfer functions, we have

N P
Xi(s) = Gi(s) Z a;ixXp(s) + ZbijUj(S) ;o (2
k=1 j=1

where X;(s) and U;(s) are the Laplace transforms of state
x;(t) and input u;(t) respectively, and
1

Gi(s) = st

is the transfer function of node i. This formulation is
useful because it suggests inclusion of more general linear
dynamics: the transfer function, G;(s) can be replaced
by any linear transfer function, of arbitrary order.

The dynamics proposed by Liu et al. [§] (see the sup-
plemental material therein) is identical to , except



with the following nodal dynamics:

1
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Gi(s) = 3)
Written this way the degenerate aspect of the model in
Liu et al. is clear: all subsystems by default have an in-
finite time constanst unless such dynamics are explicitly
included in the network data set through nonzero diago-
nal terms, a;; # 0, in the adjacency matrix.

However, infinite time constants at each node do not
reflect the dynamics of the physical and biological sys-
tems in Table 1 of Liu et al. [§]. Reproduction and mor-
tality schedules imply species-specific time constants in
trophic networks. Molecular products spontaneously de-
grade at different rates in protein interaction networks
and gene regulatory networks. Absent synaptic input,
neuronal activity returns to baseline at cell-specific rates.
Indeed, most if not all systems in physics, biology, chem-
istry, ecology, and engineering will have a linearization
with a finite time constant. Thus while the Liu et al.
model does not proscribe self-links, this approach does
plane the onus on the modeler to ensure that any network
representation includes such links where appropriate.

To see the consequences of including finite time con-
stants at each node for general conclusions about network
controllability, we first rewrite the network dynamics in
in state space form:

x(t) = Ax(t) + Bu(t), )
A = [A — diag(plap27p37 cee 7pN)] )

where A € RV*VN is the adjacency matrix, and B €
RM*F is the input matrix. The vector x(t) € RY is the
vector of node states, and u(t) € R is the input vector.

The system in Eq. is controllable if and only if the
matrix

(B, AB, --- AN-1B] (5)
is full rank, a standard result in control theory [18]. The
system is said to be structurally controllable if the non-
zero weights in A and B can be adjusted such that the
matrix in Eq. is full rank [I9].

Liu et al. define the minimum number of driver nodes,
Np, as the minimum number of inputs—i.e. independent,
user defined, time-varying functions—such that when in-
jected into the network guarantee structural controllabil-
ity. This formulation explicitly allows each independent
input to be connected to multiple (and possibly all) nodes
in the network [8], 20].

Liu et al. solve this minimum input problem using a
clever and powerful application of graph-theoretic con-
cepts; their basic approach is to identify the number of
“unmatched nodes” after finding a so-called maximum
matching of the graph (see Supplemental material of Liu
et al. [8] for more details). We note that one can recast

the poles at —p; as (non-zero) self-links. But the set of
all self-links (i — 4) is itself a maximum matching; all
nodes in the network are then matched nodes. This im-
plies that, as J. Slotine pointed out [21], the network can
be controlled with a single input, i.e. Np = 1, which fol-
lows directly from the maximum matching proof of Liu
et al. [§].

The following proposition provides a simple non-graph-
theoretic proof that a single driver node attached to all
nodes—i.e. a “control hub”—guarantees structural con-
trollability with a single input.

Proposition 1. For any directed network with nodal dy-
namics in Eq. |9 (or equivalently Eq. , Np =1.

Proof. Select B = [1,1,...,1]T (that is, connect a single
input to all nodes). Lin’s structural controllability theo-
rem [19] states that if the system is controllable for one
choice of the non-zero system parameters, then it will
be controllable for all parameters except a set of mea-
sure zero. So, we explicit construct a parameter set that
makes the system controllable. Keep B as all ones, and
choose p1,pa,...,pN to be non-zero and distinct. Zero
out all the network edges (i.e. nullify the adjacency ma-
trix, A = 0). The system matrix Ais now a diagonal ma-
trix with distinct eigenvalues. Controllability of (A, B)
follows by inspection. Thus, the system is structurally
controllable and Np = 1. O

By contrast the Liu et al. paper reported that for real-
world networks, the minimum number of driver nodes
Np generally scales with the degree distribution. So,
why did Liu et al. arrive at such different conclusions for
these real-world networks? Critically, the application of
structural controllability does not consider variations in
system parameters that are a priori zero [19]. So, for
example, if a link ¢ — j is absent, then a;; = 0. The
original paper by Liu et al. allows for self-links but by
default does not include them. Further, the framework by
Liu et al. assumes p; = 0 (infinite time constant), and the
network datasets in Table 1 of Liu et al. do not include
self-links to correct for this. Therefore, upon inclusion
of first-order self dynamics, essentially all real networks
are structurally controllable with Np = 1, irrespective of
network topology.

Above, we argue that structural controllability of com-
plex networks depends on the dynamics at each node, and
that only a single time varying input is required. Two
questions remain: (1) How sensitive is structural con-
trollability to the dimension of the state space for each
node? (2) Where should we inject the Np independent
time inputs into the network, i.e. what is the minimum
number of nodes of the network to which the input must
be connected? Proposition [I]and suggestions from J. Slo-
tine [21I] explicitly depend on treating first order nodal
dynamics as “self loops” in the network. Below we of-
fer a more general treatment for arbitrary (linear) nodal



dynamics that addresses both questions above. See Fig-

ure 11

Proposition 2. Given the nodal dynamics in , with
G;(s) an arbitrary, proper, rational transfer function [18]
of the form

where, n;(s) and d;(s) are assumed to be nondegenerate
polynomials in s. Then, the network is structurally con-
trollable with one (Np = 1) independent input, connected
to the so-called power dominating set (PDS).

Proof. Given a directed graph, a PDS is, by definition,
the smallest set of nodes such that all other nodes are
downstream of them. Obviously, controllability requires
connecting the input(s) at least to this set; we now show
that this set is sufficient with a single input.

Suppose that there are K nodes in the PDS. Attach
a single control input, u, to this set via a control node.
Augment the graph with this control node and add the
K edges that connect it to the PDS. Then, all nodes are
downstream of the input u (i.e. the control node is now
the PDS of the augmented graph). Define the structural
control network as an acyclic directed graph given by
a directed spanning tree that starts at u and visits all
nodes.

Using the structural controllability argument, zero out
all edges that are not in the structural control network
and set all those in the structural control network to
1. All nodes in this structural control network are still
downstream of u, but now there are no cycles. Hence, the
transfer function from v to any given node is simply the
product of the transfer functions along the path from
to the node. By structural controllability we can adjust
the poles and zeros of each transfer function arbitrarily;
0, set them so that no two transfer functions share any
common poles (a generic assumption) and so that there
are no pole-zero cancellations along any path in the struc-
tural control network (also a generic assumption). Since
there are no pole-zero cancellations, and all modes in the
network are unique, a minimal realization of the N x 1
transfer function from u to the network must contain all
modes of the network. (It is obvious that the minimum
realization requires no more than that). The number
of modes in the minimal realization is equivalent to the
number of modes that are both controllable and observ-
able. Thus all modes are controllable for this parameter
set and, by Lin’s structural controllability theorem [19],
the network is structurally controllable. O

So, all networks with nondegenerate linear dynamics
are structurally controllable with a single input. This
does not imply that controlling large networks will be
easy. From a practical standpoint it seems unlikely that
many real-world complex networks will be controllable

FIG. 1. Given a network, the power dominating set (PDS,
large white circles) is the smallest set of nodes such that all
other nodes (smaller grey circles) are downstream of them.
Any network, with arbitrary (and possibly different) order
finite-dimensional linear dynamics at each node is structurally
controllable from a single input node (black square) tied to the
PDS as shown. See Proposition[2] The edges in the structural
control network are part of a minimum spanning tree (black
edges, although this choice of edges, and indeed the PDS, is
not necessarily unique).

with a single time-varying input. Indeed, structural con-
trollability may be limited in its ability to make practical
predictions, since as we show below, the input power re-
quired for control can vary dramatically for modest mod-
ifications of the link weights.

In other words, controllable systems can be almost un-
controllable for large (nonzero measure) regions of pa-
rameter space. Almost uncontrollability can be exposed
by considering the minimum power required to drive a
system from one state to another. For simplicity of ex-
position, we focus here on driving the network from an
initial state, xo, to the origin in finite time (although the
analysis for driving the system from one state to another
is essentially identical). Consider the problem of finding
a control vector u(t) € RY that drives the state to zero
in time ¢7, from an initial condition x(0) = zo, with the
minimum total energy:

_ b u 2
E= / u(t)2dt. (6)

This, it turns out, can be achieved with a simple control
input [I8]:

u(t) = —BTe AW (t)xg (7)
where W(t) is the so-called controllability Gramian [1§]
given by
t R R
W(t) = / e ATBBTe A " dr. (8)
0
For the input 7 the actual energy from Eq. @ evalu-
ates to
E = X%Wﬁl(tf)XQ. (9)

Assuming the system is controllable, then the matrix
WL(ty) is well defined for t; > 0. However, for some



parameters, this matrix may be poorly conditioned: the
ratio of the largest to smallest singular value will be large.
The linear subspace associated with the smallest singular
value of W require the largest amount of energy (“hard-
est” to control), while those associated with the largest
singular value require the least amount of energy (“eas-
iest” to control). Thus, the ratio of the singular values,
i.e. the condition number, of the controllability Gramian,

Tmax(W(ts))
Jmin(W(tf)) ’

provides a quantitative measure of almost uncontrollabil-
ity, because it addresses the question of how much harder
some states are to control than others.

Consider a very simple example: a strongly connected
network with two nodes (Fig. . This network features
the degenerate dynamics proposed by Liu et al. in Eq. ,
with nonzero off-diagonal terms in the adjacency matrix:

Z/(A,B,tf) = (10)

_ 1
X = {g Oﬁ] X+ [(1)} u (11)
—_— =~
i B
The link weights are a5 = —% and ag; = (. There are

no self-links, so a;; = 0 and asy = 0, and there is only one
control input u(t). Even with the zero self-terms, this is a
perfectly matched system and thus only a single control
input is needed for structural controllability, according

to Liu et al. [].
B
R e—
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FIG. 2. A simple two-node network, controllable for all 8 # 0.

u

Indeed, the determinant of the controllability matrix is
B, which shows that the system is controllable for all but
single value, 8 = 0. For convenience, we find the optimal
u(t) over the interval [0,ts], where t; = 2m. Assume
B> 1 (for g < 1, take § <— 1//). One can calculate the
controllability measure as

v(A,B,t;) = 2. (12)

Thus, with a modest parameter of 5 = 10 the condition
number is 100, i.e. it requires 100X more energy to drive
xo = (0,1) to the origin than it does x9 = (1,0), given
the same time interval for control. In other words, some
states are more difficult to control than others given the
same driver node. A practical approach to overcome this
may be to minimize the condition number of the Gramian
over the set of potential driver nodes.

In conclusion, Liu et al. [§] found that sparse inho-
mogenous networks require distinct controllers for a large
fraction of the nodes to attain structural controllability.

We argue that these results are an artifact of assuming
degenerate nodal dynamics. In the application of the
Liu et al. model to the real networks they consider, each
node is assumed to have an infinite time constant. Here
we show that for realistic, arbitrary-order nodal dynam-
ics, structural controllability is actually achieved with a
single time-varying input attached to the PDS.

The property of a system being controllable has two
significant interpretations in control theory. First, if a
system is controllable then it is possible to find an in-
put to transfer any initial state to any final state in finite
time. Second, if a system is controllable then it is possible
to apply a control signal consisting of a linear combina-
tion of the states that changes the dynamics arbitrarily.
In particular, it is possible to stabilize an unstable sys-
tem, a necessary design goal in engineering problems.
Such a control signal is termed state feedback.

It is important to note what the first definition of con-
trollability leaves out. For example, unless the final state
is an equilibrium, the state will not remain there, but will
move away. In many engineering applications, it is im-
portant to find an input that will both stabilize a system
and hold a specified linear combination (or set of linear
combinations) of states at desired constant values. This
is referred to as the problem of setpoint tracking, and
requires that the system be controllable (so that a sta-
bilizing control input may be found) and that there are
at least as many independent control inputs as there are
linear combinations of states to be held at desired set-
points [22]. Hence we see that although one input may
suffice to achieve controllability of an arbitrary number
of state variables, in fact the number of inputs limits the
number of setpoints that may be specified.

The property of controllability is generically present
in a system, and thus in practice it is more important to
know not whether a system is controllable, but whether
it is almost uncontrollable. In the latter case, the control
input used to drive the state to its desired value, or to
achieve the desired dynamics, may be excessively large.
Hence there is a need for tests—such as those based on
the control Gramian—to determine what states are al-
most uncontrollable. In practice these are then treated
as though they were indeed uncontrollable to avoid the
excessively large inputs required to control them.

A more subtle problem arises with the second use of
the controllability property. In practice, it is rarely pos-
sible to measure all the states of the system required for
the control signal used to alter the dynamics of the sys-
tem. Instead, the control signal is based on estimates of
the states obtained by processing those states (or linear
combinations of states) that are measurable. A system is
said to be observable if it is possible to estimate the states
using only the available outputs [18]. As is the case with
controllability, the property of observability is generically
present, and it is necessary to determine whether states
are almost unobservable.



States that are either uncontrollable or unobservable
do not influence the input—output relation of a system,
and cannot themselves be influenced by a control input
signal based on output measurements. Such systems are
characterized by a pole (an eigenvalue of the matrix A)
that does not appear in the transfer function due to be-
ing canceled by a zero of the transfer function having
the same value. If the system is almost uncontrollable
or almost unobservable, then the transfer function will
have a zero very near to a pole. In this case, it is pos-
sible to design a control signal based on state estimates.
However, it may be shown using the theory of fundamen-
tal design limitations [23] [24] that the resulting feedback
control system will necessarily have a very small stability
margin, and be sensitive to disturbances and parameter
variations. Often, the solution to this problem requires
the introduction of additional control inputs or additional
measurements.

To summarize, the property of controllability, although
important, is by no means sufficient to assure a well be-
haved control problem. One might expect this to be
true since the property is generically present, as is the
property of observability. The more relevant questions
are thus whether the system is almost uncontrollable,
almost unobservable, or possesses almost pole—zero can-
cellations.
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