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LUSZTIG’S a-FUNCTION FOR COXETER GROUPS OF

RANK 3

PEIPEI ZHOU

Abstract. We show that Lusztig’s a-function of a Coxeter group
is bounded if the rank of the Coxeter group is 3.

0. Introduction

In [L2] Lusztig defined a-function for a Coxeter group and showed
that a-function is bounded for affine Weyl groups. This boundness
plays an important role in studying cells of affine Weyl groups. In
[X], Xi showed that the a-function is bounded for Coxeter groups with
complete Coxeter graph. He also gave some interesting applications of
the boundness on cells of the Coxeter groups. In this paper, we show
that Lusztig’s a-function of a Coxeter group is bounded if the rank of
the Coxeter group is 3. The present work was motivated by a question
posed by Prof. Xi in his paper [X]. The author would like to thank
Prof. Xi for his help in dealing with the problems in writing the paper.

1. Preliminaries

1.1. We first recall some known facts, and refer to [KL, L2, L3,X]
for more details. Let (W,S) be a Coxeter group. Denote l the length
function and ≤ the Bruhat order of W . The neutral element of W will
be denoted by e.

Let q be an indeterminate. The Hecke algebra H of (W,S) is a free

A = Z[q
1
2 , q−

1
2 ]-module with a basis Tw, w ∈ W and the multiplication

relations are (Ts − q)(Ts + 1) = 0 if s is in S, TwTu = Twu if l(wu) =
l(w) + l(u).

For any w ∈ W set T̃w = q−
l(w)
2 Tw. For any w, u ∈ W , write

T̃wT̃u =
∑

v∈W

fw,u,vT̃v, fw,u,v ∈ A.

The following fact is known and implicit in [L2, 8.3], see also [X] 1.1.(a).

(a) For any w, u, v ∈ W , fw,u,v ∈ A is a polynomial in q
1
2 − q−

1
2 with

non-negative coefficients and fw,u,v = fu,v−1,w−1 = fv−1,w,u−1. Its degree
is less than or equal to min{l(w), l(u), l(v)}.

For any w, u, v in W , we shall regard fw,u,v as a polynomial in ξ =

q
1
2 − q−

1
2 . The following fact is due to Lusztig [L3, 1.1 (c)].

1

http://arxiv.org/abs/1107.1995v1


2 PEIPEI ZHOU

(b) For any w, u, v in W we have fw,u,v = fu−1,w−1,v−1 .

We shall need the following facts.
(c) Let (W,S) be a Coxeter group and I is a subset of S. The following
conditions are equivalent.

(1) The subgroup WI of W generated by I is finite.
(2) There exists an element w of W such that sw ≤ w for all s in I.
(3) There exists an element w of W such that w ≤ ws for all s in I.

As usual, we set L(w) = {s ∈ S | sw ≤ w} and R(w) = {s ∈ S |ws ≤
w} for any w ∈ W .

(d) Let w be in W and I is a subset of L(w) (resp. R(w)). Then
l(wIw) + l(wI) = l(w) (resp. l(wwI) + l(wI) = l(w)), here wI is the
longest element of WI .

1.2. For any y, w ∈ W , let Py,w be the Kazhdan-Lusztig polyno-

mial. Then all the elements Cw = q−
l(w)
2

∑
y≤w Py,wTy, w ∈ W , form a

Kazhdan-Lusztig basis ofH . It is known that Py,w = µ(y, w)q
1
2
(l(w)−l(y)−1)

+lower degree terms if y < w and Pw,w = 1.
For any w, u in W , Write

CwCu =
∑

v∈W

hw,u,vCv, hw,u,v ∈ A.

Following [L2], for any v ∈ W we define

a(v) = max{i ∈ N | i = deghw,u,v, w, u ∈ W},

here the degree is in terms of q
1
2 . Since hw,u,v is a polynomial in q

1
2+q−

1
2 ,

we have a(v) ≥ 0.
We are interested in the bound of the function a : W → N. Clearly,

a is bounded if W is finite. The following fact is known (see [L3]).

The a-function is bounded by a constant c if and only if degfw,u,v ≤ c
for any w, u, v ∈ W .

Lusztig showed that for an affineWeyl group the a-function is bounded
by the length of the longest element of the corresponding Weyl group.
This fact is important in studying cells in affine Weyl groups. One
consequence is that an affine Weyl group has a lowest two-sided cell
[S1]. In general, Xi showed that the lowest two-sided cells exists for a
Coxeter group with bounded a-function. (see [X,1.5])

2. Coxeter groups of rank 3

In this section (W,S) is a infinite Coxeter group of rank 3. Let
S = {r, s, t}, we shall assume that tr = rt. By 1.1.(c), for w ∈ W ,
both R(w) and L(w) contain at most 2 elements. Let |R(w)| (resp.
|L(w)|) denote the number of elements in the set R(w) (resp. L(w)).
Let msr (resp. mst) denote the order of sr (resp. st). Let wsr (resp.
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wst) denote the longest element in the parabolic subgroup generated
by s, r (resp. s, t).

Theorem 2.1. Let (W,S) be a Coxeter group of rank 3 and assume
that rt = tr, S = {r, s, t}. Then Lusztig’s a-function on W is bounded
by the length of the longest element of certain finite parabolic sub-
groups of W in the following two cases:

(a) msr ≥ 7 and mst = 3.
(b) msr ≥ 5 and mst ≥ 4.
The remaining of this paper is devoted to a proof of the theorem.

In section 3, we will deal with the case (a).
In section 4, we will deal with the case (b).

The notation, if w = (w1)(w2) · · · (wi), means w = w1w2 · · ·wi and
l(w) = l(w1) + l(w2) + · · ·+ l(wi).

The strong exchange condition will be need frequently in the proof,
so we recall it.

Strong exchange condition. Let (W,S) be a Coxeter group. Let
w = s1 · · · sr(si ∈ S), not necessarily a reduced expression. Suppose
t ∈

⋃
w∈W wSw−1, satisfies l(wt) < l(w). Then there is an index i

for which wt = s1 · · · ŝi · · · sr (omitting si). If the expression for w is
reduced, then i is unique.

3. The case msr ≥ 7 and mst = 3

Since mst = 3, msr ≥ 7, wst = sts = tst and l(wsr) ≥ 7.

Lemma 3.1. There is no element w in W such that w = (w1)(st) =
(w2)(sr) .

Proof. We use induction on l(w). When l(w) = 0, 1, 2, 3, the lemma
is clear. Now assume that the lemma is true for u with l(u) ≤ l(w)−1.
Since r, t ∈ R(w), by 1.1.(d), w = (w3)(rt) for some w3 ∈ W . So
we get w1s = w3r, w2s = w3t. By 1.1.(d), w1s = w3r = (w4)(wsr)
for some w4 ∈ W , w2s = w3t = (w5)(wst) for some w5 ∈ W . Since
msr ≥ 7, we have w̃4 ∈ W , such that w3 = (w4)(wsrr) = (w̃4)(srsrs) =
(w5)(wstt) = (w5)(ts). Then there exists w6, w7 ∈ W , such that w7 =
(w̃4)(sr) = (w6)(st). By induction hypothesis, w7 does not exist, hence
w does not exist. The lemma is proved.

Corollary 3.2. There is no element w inW such that w = (w1)(srs) =
(w2)(t) .

Proof.Assume that w exists, by 1.1.(d), there exists w3 ∈ W , such
that w = (w3)(wst), hence (w1)(sr) = (w3)(st), which contradicts
Lemma 3.1.

Corollary 3.3. There is no element w inW such that w = (w1)(srsr) =
(w2)(t) .
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Proof. Assume that w exists, there exists w3 ∈ W , such that w =
(w3)(tr), hence (w1)(srs) = (w3)(t), which contradicts Corollary 3.2.

Lemma 3.4. There is no element w in W such that w = (w1)(ts) =
(w2)(r) .

Proof. Assume that w exists, there exists w3 ∈ W , such that w =
(w3)(wsr), hence (w1)(t) = (w3)(wsrs), which contradicts Corollary 3.2.

Lemma 3.5. Let x, y be elements in W , and w be an element in the
parabolic subgroup Wsr generated by r, s. Assume that l(w) ≥ 5 and
r, s /∈ R(x) ∪ L(y). Then
(a) xwy = (x)(w)(y), i.e., l(xwy) = l(x) + l(w) + l(y).
(b) R(xwy) = R(wy).
(c) L(xwy) = L(xw).

Proof: It is clear that xw = (x)(w), and wy = (w)(y). Note that
(b) and (c) are equivalent. We use induction on l(y) to prove (a) and
(b). The case l(y) = 0 is clear. If l(y) = 1, then y = t. By Corollaries
3.2 and 3.3, we see xwt = (x)(w)(t). If R(wt) contains two elements,
we must have R(xwt) = R(wt). Now assume that R(wt) = {t}. If
R(xwt) 6= R(wt), R(xwt) = {r, t}, or {s, t}. If R(xwt) = {r, t}, we
have r ∈ R(xw) = R(w), which contradicts that R(wt) = {t}. If
R(xwt) = {s, t}, we have xwt = (u)(tst), for some u ∈ W . Then
xw = (u)(ts), so w = (w1)(srsrs) for some w1 ∈ Wsr. By Corollary
3.3, this is impossible. Hence R(xwt) = R(wt).

If l(y) = 2, then y = ts. By what we have proved that s /∈ R(xwt),
we see that xwts = (x)(w)(ts). If R(wts) contains two elements, we
must have R(xwts) = R(wts). Now assume that R(wts) = {s}. If
R(xwts) 6= R(wts), R(xwts) = {s, t}, or {s, r}. If R(xwts) = {s, t},
we have s ∈ R(xw) = R(w), which contradicts that R(wts) = {s}. If
R(xwts) = {s, r}, we have xwts = (u)(wsr), for some u ∈ W . Then
xwt = (u)(wsrs), since wsrs = (w1)(srsrsr) for some w1 ∈ Wsr, by
Corollary 3.3, this is impossible. Hence R(xwts) = R(wts).

Now assume that k ≥ 3. Let y = y1y2 · · · yk be a reduced expression
of y. The induction hypothesis says that R(xwy1 · · · yi) = R(wy1 · · · yi)
and l(xwy1 · · · yi) = l(x) + l(w) + i for i ≤ k − 1. We must have
yk /∈ R(xwy1y2 · · · yk−1), since wy = (w)(y), so xwy = (x)(w)(y).

Assume that |R(xwy1y2 · · · yk−1)| = 2. If R(xwy) contains one el-
ement, it must be yk, so R(xwy) = R(wy) = {yk}. When R(xwy)
contains two elements, if R(xwy1y2 · · · yk−1) = {r, s} or {t, s}, then
yk = t or r, and R(xwy) = R(wy) = {t, r}. If R(xwy1y2 · · · yk−1) =
{r, t}, then yk = s. When R(wy) contains two elements, we must
have R(xwy) = R(wy). When R(wy) = {s}, we need to show that
R(xwy) = {s}. Otherwise R(xwy) = {s, r}, or {s, t}. By Lemma 3.4,
r /∈ R(xwy), then R(xwy) = {s, t}. By 1.1.(d), we have xwy1 · · · yk =
(u1)(sts), for some u1 ∈ W . Then xwy1 · · · yk−2yk−1 = (u1)(st).

We discuss it in the following three conditions:
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(1) {yk−2, yk−1} = {t, r}, under this condition, xwy1 · · · yk−3r =
(u1)(s). Hence r, s ∈ R(wy1 · · · y3r). By 1.1.(d), there exists u2 ∈ W
and wy1 · · · yk−3r = (u2)(wsr). Hence R(wy1 · · · yk−3rts) = {s, t},
which contradicts to R(wy) = {s}.

(2){yk−2, yk−1} = {s, r}. This is impossible since under this condi-
tion, yk−1 = r, yk−2 = s, from the above, we have (xwy1 · · · yk3)(sr) =
(u1)(st), which contradicts Lemma 3.1.

(3){yk−2, yk−1} = {s, t}. Under this condition, it is easy to see that
R(wy) = {s, t}, which contradicts to R(wy) = {s}.

Next assume that |R(xwy1y2 · · · yk−1)| = 1, so R(xwy1y2 · · · yk−1)
= {yk−1}. If R(wy) contains two elements, we must have R(xwy) =
R(wy). If R(wy) contains one elements, we must have R(wy) = {yk}.
We need to prove that R(xwy) = {yk}. Assume that R(xwy) % R(wy).
When R(xwy) = {t, r}, it is easy to see that {yk−1, yk} = {t, r}, so
R(wy) = {t, r}, which contradicts to R(wy) = {yk}.

When R(xwy) = {t, s}, it is easy to see that yk−1 = t and yk = s (or
yk−1 = s and yk = t), then t ∈ R(wy1 · · · yk−2) (or s ∈ R(wy1 · · · yk−2)).
So R(wy) = {s, t}, which is a contradiction.

When R(xwy) = {s, r}, then {yk−1, yk} = {s, r}. By 1.1.(d), there
exists u1 ∈ W , such that xwy = (u1)(wsr), write wy1 · · · yk = wy1 · · · yi
sa(rs)brc, here i is minimal, such that R(y1 · · · yi) = {yi} = {t}, a, c = 0
or 1, b ≥ 0.

Obviously a+2b+c < msr. Write usr = wsrr
c(rs)−bsa, then l(usr) >

0, xwy1 · · · yi = (u1)(usr). Assume that R(wy1 · · · yi) = R(y1 · · · yi) =
{yi}, then i = 0. So y ∈ Wsr, Wsr is the parabolic subgroup generated
by s, r. Then it contradicts to s, r /∈ L(y).

Next assume that R(wy1 · · · yi) % {yi}.
Only consider a+2b+ c ≤ msr − 2, since when a+2b+ c = msr − 1,

R(wy) = {s, r}, which contradicts the assumption.
By Corollary 3.2, if R(usr) = {s}, then l(usr) ≤ 2, we must have

usr = rs. Hence R(wy1 · · · yi) = {t, s}. If i is large enough, suppose
i ≥ 6, we will show this is impossible.

By the assumption and easy calculation, we get yi = t, yi−1 = s,
yi−2 = r, yi−3 = s. Next we shall deal with the following two conditions:

1) yi−4 = t, then yi−5 = r. Hence R(wy1 · · · yi−5) = {s, r}. By
1.1.(d), there exists u2 ∈ W , such that xwy1 · · · yi−5tsrst = (xu2)
(wsrtsrst) = (u1)(rs). By what we have proved already and easy cal-
culation, we see that there exists u3 ∈ W , such that (xu2)(wsrs)(t) =
(u3)(srsr), which contradicts Corollary 3.3.

2) yi−4 = r, and yi−5 = s, since yi−5 = t is as same as condition
1). Hence t ∈ R((xwy1 · · · yi−6)(srsr)). But by Corollary 3.3, this is a
contradiction .

When i ≤ 5, there are two cases which satisfy the assumption.
1) i = 2, y1 = t, y2 = s, however it contradicts to fact that yi = t,

since i = 2.



6 PEIPEI ZHOU

2) i = 5, y5 = t, y4 = s, y3 = r, y2 = s, y1 = t, and s ∈ R(w). We will
show that xwtsrst = (u1)(rs) is impossible. Otherwise, (xws)(tsrst) =
(u1)(r), by 1.1.(d), there is u3 ∈ W , such that (xws)(tsrs) = (u3)(r),
by 1.1.(d) there exists u4 ∈ W , such that (xws)(t) = (u4)(rsrs), which
contradicts Corollary 3.3.

If R(usr) = {r}, then l(usr) ≤ 3, R(wy1 · · · yi) = {r, t}. Hence
r, s ∈ R(wy1 · · · yi−1). By 1.1.(d), there exists u5 ∈ W , such that
wy1 · · · yi−1 = (u5)(wsr). Then we get the formula (x)(u5)(wsr)(t) =
(u1)(usr), here usr = sr or usr = rsr, however the formula contradicts
Lemma 3.1.

Until now, we see that the lemma is proved.

Recall that T̃xT̃y =
∑

z∈W fx,y,zT̃z. Here fx,y,z is a polynomial in ξ,

where ξ = (q
1
2 − q−

1
2 ).

Definition: deg T̃xT̃y = maxz∈W { deg fx,y,z}.

Lemma 3.6. Let x, y ∈ W . Assume that s, t /∈ R(x) ∪ L(y), then deg
fxsts,y,z ≤ 1 for all z in W .

Proof. Write y = y1 · · · yk, reduced decomposition. Let w = sts =
tst. There are two cases to consider.

Case 1: There is no x′ ∈ W , such that x = (x′)(wsrs), we claim that
R(xwu) = R(wu), with L(u) = {r}, hence the corollary, l(xstsy) =
l(x) + 3 + l(y). Hence deg fxsts,y,z = 0, for all z ∈ W .

We use induction on l(y) to prove the claim. When l(y) = 0, 1, 2, it is
easy to see that R(xwy) = R(wy). When k ≥ 3, now assume that the
claim is true for u ∈ W , with l(u) < k, t, s /∈ L(u). From the proof of
Lemma 3.5, we only need to prove the lemma when R(wy1 · · · yk−1) =
{yk−1} and R(xwy) = {s, r}. It is easy to check that R(wy) ⊂ R(xwy),
when R(wy) contains two elements, we must have R(wy) = R(xwy),
nothing needs to prove. Assume that R(wy) $ R(xwy). It is easy to
check that {yk−1, yk} = {s, r}. Write xwy = (u1)(wsr) by 1.1.(d), u1 ∈
W . Write wy = wy1 · · · yis

a(rs)brc, 0 ≤ i ≤ k − 2, i minimal such that
R(y1 · · · yi) = {yi} = {t}, a+ 2b+ c < msr, then we have xwy1 · · · yi =
(u1)(usr), usr = wsrr

c(rs)−b . From the proof of Lemma 3.5, we only
have to check the case R(wy1 · · · yi) = {s, t} and i ≤ 5, usr = rs. By
calculation only i = 3, y1 = r, y2 = s, y3 = t satisfies the assumption
R(wy1y2y3) = {s, t} and R(y1y2y3) = {t}. However, xwrst = (u1)(rs)
is impossible. Otherwise, we will get (x)(t) = (u2)(srsr), u2 ∈ W ,
which contradicts Corollary 3.3. Hence the claim.

Case 2: When there exists x′ ∈ W , such that x = (x′)(wsrs), xsts =
(x′)(wsr)(ts).We claim that deg T̃xstsT̃y = 1. If l(xstsy) = l(x)+3+l(y),

then nothing needs to prove. We calculate T̃wsrtsT̃y firstly. Assume
that there is an i < k, which is minimal, such that l(wsrtsy1 · · · yi) <
l(wsrtsy1 · · · yi−1). By strong exchange condition, and l(stsy) = 3+l(y),
we get rsy1 · · · yi−1 = sy1 · · · yi−1yi, l(rsy1 · · · yi−1) = i+ 1. By 1.1.(d),
there exists u1 ∈ W , such that sy1 · · · yi−1yi = (wsr)(u1). Since l(sy) =
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l(y) + 1, rsy1 · · · yi−1 = sy1 · · · yi−1yi, hence rsy1 · · · yi−1yi+1 · · · yk is a
reduced decomposition, and so is sy1 · · · yi−1yi+1 · · · yk.

T̃wsrtsT̃y = T̃wsrtsT̃y1···yi−1
T̃yiT̃yi+1···yk

= ξT̃wsrrtT̃sy1···yi−1yiT̃yi+1···yk + T̃wsrrtT̃sy1···yi−1
T̃yi+1···yk

= ξT̃wsrrtT̃sy + T̃wsrrtT̃sy1···yi−1yi+1···yk

Because sy1 · · · yi−1yi = (wsr)(u1), sy = (wsr)(u1)(yi+1 · · · yk), sy1 · · · yi−1

yi+1 · · · yk = (rwsr)(u1)(yi+1 · · · yk).

Since l(wsr), l(rwsr) ≥ 5 and R(wsrrt) = {t}, T̃wsrrtT̃sy = T̃wsrrtsy,
by Lemma 3.5.

By Lemma 3.5, T̃wsrrtT̃sy1···yi−1yi+1···yk = T̃wsrrtsy1···yi−1yi+1···yk .

Since l(wsrr) ≥ 6, then by Lemma 3.5, T̃x′T̃wsrrtsy = T̃x′wsrrtsy,

T̃x′T̃wsrrtsy1···yi−1yi+1···yk = T̃x′wsrrtsy1···yi−1yi+1···yk .
Hence the lemma is proved.

Lemma 3.7. Let x, y ∈ W . Assume that t, r /∈ R(x) ∪ L(y), then deg
fxtr,y,z ≤ 2 for all z in W .

Proof. There are four cases:
Case 1: When there is no x′ ∈ W , such that x = (x′)(wsrr), or

x = (x′)(wstt), or x = (x′)(wsrsr). Claim that R(xtru) = R(tru), with
t, r /∈ L(u), u ∈ W . Then we have the corollary, xtry = (x)(tr)(y).
Hence deg fxtr,y,z = 0. We use induction on l(y) to prove the claim.
When l(y) = 0, 1, 2, it is easy to see the claim is true. When l(y) ≥ 3,
write y = y1y2 · · · yk, reduced decomposition. Now assume that the
claim is true for u with l(u) < k, r, t /∈ L(u). By the proof of Lemma
3.5, we only have to prove that when R(wy1 · · · yk−1) = {yk−1} and
R(xtry) = {s, r}, R(try) = {s, r}. Assume that R(try) $ R(xwy).
It is easy to see that {yk−1, yk} = {s, r}. Write xtry = (u1)(wsr) by
1.1.(d), for u1 ∈ W . Write try = try1 · · · yis

a(rs)brc, 0 ≤ i ≤ k − 2, i
minimal such that R(y1 · · · yi) = {yi} = {t}, a+ 2b+ c < msr, then we
have xtry1 · · · yi = (u1)(usr), where usr = wsrr

c(rs)−b . From the proof
of Lemma 3.5, we only have to consider the case R(try1 · · · yi) = {s, t}
and i ≤ 5, usr = rs.

If i = 5, y5 = t, y4 = s, y3 = r, y2 = s,contradicts to y1 = s, and
y1y2 · · · y5 is a reduced decomposition.

If i = 4, then y4 = t, y3 = s, y2 = r, y1 = s, this contradicts to the
assumption R(try1 · · · yi) = {s, t}.

If i = 3, then y3 = t, y2 = s, which contradicts to sy2 · · · yi is a
reduced decomposition.

It is easy to see that i = 1 is impossible.
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If i = 2, y2 = t, y1 = s, which satisfies R(trst) = {s, t} and
R(st) = {t}. That is y3 · · · yk = srwsr, ty1 · · · yk = rstrwsr. How-
ever the equality xtrst = (u1)(rs) is failed to hold, since there is no
x′ ∈ W , such that x = (x′)(wsrsr).

Hence the claim.
Case 2: When x = (x′)(wsrr), then xtr = (x′)(wsr)(t). If l(xtry) =

l(x)+2+ l(y), then nothing needs to prove. First we calculate T̃wsrtT̃y.
Assume that there is an i < k, which is minimal, such that l(wsrty1 · · · yi)
< l(wsrty1 · · · yi−1). By strong exchange condition, and l(try) = 2 +
l(y), we get sty1 · · · yi−1 = ty1 · · · yi−1yi, l(sty1 · · · yi−1) = i+ 1.

Since l(try) = l(y) + 2 and sty1 · · · yi−1 = ty1 · · · yi−1yi, it is easy to
see sty1 · · · yi−1yi+1 · · · yk and ty1 · · · yi−1yi+1 · · · yk are reduced decom-

positions. Let ξ = (q
1
2 − q−

1
2 ).

T̃wsrtT̃y = T̃wsrsT̃sty1···yi−1
T̃yi T̃yi+1···yk

= ξT̃wsrsT̃ty + T̃wsrsT̃ty1···yi−1yi+1···yk

We have showed that L(ty) = {s, t}. If there exists u1 ∈ W , such that
ty = (st)(wsr)(u1), then

ξT̃wsrsT̃ty = ξT̃wsrsT̃(srt)(rwsr)(u1)

= ξ2T̃wsr
T̃(t)(rwsr)(u1) + ξT̃wsrrT̃(t)(rwsr)(u1)

Since wsrtrwsr = (wsr)(t)(rwsr), wsrrtrwsr = (wsrr)(t)(rwsr), we have

ξ2T̃wsr
T̃(t)(rwsr)(u1) + ξT̃wsrrT̃(t)(rwsr)(u1)

= ξ2T̃(wsr)(t)(rwsr)(u1) + ξT̃(wsrr)(t)(rwsr)(u1)

Meanwhile, since ty = sty1 · · · yi−1yi+1 · · · yk and ty = (st)(wsr)(u1), we
have

ty1 · · · yi−1yi+1 · · · yk = (t)(wsr)(u1)

Hence

T̃wsrsT̃ty1···yi−1yi+1···yk = T̃wsrsT̃(t)(wsr)(u1)

= ξT̃(wsrs)(t)(rwsr)(u1) + T̃(wsrsr)(t)(rwsr)(u1)

If there is no u1 ∈ W , such that ty = (st)(wsr)(u1), i.e, ty = (st)(u2)
and L(u2) = {s}, then ty1 · · · yi−1yi+1 · · · yk = (t)(u2).

ξT̃wsrsT̃ty + T̃wsrsT̃ty1···yi−1yi+1···yk = ξT̃wsrsty + T̃wsrsT̃tu2

By the assumption L(u2) = {s} and s /∈ L(tu2), it is easy too see that
wsrstu2 = (wsrs)(t)(u2). Hence

T̃wsrsT̃tu2 = T̃wsrstu2

By Lemma 3.5, in case 2, deg T̃xtrT̃y ≤ 2 .
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Case 3: When x = (x′)(wstt), then xtr = (x′)(wst)(r). If l(xtry) =
l(x) + 2 + l(y), then nothing needs to prove.

T̃xtrT̃y = T̃x′wstrT̃y

= T̃x′wst
T̃ry

We calculate this in the following two conditions:
Condition 1: R(x′) = L(ry) = {r}, here R(x′) = {r} and t /∈ L(ry),

since l(try) = l(y) + 2. By Lemma 3.6, we have deg fxtr,y,z ≤ 1.
Condition 2: L(r, y) = {s, r}. By 1.1.(d), there exists u1 ∈ W , such

that ry = (wsr)(u1).

T̃x′wst
T̃ry = T̃x′wst

T̃wsru1

= ξT̃x′wst
T̃swsru1 + T̃x′wstsT̃swsru1

Since then R(x′) = L(swsru1) = {r}, by Lemma 3.6, we have
deg ξT̃x′wst

T̃swsru1 ≤ 2.
As to the part T̃x′wstsT̃swsru1, s /∈ R(x′wsts), then R(x′wsts) = {t} or

{r, t}. In the first case, it is easy to check that x′stswsr = (x′)(st)(swsr),
then by Lemma 3.5, x′stswsru1 = (x′)(st)(swsr)(u1). Hence

T̃x′wstsT̃swsru1 = T̃x′stswsru1

In the second case, by 1.1.(d), there exists x′′ ∈ W , such that x′s =
(x′′)(wsr). Then

T̃x′wstsT̃swsru1 = T̃x′′wsrtT̃swsru1

= ξT̃x′′wsrtT̃rswsru1 + T̃x′′wsrrtT̃rswsru1

= ξT̃x′′wsrtrswsru1 + T̃x′′wsrrtrswsru1

The last equality follows from Lemma 3.5.
Hence in Case 3, we have deg fxtr,y,z ≤ 2, for allz ∈ W .
Case 4: When x = (x′)(wsrsr), then xtr = (x′)(wsrs)(t). If l(xtry) =

l(x)+2+ l(y), then nothing needs to prove. We first calculate T̃wsrstT̃y.
Assume that there is an i < k, which is minimal, such that l(wsrsty1 · · · yi) <
l(wsrsty1 · · · yi−1). By strong exchange condition, and l(try) = 2+ l(y),
we get srsty1 · · · yi−1 = ty1 · · · yi−1yi, or rsrty1 · · · yi−1 = ty1 · · · yi−1yi.
l(ty1 · · · yi−1yi) = i + 1. Since l(srty1 · · · yi−1) = i + 2, then r ∈
L(srty1 · · · yi−1), by 1.1.(d), there exists u1 ∈ W ,s.t srty1 · · · yi−1 =
(wsr)(u1), then (t)(y1 · · · yi−1) = (rswsr)(u1), which contradicts Corol-
lary 3.2.Hence rsrty1 · · · yi−1 = ty1 · · · yi−1yi is impossible.

Then we get srsty1 · · · yi−1 = ty1 · · · yi−1yi. By the proof of Case 1
in this Lemma, we see that in fact ty1 · · · yi = (wst)(swsr). By Lemma
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3.5,

T̃x′wsrstT̃y = T̃x′wsrsT̃ty1···yi T̃yi+1···yk

= T̃x′wsr
T̃(t)(wsr)T̃yi+1···yk

= ξT̃x′wsr
T̃trwsryi+1···yk + T̃x′wsrrT̃trwsryi+1···yk

= ξT̃x′wsrrsty + T̃(x′)(wsrr)(t)(rwsr)(yi+1···yk)

Hence in Case 4, deg T̃xtrT̃y = 1.
In a word, deg fxtr,y,z ≤ 2, for all z ∈ W .

Corollary 3.8. Let x, y ∈ W . Assume that R(x) = {r}, L(y) = {t},
then deg fxwst,wsry,z ≤ 2 for all z in W .

Proof. By the proof of Condition 2 in Case 3 of Lemma 3.7.

Lemma 3.9. Let x, y ∈ W . Assume that R(x) = {s}, L(y) = {t},
then deg fxtr,wsry,z ≤ 3 for all z in W .

Proof. T̃xtrT̃wsry = ξT̃xtrT̃r(wsr)(y) + T̃xtT̃(rwsr)(y). Obviously, r /∈

R(xt). Since R(x) = L(rwsry) = {s}, then deg ξT̃xtrT̃r(wsr)(y) ≤ 3,
by Lemma 3.7.

Next consider the part T̃xtT̃(rwsr)(y). We have r /∈ R(xt), since R(x) =

{s}. If R(xt) = {t}, then T̃xtT̃(rwsr)(y) = T̃xtrwsry, by lemma 3.5. If
R(xt) = {s, t}, by 1.1.(d), there exists x′ ∈ W , such that xt = (x′)(wst),
then

T̃xtT̃(rwsr)(y) = T̃x′wst
T̃rwsry

= ξT̃x′wst
T̃srwsry + T̃x′stT̃srwsry

By Lemma 3.6, deg ξT̃x′wst
T̃(srwsr)(y) ≤ 2. As for the part T̃x′stT̃srwsry,

s /∈ R(x′st), since x′sts = (x′)(sts), then there are two possibilities.

When R(x′st) = {t}, by Lemma 3.5, T̃x′stT̃srwsry = T̃x′stsrwsry.
When R(x′st) = {r, t}, by 1.1.(d), there exists x′′ ∈ W , such that

x′st = (x′′)(wsr)(t).

T̃x′stT̃(srwsr)(y) = T̃x′′wsrtT̃srwsry

= ξT̃x′′wsrrtT̃srwsry + T̃x′′wsrrT̃trsrwsry

Since R(x′′wsrrt) = {t}, by Lemma 3.5,

ξT̃x′′wsrrtT̃srwsry = ξT̃x′′wsrrtsrwsry

It is easy to see r /∈ L((t)(rsrwsr)(y)), otherwise it contradicts to the
fact L(y) = {t}. When L(trsrwsry) = {t}, by Lemma 3.5,

T̃x′′wsrrT̃trsrwsry = T̃x′′wsrrtrsrwsry
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When L(trsrwsry) = {s, t}, meanwhile msr = 7 and there exists y′ ∈
W , such that y = (t)(rwsr)(y

′). Then trsrwsry
′ = tstrstswsry

′′,

T̃x′′wsrrT̃(trsrwsr)(y) = T̃x′′wsrrT̃stsrstswsry′′

= ξT̃x′′wsrrT̃tsrstwsry′′ + T̃x′′wsrrsT̃tsrstwsry′′

Since L(tsrstwsry
′′) = {t}, by Lemma 3.5,

ξT̃x′′wsrrT̃tsrstwsry′′+T̃x′′wsrrsT̃tsrstwsry′′ = ξT̃x′′wsrrtsrstwsry′′+T̃x′′wsrrstsrstwsry′′

In a word, deg fxtr,wsry,z ≤ 3, for all z in W .

Lemma 3.10. Let x, y ∈ W . Assume that R(x) = {s}, L(y) = {r},
then deg fxtr,wsty,z ≤ 4 for all z in W .

Proof. T̃xtrT̃(tst)(y) = ξT̃xtrT̃sty + T̃xrT̃sty. Obviously, t, r /∈ L(sty).

R(x) = L(sty) = {s}, deg ξT̃xtrT̃sty ≤ 3, by Lemma 3.7. As to part

T̃xrT̃sty, since L(y) = {r}, write y = ry1, L(y1) = {s}. T̃xrT̃sty =

T̃xrT̃stry1.
When R(xr) = {r}, it is easy to check that t /∈ R(xrs).

1) R(xrs) = {s}, by Lemma 3.7, deg T̃xrT̃sty ≤ 2.

2) R(xrs) = {s, r}, by Lemma 3.9, deg T̃xrT̃sty ≤ 3
When R(xr) = {s, r}, there exists x′ ∈ W , such that xr = (x′)(wsr),

T̃xrT̃sty = T̃x′wsr
T̃stry1 = ξT̃x′wsr

T̃try1 + T̃x′wsrsT̃try1

By Lemma 3.9, deg ξT̃x′wsr
T̃try1 ≤ 4.

T̃x′wsrsT̃try1 = ξT̃x′wsrsrT̃try1 + T̃x′wsrsrT̃ty1

Since R(x′wsrsr) = {s} = L(y1), deg ξT̃x′wsrsrT̃try1 ≤ 3, by Lemma 3.7.

Finally we consider the part T̃x′wsrsrT̃ty1 . Obviously, r /∈ L(ty1).

If L(ty1) = {t}, by Lemma 3.5, T̃x′wsrsrT̃ty1 = T̃x′wsrsrty1.
If L(ty1) = {s, t}, by 1.1.(d), there exists y2 ∈ W , L(y2) = {r}, such

that ty1 = (wst)(y2).

T̃x′wsrsrT̃ty1 = T̃x′wsrsrT̃wsty2 = ξT̃x′wsrsrT̃tsy2 + T̃x′wsrsrsT̃tsy2

Obviously s /∈ L(tsy2). If L(tsy2) = {t}, then it is easy to check
that L(sy2) = {s}. By Lemma 3.5, ξT̃x′wsrsrT̃tsy2 = ξT̃x′wsrsrtsy2 . Since

R(x′wsrsrsr) = {s}, T̃x′wsrsrsT̃tsy2 = T̃x′wsrsrsrT̃trsy2 then by Lemma 3.7,

deg T̃x′wsrsrsT̃tsy2 ≤ 2. If L(tsy2) = {t, r}, by 1.1.(d), there exists y3 ∈

W , such that sy2 = (wsr)(y3). Since ξT̃x′wsrsrT̃tsy2 = ξT̃x′wsrsrtT̃wsry3 ,

and R(x′wsrsrt) = {t}, by Lemma 3.5, ξT̃x′wsrsrT̃tsy2 = ξT̃x′wsrsrtsy2 .

Since T̃x′wsrsrsT̃tsy2 = T̃x′wsrsrsT̃twsry3 = T̃(x′wsrsrsr)(rt)T̃wsry3, by Lemma

3.9, deg T̃x′wsrsrsT̃tsy2 ≤ 3.
Hence we can conclude that deg fxtr,wsty,z ≤ 4 for all z in W .

Let P be the parabolic subgroup of W generated by s and r.

Lemma 3.11. Assume that w, u are elements of P . Then deg fw,u,v ≤
l(v) for v ∈ P and deg fw,u,v = 0 if v /∈ P .
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Proof. Refer to [X].

Lemma 3.12. Let x, y ∈ W . Let x1 (resp. y1)be the element in the
coset xP (resp. Py) with minimal length. Let w, u ∈ P be such that
x = x1w, y = uy1. When l(w), l(u) ≥ 1 and l(w) + l(u) ≥ 3, then deg
fx,y,z ≤ msr for all z in W .

Proof. We use induction on min {l(x), l(y)}. When min {l(x), l(y)} ≤
msr, the lemma is clear. Next assume that k > msr. By the assump-
tion, we have

T̃xT̃y =
∑

v∈P

fw,u,vT̃x1vT̃y1 .

By Lemma 3.11, degfw,u,v ≤ l(v) and v ∈ P if fw,u,v 6= 0. If l(v) ≥ 5,

by Lemma 3.5, l(x1vy1) = l(x1v) + l(y1). Hence T̃x1wT̃y1 = T̃x1wy1.
If l(v) = 0
R(x1) = L(y1) = {t}. Write x1 = (x2)(t), y1 = (t)(y2), here R(x2) =

L(y2) = {s}.

T̃x1 T̃y1 = T̃x2tT̃ty2 = ξT̃x2tT̃y2 + T̃x2 T̃y2

Write x2 = x3s, y2 = sy3, then it is easy to check that R(x3) = L(y3) =
{r} . Hence, by Lemma 3.6,

ξT̃x2tT̃y2 = ξT̃x3stsT̃y3

deg ξT̃x3stsT̃y3 ≤ 2. T̃x2T̃y2 = T̃x3sT̃sy3, by induction hypotheses, deg

T̃x2T̃y2 ≤ msr. Hence deg T̃x1 T̃y1 ≤ msr.
Write x1 = x2rst, y1 = tsry2, since R(x1) = L(y1) = {t}. It is

to check that R(x2rs) = L(sry2) = {s}, R(x2r) = L(ry2) = {r},
R(x2) = L(y2) = {s}.

If l(v) = 1
1) v = r.

T̃x1rT̃y1 = T̃x2rstrT̃tsry2 = ξT̃x2rstrT̃sry2 + T̃x2rsrT̃sry2

By lemma 3.7, deg ξT̃x2rstrT̃sry2 ≤ 3. Since ξT̃x2rsrT̃sry2 = T̃x2rsrT̃rsry2 −

T̃x2rsT̃sry2.Here l(x1) = l(x2)+3, l(y1) = l(y2)+3, and l(x1) ≤ l(x)−1,

l(y1) ≤ l(y)−1, hence we can use induction hypotheses to ξT̃x2rsrT̃sry2 ,
and the lemma is true then.

2) v = s. It is easy to check that R(x1s) = {s, t}, by 1.1.(d), write
x1s = (x3)(wst), x3 = x2r, R(x3) = {r}.

T̃x1sT̃y1 = T̃x3wst
T̃tsry2

= ξT̃x3tstT̃sry2 + T̃x3tsT̃sry2

= ξ2T̃x3stsT̃ry2 + ξT̃x3stT̃ry2 + ξT̃x3tsT̃ry2 + T̃x3tT̃ry2

Since R(x3) = L(ry2) = {r}, by Lemma 3.6, deg ξ2T̃x3stsT̃ry2 ≤ 3.

Since R(x2rs) = L(sry2) = {s}, ξT̃x3stT̃ry2 = ξT̃x2rstT̃ry2 = ξT̃x2rstrT̃y2 .

Since R(x2rs) = L(y2) = {s}, by Lemma 3.7, deg ξT̃x3stT̃ry2 ≤ 3. Since
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ξT̃x3tsT̃ry2 = ξT̃x2rtT̃sry2, R(x2) = L(sry2) = {s}, then by Lemma 3.7,

deg ξT̃x3tsT̃ry2 ≤ 3.

As for the part T̃x3tT̃ry2, ξT̃x3tT̃ry2 = ξT̃x2rtT̃ry2 = T̃x2rtT̃try2− T̃x2rT̃ry2

Apply induction hypotheses, we see that deg T̃x2rT̃ry2 ≤ msr. Then we
deal with the following,

T̃x2rtT̃ry2 = ξT̃x2rtT̃y2 + T̃x2tT̃y2

By Lemma 3.7, we have deg ξ2T̃x2rtT̃y2 ≤ 4.

Finally, claim that deg T̃x2tT̃y2 ≤ msr − 1, i.e, deg ξT̃x2tT̃y2 ≤ msr,
when R(x2) = L(y2) = {s}. (Notice The claim here will be used in the
proof of Lemma 3.13. ) Choose suitable x′, y′ ∈ W , R(x′) = L(y′) =
{r}.

1) x2t = (x′)(wst), y2 = sty′

ξT̃x2tT̃y2 = ξT̃x′wst
T̃sty′

= ξ2T̃x′wst
T̃ty′ + ξT̃x′stT̃ty′

= ξ3T̃x′wst
T̃y′ + ξ2T̃x′tsT̃y′ + ξ2T̃x′stT̃y′ + ξT̃x′sT̃y′

By Lemma 3.6, deg ξ3T̃x′wst
T̃y′ ≤ 4. ξ2T̃x′tsT̃y′ = ξ2T̃x′tT̃sy′ ,since t /∈

L(sy′),s ∈ Lsy′, by Lemma 3.6, or Lemma 3.9, deg ξ2T̃x′tsT̃y′ ≤ 5. As

the same reason, deg ξ2T̃x′stT̃y′ ≤ 5. then apply induction hypotheses

to the left part ξT̃x′sT̃y′ , which is equal to T̃x′sT̃sy′ − T̃x′T̃y′ .
2) x2t = (x′)(wst), y2 = sy′

ξT̃x2tT̃y2 = ξT̃x′wst
T̃sy′

= ξ2T̃x′wst
T̃y′ + ξT̃x′stT̃y′

= ξ2T̃x′wst
T̃y′ + ξT̃x′tT̃sy′

By Lemma 3.6, deg ξ2T̃x′wst
T̃y′ ≤ 3. By Lemma 3.7, deg ξT̃x′tT̃sy′ ≤ 2.

3) x2t = (x′)(st), y2 = sty′

ξT̃x2tT̃y2 = ξT̃x′stT̃sty′

= ξT̃x′wst
T̃ty′

= ξ2T̃x′wst
T̃y′ + ξT̃x′tsT̃y′

By Lemma 3.6, deg ξ2T̃x′wst
T̃y′ ≤ 3. ξT̃x′tsT̃y′ = ξT̃x′tT̃sy′, t /∈ L(sy′),

s ∈ L(sy′), by Lemma 3.7 or Lemma 3.9 deg ξT̃x′tsT̃y′ ≤ 4.
4) x2t = (x′)(st), y2 = sy′

ξT̃x2tT̃y2 = ξT̃x′stT̃sy′ = ξT̃x′stsT̃y′

By Lemma 3.6, deg ξT̃x2tT̃y2 ≤ 1.

Hence deg ξT̃x2tT̃y2 ≤ msr.
If l(v) = 2, v = sr or v = rs.

T̃x1srT̃y1 = T̃x2rstsT̃rtsry2

By Lemma 3.10, deg T̃x1srT̃y1 ≤ 4. As the same, deg T̃x1rsT̃y1 ≤ 4.
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If l(v) = 3
1) v = srs

T̃x1srsT̃y1 = T̃x2rstsrsT̃tsry2

= T̃x2rstsrT̃stsry2

= ξT̃x2rtsrT̃stsry2 + T̃x2rtsrT̃stry2

= ξT̃x2rtT̃srstsry2 + T̃x2rtT̃srstry2

= ξT̃x2rtsrsrT̃stsry2 + T̃x2rtT̃srstry2

It is easy to check L(srstsry2) = L(srstry2) = {s}, then by Lemma 3.7,
deg ξT̃x2rtT̃srstsry2 ≤ 3, deg T̃x2rtT̃srstry2 ≤ 2. Or since R(x2rtsrsr) =

L(ry2) = {r}, by Lemma 3.5, deg ξT̃x2rtT̃srstsry2 ≤ 2.
2) v = rsr

T̃x1rsrT̃y1 = T̃x2rstrsrT̃tsry2

= T̃x2rsrtsT̃trsry2

When R(x2rsrts) = {s, t}, then R(x2rsr) = {s, r}, by 1.1.(d), write
x2rsr = (x4)(wsr).

T̃x1rsrT̃y1 = T̃x2rsrtsT̃trsry2

= ξT̃x4wsrtsT̃rsry2 + T̃x4wsrstsT̃rsry2

Since R((x4)(wsrs)) = {r}, L(rsry2) = {r} or {s, r} , then by Lemma

3.6, or Corollary 3.8, deg ξT̃x4wsrtsT̃rsry2 ≤ 3.

When L(rsry2) = {r}, T̃x4wsrstsT̃rsry2 = T̃x4wsrstT̃srsry2, by Lemma
3.6, R(x4wsrsr) = {s}, L(srsry2) = {s}, or {s, r}, then by Lemma 3.7,
or 3.9, deg T̃x4wsrstT̃srsry2 ≤ 3.

When L(rsry2) = {s, r}, write rsry2 = (wsr)(y3), by Lemma 1.3.

T̃x4wsrstsT̃rsry2 = T̃(x4)(wsrs)(ts)T̃wsry3

= ξT̃(x4)(wsrs)(t)T̃wsry3 + T̃x4wsrstT̃swsry3

= ξ2T̃(x4)(wsrsr)(t)T̃wsry3 + ξT̃(x4)(wsrsr)(t)T̃(rwsr)(y3)

+ξT̃(x4)(wsrs)(t)T̃(rswsr)(y3) + T̃(x4)(wsrsr)(t)T̃(rswsr)(y3)

By Lemma 3.5, we see that deg T̃x4wsrstsT̃rsry2 = 2.
If l(v) = 4, v = srsr or rsrs. When v = srsr,

T̃x1srsrT̃y1 = T̃x2rstsrsT̃trsry2

It is easy to check that R(x2rstsrs) = L(sry2) = {s}, hence by Lemma

3.7, deg T̃x1srsrT̃y1 ≤ 2. As the same reason, deg T̃x1 T̃rsrsy1 ≤ 2.
Hence the lemma is proved.

Theorem 3.13. (W,S) is a Coxeter group, S = {r, s, t}, msr ≥
7, mst = 3, rt = tr. Then deg fx,y,z ≤ msr for all x, y, z in W .

Proof. ∀x, y ∈ W , we discuss it in the following 6 cases.
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1) R(x) = {t}
When L(y) = {t}, write x = (x0)(st), y = (ts)(y0), here R(x0) =

L(y0) = {r}, R(x0s) = L(sy0) = {s}.

T̃xT̃y = T̃x0stT̃tsy0 = ξT̃x0stT̃sy0 + T̃x0sT̃sy0

By the notice in the proof of Lemma 3.12, deg ξT̃x0stT̃sy0 ≤ msr. By

Lemma 3.12, deg T̃x0sT̃sy0 ≤ msr.
When L(y) = {s, t}, write y = (wst)(y1), L(y1) = {r}.

T̃xT̃y = T̃x0stT̃stsy1

= ξT̃x0sT̃tsty1 + T̃x0sT̃sty1

= ξ2T̃x0T̃stsy1 + ξT̃x0T̃tsy1 + ξT̃x0T̃sty1 + T̃x0 T̃ty1

By Lemma 3.6, deg ξ2T̃x0T̃stsy1 ≤ 3. By Lemma 3.7 or Lemma 3.9, deg

ξT̃x0T̃tsy1 ≤ 4, deg ξT̃x0T̃sty1 ≤ 4. As for T̃x0 T̃ty1 , it will be proved later.
When L(y) = {s, r}, by Lemma 3.6, it is done.
When L(y) = {t, r}, this will be proved in 2).
When L(y) = {s}, this will be proved in 3).
When L(y) = {r}, by Lemma 3.7, it is done.
2) R(x) = {t, r} ,write x = (x2)(tr).
When L(y) = {s}, by Lemma 3.7,deg fx,y,z ≤ 2, hence deg fx,y,z ≤

msr.
When L(y) = {s, t}, by Lemma 3.10, deg fx,y,z ≤ 4.
When L(y) = {s, r}, by Lemma 3.12, this is done.
When L(y) = {r}, write y = (rs)(y2), here L(sy2) = {s}. Hence by

Lemma 3.12, this is done. So is T̃x0 T̃ty1 in 1).
When L(y) = {r, t}, write y = (tr)(y4), L(y4) = {s}.

T̃xT̃y = T̃x2trT̃try4 = ξ2T̃x2trT̃y4 + ξT̃x2tT̃y4 + ξT̃x2rT̃y4 + T̃x2T̃y4

By Lemma 3.7, deg ξ2T̃x2trT̃y4 ≤ 4. By the proof of Lemma 3.12,deg

ξT̃x2tT̃y4 ≤ msr. Since ξT̃x2rT̃y4 + T̃x2T̃y4 = T̃x2rT̃ry4 , by Lemma 3.12

deg T̃x2rT̃ry4 ≤ msr.
When L(y) = {t}, write y = (ts)(y5), L(y5) = {r}, L(sy5) = {s}.

T̃xT̃y = T̃x2trT̃tsy5 = ξT̃x2trT̃sy5 + T̃x2rT̃sy5

By Lemma 3.7, deg ξT̃x2trT̃sy5 ≤ 3. By Lemma 3.12, deg T̃x2rT̃sy5 ≤
msr.

3) R(x) = {s}, we deal this in two conditions.
Condition 1: x = (x3)(ts), R(x3) = {r} .
When L(y) = {r}, or y = (sr)(y6), including L(y) = {s, r}, by

Lemma 3.12, they are done.
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When L(y) = {s, t}, and write y = (wst)(y7), L(y7) = {r}.

T̃xT̃y = T̃x3tsT̃stsy7

= ξT̃x3tT̃stsy7 + T̃x3tT̃tsy7

= ξ2T̃x3 T̃stsy7 + ξT̃x3T̃sty7 + ξT̃x3tT̃sy7 + T̃x3T̃sy7

By Lemma 3.6, deg ξ2T̃x3 T̃stsy7 ≤ 3. By Lemma 3.7, or Lemma 3.9,

deg ξT̃x3T̃sty7 ≤ 4. By Lemma 3.7, or Lemma 3.9, deg ξT̃x3tT̃sy7 ≤ 4.

By Lemma 3.12, deg T̃x3 T̃sy7 ≤ msr.
When L(y) = {s} and y = (st)(y8), L(y8) = {r}

T̃xT̃y = T̃x3tsT̃sty8

= ξT̃x3tT̃sty8 + T̃x3tT̃ty8

= ξT̃x3T̃tsty8 + ξT̃x3T̃ty8 + T̃x3T̃y8

By Lemma 3.6, deg ξT̃x3T̃tsty8 ≤ 2. ξT̃x3T̃ty8 = T̃x3tT̃ty8 − T̃x3T̃y8 Since
R(x3t) = L(ty8) = {t, r}, by what we have proved before, its degree
is less than msr. Since R(x3) = L(y8) = {r}, by Lemma 3.12, this is
done.

When L(y) = {t}, write y = (ts)(y9), L(y9) = {r}.

T̃xT̃y = T̃x3tsT̃tsy9

= T̃x3tstT̃sy9

= ξT̃x3stsT̃y9 + T̃x3sT̃ty9

By Lemma 3.6, deg ξT̃x3stsT̃y9 ≤ 2 By Lemma 3.7, or Lemma 3.9, deg

T̃x3sT̃ty9 ≤ 3.
When l(y) = {t, r}, which has been already done in 2).
Condition 2: When x = (x4)(srs), R(x4sr) = {r} It can be dealt

with Lemma 3.12. Hence it is done.
4) R(x) = {r}
It is easy to check that by Lemma 3.12, L(y) = {r}, {s, r}, {s, t},

{r, t}, and {s} are done.
When L(y) = {t}, it is done in 1).
5) R(x) = {s, r}
For all y ∈ W , this is done by Lemma 3.12.
6) R(x) = {s, t}
It is easy to check that by Lemma 3.12, L(y) = {r} and {s, r} are

done.
When L(y) = {t}, it is done in 1).
When L(y) = {r, t}, it is done in 2).
When L(y) = {s}, it is done in 3).
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When L(y) = {s, t}. Write x = (x5)(wst), y = (wst)(y10).

T̃xT̃y = T̃x5stsT̃stsy10

= ξ3T̃x5stsT̃y10 + ξ2T̃x5tsT̃y10 + ξ2T̃x5stT̃y10

+ξT̃x5sT̃y10 + ξT̃x5tT̃y10 + ξT̃x5stsT̃y10 + T̃x5T̃y10

By Lemma 3.6, deg ξ3T̃x5stsT̃y10 ≤ 4, deg ξT̃x5stsT̃y10 ≤ 2. By Lemma

3.7, or Lemma 3.9, deg ξ2T̃x5tsT̃y10 ≤ 5, deg ξ2T̃x5stT̃y10 ≤ 5. By Lemma

3.12, deg T̃x5T̃y10 ≤ msr.
Hence the theorem is proved.

4. The case msr ≥ 5 and mst ≥ 4

In this section (W,S) is a Coxeter group of rank 3, S = {s, t, r},
rt = tr. Firstly, we assume that msr ≥ 4 and mst ≥ 4.

Lemma 4.1. Keep the assumptions and notations above. There is no
element w in W such that w = (w1)(r) = (w2)(ts) .

Proof. We use induction on l(w). When l(w) = 0, 1, 2, 3, the lemma
is clear. Now assume that the lemma is true for u with l(u) ≤ l(w)−1.
Since r, s ∈ R(w). By 1.1.(d), w = (w3)(wsr) for some w3 ∈ W .
So we get w1 = (w3)(wsrr), w2t = (w3)(wsrs). Then r, t ∈ R(w2t).
By 1.1.(d), w2t = w3wsrs = (w4)(tr) for some w4 ∈ W . w2 = w4r,
(w̃3)(rs) = (w4)(t) for some w̃3 ∈ W , since msr ≥ 4. By calculation,
there exists w5 ∈ W , such that (w̃3)(rs) = (w4)(t) = (w5)(wst), by
Lemma 1.3. That is (w̃3)(r) = w̃5(tst), here w̃5tst = w5wsts. Then
there exists w6 ∈ W , such that (w̃5)(tst) = (w6)(tr), by Lemma 1.3.
Hence (w̃5)(ts) = (w6)(r), which by induction hypothesis is impossible.
The lemma is proved.

Corollary 4.2. There is no element w in W such that w = (w1)(t) =
(w2)(rs).

Proof. From the proof of Lemma 4.1.

Lemma 4.3. There is no element w in W such that
(a) w = (w1)(r) = (w2)(sts).
(b) w = (w1)(r) = (w2)(tst).
(c) w = (w1)(t) = (w2)(srs).
(d) w = (w1)(t) = (w2)(rsr).

Proof. We only have to deal with (a) and (b).
By Lemma 4.1, (a) is done.
We use induction on l(w). When l(w) = 0, 1, 2, 3, the lemma is clear.

Now assume that the lemma is true for u with l(u) ≤ l(w)− 1. Since
r, t ∈ R(w). By 1.1.(d), w = (w3)(tr) for some w3 ∈ W . So we get
w1 = (w3)(t), (w2)(ts) = (w3)(r), which contradicts Lemma 4.1. Hence
(b) is proved.
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Lemma 4.4. There is no element w in W such that w = (w1)(sr) =
(w2)(st).

Proof. We use induction on l(w). When l(w) = 0, 1, 2, 3, the lemma
is clear. Now assume that the lemma is true for u with l(u) ≤ l(w)−1.
Since r, t ∈ R(w). By 1.1.(d), w = (w3)(tr) for some w3 ∈ W . So
we get (w1)(s) = (w3)(t), (w2)(s) = (w3)(r). Then by 1.1.(d), w3 =
(w4)(wstt) for some w4 ∈ W . w3 = (w5)(wsrr) for some w4 ∈ W . Hence
(w̃4)(sts) = (w̃5)(srs), since msr, mst ≥ 4.Here (w̃4)(sts) = (w4)(wstt),
(w̃5)(srs) = (w5)(wsrr). By induction hypothesis, (w̃4)(st) = (w̃5)(sr)
is impossible , the lemma is proved.

The Notation, let {α, β} = {t, r}.

Lemma 4.5. Let x, y be elements in W , and w be an element in
the parabolic subgroup generated by the two simple reflections s, α,
l(w) ≥ 4 and s, α are not in R(x) ∪ L(y). Then
(a)l(xwy) = l(x) + l(w) + l(y).
(b)R(xwy) = R(wy).
(c)L(xwy) = L(xw).

Proof. It is clear that xw = (x)(w), and wy = (w)(y). Note that (b)
and (c) are equivalent. We use induction on l(y) to prove (a) and (b).

When l(y) = 0, since l(w) ≥ 4, by Lemma 4.3, β /∈ R(xw). When
R(w) = {α, s}, R(xw) = {α, s}. When R(w) = {s} or {α}, since
R(x) = {β}, R(w) = R(xw). When l(y) = 1, i.e., y = β. If α ∈ R(w),
then R(xwβ) = R(wβ) = {t, r}. If R(w) = {s}, then it is easy to check
that R(xwβ) = R(wβ) = {β}. when l(y) = 2, i.e., y = βs. By Lemma
4.1, Corollary 4.2, α /∈ R(xwy). If β ∈ R(xwβs), then s ∈ R(xw) =
R(w), since l(wsβ) ≥ 4, β ∈ R(x̃αsα), here (x̃)(αsα) = (x)(ws), which
contradicts Lemma 4.3. Hence R(xwβs) = R(wβs) = {s}. Next
assume that l(y) ≥ 3. Assume that the lemma is true when l(y) ≤ k−1,
k ≥ 3. When l(y) = k, Write y = y1 · · · yk, reduced decomposition.
The induction hypothesis says that R(xwy1 · · · yi) = R(wy1 · · · yi) and
l(xwy1 · · · yi) = l(x) + l(w) + i, for 0 ≤ i ≤ k − 1.

We complete the proof in the following cases.
Case 1: |R(xwy1 · · · yk−1)| = 2.
When R(xwy1 · · · yk−1) = {s, α}, by assumptions yk = β. Then

R(xwy) = R(wy) = {t, r}.
When R(xwy1 · · · yk−1) = {t, r}, by assumptions yk = s. By Lemma

4.1, Corollary 4.2, r, t /∈ R(xwy), hence R(xwy) = R(wy) = {s}. It is
easy to see that xwy = (x)(w)(y).

Case 2: R(xwy1 · · · yk−1) = {yk−1}.
We have R(xwy) ⊇ R(wy). If R(xwy) = R(wy), it is done.
Assume that R(xwy) % R(wy), then R(xwy) = {t, r}, or {s, α}. If

R(xwy) = {t, r}, by the assumption, we get {yk−1, yk} = {t, r}, hence
R(xwy) = R(wy) = {t, r}, which contradicts the assumption.
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If R(xwy) = {s, α}, by the assumption, we get {yk−1, yk} = {s, α}.
By 1.1.(d), there exists u1 ∈ W , such that xwy = (u1)(wsα), write wy =
wy1 · · · yis

a(αs)bαc, here i minimal, such that R(y1 · · · yi) = {yi} =
{β}, a, c = 0 or 1, a+2b+ c < msα. Let usα = wsαα

c(αs)−bsa, l(usα) ≥
1. Then xwy1 · · · yi = (u1)(usα). Hence i > 0 and R(wy1 · · · yi) = {yi}
is impossible. Then i = 0, or R(wy1 · · · yi) % {yi}.

If i = 0, then y ∈ Wsα, which contradicts to s, α are not in L(y).
If R(wy1 · · · yi) % {yi} and i ≥ 1, we have R(wy1 · · · yi) = {t, r},

or {s, β}. xwy1 · · · yi = (u1)(usα), when R(wy1 · · · yi) = {t, r}, then
L(usα) = {α}, furthermore if l(usα) = 1, it easy to see that R(xwy) =
R(wy), which contradicts the assumption. Hence L(usα) = {α}, and
l(usα) ≥ 2, by Lemma 4.3, l(usα) = 2, usα = sα , if i ≥ 2, yi−1 = s,
then s, α ∈ R(wy1 · · · yi−1), then we get equality, (xwy1 · · · yi−2)(sβ) =
(u1)(sα), which contradicts Lemma 4.4. If i = 1, y1 = β, xwβ =
(u1)(sα), then α ∈ R(xw) = R(w), since l(w) ≥ 4, (x̃)(sα)(sβ) =
(u1)(s), here (x̃)(sαs) = xwα. Then by 1.1.(d), (x̃)(sα) = (u2)(sβ),
which contradicts Lemma 4.4.

When R(wy1 · · · yi) = {s, β}, L(usα) = {s}, when l(usα) = 1, it
contradicts the assumption. When l(usα) ≥ 2, since xwy1 · · · yi =
(u1)(usα) = (x)(u2)(wsβ), which contradicts Lemma 4.3.

Hence R(xwy) = R(wy), and xwy = (x)(w)(y).

Remark . From the prove of Lemma 4.5 we see that if xw = (x)(w),
wy = (w)(y), write y = y1 · · · yk, any reduced decomposition, and
R(xwy1) 6= {t, r}. Furthermore if R(xwy1 · · · yi) = R(wy1 · · · yi), for
i ≤ 2. Then i ≥ 3, R(xwy1 · · · yi) = R(wy1 · · · yi). Hence xwy =
(x)(w)(y).

The Notations, from now on, we assume thatmsr ≥ 5 andmst ≥ 4.

Lemma 4.6. x, y ∈ W , assume that t, r /∈ R(x) ∪ L(y), then deg
fxtr,y,z ≤ 1, for all z ∈ W .

Proof. We discuss it in two cases.
Case 1: When there is no x′ ∈ W , such that x = (x′)(wsαα). Claim

that xtry = (x)(tr)(y). By the Remark above, we only have to check
whether R(xtry) = R(try), when l(y) ≤ 2.

R(xtr) = R(tr) = {t, r}, it is clear.
R(xtrs) = R(trs) = {s}, by Lemma 4.1 and Corollary 4.2.
y = sα, R(trsα) = {α}, by Lemma 4.3, β /∈ R(xtrsα). Assume that

s ∈ R(xtrsα), then s ∈ R(xβ), then there exists x′ ∈ W , such that
x = (x′)(wsββ), which contradicts the assumption. Hence R(xtrsα) =
{α}. Hence the claim.

Case 2: When there exists x′ ∈ W , such that x = (x′)(wsαα), then
xtr = x′wsαβ. If l(xtry) = l(x) + 2 + l(y), nothing needs to prove.
Write y = y1 · · · yk, reduced decomposition. Assume that there ex-
ists i < k, i minimal, such that l(wsαβy1 · · · yi) ≤ l(wsαβy1 · · · yi−1).
By strong exchange condition, we get sβy1 · · · yi−1 = βy1 · · · yi, and
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s, β ∈ L(ty1 · · · yi), write βy = (wsβ)(y
′), by Lemma 1.3. Since l(βy) =

l(y) + 1, sβy1 · · · yi−1 = βy1 · · · yi, sβy1 · · · yi−1yi+1 · · · yk is a reduced
expression, so is βy1 · · · yi−1yi+1 · · · yk. Write βy1 · · · yi−1yi+1 · · · yk =
(swsβ)(y

′).

T̃wsαβT̃y = T̃wsαsT̃sβy1···yi−1
T̃yiT̃yi+1···yk

= ξT̃wsαsT̃βy + T̃wsαsT̃βy1···yi−1yi+1···yk

= ξT̃wsαsT̃wsβy
′ + T̃wsαsT̃swsβy

′

Since l(wsβ) ≥ 4, R((x′)(wsαs)) = L(y′) = {α}, ξT̃x′wsαsT̃wsβy
′ =

ξT̃x′wsαswsβy
′ , by Lemma 4.5.

Since msr ≥ 5, T̃x′wsαsT̃swsβy
′ = T̃(x′wsαs)(swsβy

′), by Lemma 4.5.
Hence the lemma is proved.

Lemma 4.7. x, y ∈ W , when R(x) = {α}, L(y) = {s}, then deg
fxwsβ ,try,z ≤ 2, for all z ∈ W .

Proof.

T̃xwsβ
T̃try = ξT̃xwsβ

T̃αy + T̃xwsββT̃αy

By Lemma 4.6, we see that deg ξT̃xwsβ
T̃αy ≤ 2, since R((x)(wsββ)) =

L(y) = {s}. As for the part T̃xwsββT̃αy, when L(αy) = {α}, then
wsββαy = (wsββ)(αy), then it is easy to check that R(xwsββ) =
R(wsββ) = {s}. R(xwsββα) = R(wsββα) = {α}, it is easy to see
that β /∈ R(xwsββα). If s ∈ R(xwsββα) , then it contradicts Lemma
4.4. R(xwsββαs) = R(wsββαs). By Lemma 4.1 or Corollary 4.2,
β /∈ R(xwsββαs). If α ∈ R(xwsββαs) , then it contradicts Lemma
4.3 or Lemma 4.4, since msr ≥ 5. Then by the remark after Lemma
4.6, we have T̃xwsββT̃αy = T̃xwsββαy.

Since β /∈ L(αy), we have to consider the only left case L(αy) =
{s, α}, write αy = (wsα)(y

′).

T̃xwsββT̃αy = T̃xwsββT̃wsαy′

= ξT̃(x)(wsββs)T̃(wsα)(y′) + T̃(x)(wsββs)T̃(swsα)(y′)

Since s /∈ R((x)(wsββs)), there two possibilities.

When R((x)(wsββs)) = {β}, then by Lemma 4.6, deg T̃xwsββT̃αy ≤ 2.
When R((x)(wsββs)) = {t, r}, then R((x)(wsββsβ)) = {s, α}, then

β = t, mst = 4, since msr ≥ 5, write (x)(s) = (x′)(wsr).

T̃xwsββT̃αy = T̃xwsββT̃wsαy′

= ξT̃(x)(wsββs)T̃(wsα)(y′) + T̃(x)(wsββs)T̃(swsα)(y′)

= ξT̃(x′)(wsrt)T̃(wsr)(y′) + T̃(x′)(wsrt)T̃(swsr)(y′)

= ξ2T̃(x′)(wsrrt)T̃(wsr)(y′) + ξT̃(x′)(wsrrt)T̃(rwsr)(y′)

+ξT̃(x′)(wsrrt)T̃(swsr)(y′) + T̃(x′)(wsrrt)T̃(rswsr)(y′)



LUSZTIG’S a-FUNCTION FOR COXETER GROUPS 21

Since msr ≥ 5, l(swsr) ≥ 4, l(rwsr) ≥ 4, R((x′)(wsrrt)) = L(y′) =
{t}, by Lemma 4.5,

ξ2T̃(x′)(wsrrt)T̃(wsr)(y′) = ξ2T̃(x′)(wsrrt)(wsr)(y′)

ξT̃(x′)(wsrrt)T̃(rwsr)(y′) = ξT̃(x′)(wsrrt)(rwsr)(y′)

ξT̃(x′)(wsrrt)T̃(swsr)(y′) = ξT̃(x′)(wsrrt)(swsr)(y′)

Since l(wsrr) ≥ 4, R(x′) = L(trswsr) = {t}, by Lemma 4.5,

T̃(x′)(wsrrt)T̃(rswsr)(y′) = T̃(x′)(wsrr)T̃(trswsr)(y′) = T̃(x′)(wsrrt)(rswsr)(y′)

Hence the lemma is proved.

Lemma 4.8. x, y ∈ W , then deg fxtr,y,z ≤ a, for all z ∈ W , here a =
max {msr, mst}.

Proof. We proof the lemma 3 cases.
Case 1: R(x) = {α} and L(y) = {β}. Write x = (x′)(α), y = (β)(y′),

here R(x′) = L(y′) = {s}. Then T̃xT̃y = T̃x′trT̃y′ , by Lemma 4.6, it is
done.

Case 2: R(x)
⋃
L(y) 6= {t, r}, and furthermore R(x) 6= {t, r} or

L(y) 6= {t, r} . Let I = {s, α}, WI is the parabolic subgroup generated
by I. Let x′ (resp. y′)be the element of minimal length in the coset
xWI (resp.WIy ). Let w, u ∈ WI be such that x = x′w and y = uy′. We
take proper α here, such that l(u), l(w) ≥ 1 and l(w) + l(u) ≥ 3. Next
we use induction on l(x) + l(y), denote k = l(x) + l(y), if k ≤ 2a + 1,
nothing needs to prove.

Assume that k > 2a + 1, and the lemma is true for x′′, y′′ with
l(x′′) + l(y′′) < k, R(x′′) 6= {t, r}, L(y′′) 6= {t, r}, R(x′′)

⋃
L(y′′) 6=

{t, r}.

T̃xT̃y =
∑

v∈WI

fw,u,vT̃x′vT̃y′

When l(v) ≥ 4, by Lemma 4.5, T̃x′vT̃y′ = T̃x′vy′ . When l(v) = 0,
since min {l(x′), l(y′)} ≤ k − 1, by induction hypotheses, we see that
the degrees of fx′,y′,z are not greater than a for any z ∈ W . Now

consider the case l(v) = 1. If v = s, ξT̃x′sT̃y′ = T̃x′sT̃sy′ − T̃x′T̃y′ , by

induction hypotheses, we see that deg T̃x′sT̃sy′ and deg T̃x′T̃y′ are not
greater than a. If v = α, write x′ = (x1)(sβ), y

′ = (βs)(y1), here
R(x1s) = L(sy1) = {s}.

ξT̃x′vT̃y′ = ξ2T̃x1strT̃sy1+ξT̃x1sαT̃sy1 = ξ2T̃x1strT̃sy1+T̃x1sαT̃αsy1−T̃x1sT̃sy1

By Lemma 4.6, we see that deg ξ2T̃x1strT̃sy1 ≤ 3. By induction hy-

potheses, we see that deg (T̃x1sαT̃αsy1 − T̃x1sT̃sy1) are not greater than
a.

Hence deg T̃x′vT̃y′ ≤ a− 1, when l(v) = 1.

When l(v) = 2, v = sα or αs. Only check the case v = sα. T̃x′sαT̃y′ =

T̃x′sT̃αy′ , by Lemma 4.6 and 4.7, deg T̃x′sT̃αy′ ≤ 2.
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When l(v) = 3. v = αsα, then by Lemma 4.6, deg T̃x′αsT̃αy′ ≤ 1.
v = sαs,

T̃x′sαsT̃y′ = T̃x′sαsT̃y′

When R(x′s) = L(sy′) = {s}, it is easy to check that T̃x′sαsT̃y′ =

T̃x′sαsy′ . When R(x′s) or L(sy′) = {s, β}, then by Lemma 4.6 and 4.7,

we have deg T̃x′sαsT̃y′ ≤ 2.
Hence the lemma is true in Case 2.
Case 3: When R(x) = {t, r} and L(y) = {t, r}, write x = (x′)(tr)

and y = (tr)(y′).

T̃xT̃y = ξ2T̃x′trT̃y′ + T̃x′tT̃ty′ + T̃x′rttry′ − T̃x′ T̃y′

By Lemma 4.6, deg (ξ2T̃x′trT̃y′) ≤ 3. By case 2, deg T̃x′tT̃ty′ + T̃x′rttry′ −

T̃x′T̃y′ ≤ a.
Hence the lemma is proved.

Until now, we see that Theorem 2.1 is proved.
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