吸附还原降低柴油机 NO_r 和 PM 的微观反应动力学计算*

陈朝辉^{1,2} 李志军¹ 焦鹏昊¹ 高立波¹ 张文斐¹ 刘 磊¹ (1.天津大学内燃机燃烧学国家重点实验室,天津 300072; 2.昆明理工大学应用技术学院,昆明 650093)

【摘要】 以 BaO(s1)为第1吸附位,Pt (s2)为第2吸附位,采用 Chekmin 软件对吸附还原脱除柴油机 NO_x和 PM 的微观反应动力学过程进行了模拟计算,结果表明:稀燃阶段气相 NO(g)、NO₂(g)以 NO₂(s1)、NO₂NO₃(s1)、 NO₃(s1)形式储存在 BaO 表面;浓燃阶段 NO_x中的 N 原子相互结合,形成的 N₂分子被脱附,C(S)与活性氧 O*进行表面反应。稀燃运行时间和比值大小、发动机排温及排气中氧浓度对 NO_x和 PM 的去除有较大影响。

关键词:柴油机 稀燃吸附 浓燃还原 NO_ PM

中图分类号: TK421⁺.5 文献标识码: A 文章编号: 1000-1298(2011)07-0010-06

Micro-reaction Kinetics Calculation for Reducing Diesel NO_x and PM by Adsorber-reduction Catalyst

Chen Zhaohui^{1,2} Li Zhijun¹ Jiao Penghao¹ Gao Libo¹ Zhang Wenfei¹ Liu Lei¹

(1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

2. School of Applied Technology, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

BaO(s1) was used as the first adsorption sites, and Pt (s2) was used as the second adsorption site, the micro-reaction kinetics simulation of NO_x and PM in diesel engine by adsorber-reduction catalyst was calculated with the software of Chekmin. The results showed that in lean burn condition, gas phase NO(g), $NO_2(g)$ were stored in forms of $NO_2(s1)$, $NO_2NO_3(s1)$, and $NO_3(s1)$ on the surface of BaO, but in rich burn condition, N atoms in NO_x desorption from surface of BaO combined with each other to form N_2 molecular. Surface reaction was occurred between C (S) and reactive oxygen species O *. The absolute time, the ratio values of lean burn condition, exhaust temperature and oxygen concentration in diesel engine exhaust pipe have a great impact on removal of NO_x and PM emission.

Key words Engine, Lean adsorption, Rich reduction, NO_x , PM

引言

NO_x 直接分解需要一定的热量,传统的三效催 化器只有在理论当量比的条件下才能高效同时降低 CO、HC和NO_x,它不适用排气中富氧的且含有NO_x 和PM排放的柴油机。在NO_x吸附系统中添加催化 剂如碱土金属 BaO 作为吸附剂,柴油车尾气中的 NO 在富氧环境(稀燃状态)下被氧化为 NO₂,NO₂ 被碱土金属吸附转换成硝酸盐的方式进行储存,然 后通过调控发动机,如利用燃烧不完全的柴油(富 含碳氢化合物)将尾气环境转换为贫氧(浓燃状态) 而将 NO_x 还原为 N₂; PM 在富氧条件下被多余的氧 气和活性氧类物质氧化,而在贫氧条件下被 NO_x 还 原过程中脱附的活性氧类物质所氧化^[1]。

吸附还原系统能在较宽温度范围内高效(NO_x 转化率大于 85%)降低稀燃发动机的 NO_x 排 放^[2-5]。日本丰田公司首次将 Lean- NO_x -Trap (LNT)技术应用到 D – 4 稀燃汽油机上使 NO_x 降低

收稿日期: 2010-12-22 修回日期: 2011-01-19

^{*}国家自然科学基金资助项目(50776062)、国家高技术研究发展计划(863 计划)资助项目(2008AA06Z322)和天津市应用基础与前沿技术研究计划重点项目(11JC2DJC23200)

作者简介:陈朝辉,博士生,昆明理工大学讲师,主要从事内燃机燃烧与排放研究,E-mail: chenzhaohuiok@ sina. com

通讯作者: 李志军,教授,博士生导师,主要从事内燃机燃烧与排放研究, E-mail: lizhijundd@163.com

幅度高达 90% 且催化系统运行温度范围较宽,之后 又将此技术运用到了 D-CAT 柴油机上。Olsson 和 Fridell^[6]研究了添加贵金属 Pt 的分散与增加 BaO 的催化活性的关系,目前对 LNT 技术的研究主要开 展了 Pt/BaO 还原 NO_x 的实验研究^[7-9],而将 LNT 用于同时降低 NO_x 和 PM 的报道较少。本文采用数 值模拟方法对吸附还原同时降低柴油机 NO_x 和 PM 的微观反应动力学进行模拟计算。

1 吸附还原系统模型

以柴油机(排量 8.8 L)运行工况(n = 1800 r/min, 扭矩 T = 440 N·m)、稀燃空燃比 R = 25、浓燃空燃比 R = 13 时的排气组分数据为基础,稀/浓燃排放物体 积分数如表 1 所示。稀/浓燃运行时间比值为40 s: 4 s,催化器体积 V 为 1 600 cm³,空速为 9 000 h⁻¹,内 部表面积 S 为 5.9 × 10⁴ cm² 建立吸附还原模型。

表 1 稀、浓燃时排放物体积分数 Tab.1 Volume fraction in lean and rich conditions

气体组分	稀燃	浓燃
NO/10 ⁻⁶	860	270
$NO_2/10^{-6}$	40	30
02/%	12	0.9
$C_3 H_6 / 10^{-6}$	60	800
CO/%	0.04	2.1
CO ₂ /%	7	7
$H_2O/\%$	10	10

以 BaO 为吸附剂储存材料,添加同时具有催化 氧化(贫燃期间)和催化还原(富燃期间)性能的贵 金属 Pt,通过在催化剂表面进行表面反应将 PM 氧 化和 NO_x 还原。BaO(s1)作为第1种吸附位, Pt (s2)作为第2种吸附位。在气固多相催化反应 过程中,吸附是指气相中的原子或分子(统称为粒 子)聚集到固体表面上的非均匀分布。气相 NO(g)、NO₂(g)、O₂(g)在催化剂表面的反应参考美 国橡树岭国家重点实验室机理^[10],如式(1)~(5) 所示,而固相 PM 微粒 C(s)的反应如式(6)~ (8)^[11]。式中*代表表面活性中心。

NO(g) + * = NO * (1)

$$O_2(g) + * = 20 *$$
 (2)

$$NO * + O * = NO_2 *$$
 (3)

$$NO_2(g) + NO_3 * = NO_2NO_3 *$$
 (4)

$$NO_2(g) + O * = NO_3 *$$
 (5)

$$C(s) + O * = CO *$$
 (6)

$$CO * + O * = CO_2$$
 (7)

$$CO * + 1/2O_2 = CO_2$$
 (8)

2 吸附还原催化剂表面微观反应计算

2.1 BaO 表面吸附还原反应机理的计算

发动机尾气中的排放物 NO, 在催化剂上以吸 附态(化学吸附)存在,NO及 NO,在 BaO 表面的吸 附按照式(1)~(5)进行,NO(s1)、NO₂(s1)、 NO₂NO₃(s1)、NO₃(s1)的活性位分数分别如图 1~4 所示,可以看出,在稀燃吸附阶段,NO(s1)、 NO₂(s1)、NO₂NO₃(s1)、NO₃(s1)在 BaO 表面的活 性位分数迅速增加,在吸附阶段的后期吸附达到饱 和后其活性位分数则迅速降低。这是由于柴油机排 出的尾气温度较低, NO_{*}和氧含量高,并且相对 Pt 位在 BaO 表面有靠近 BaO 晶相表面(1位)和远离 BaO 晶相表面(2位)的两种活性位,在这两种活性 中心上会发生 NO、NO2、O2 及亚硝酸根类和硝酸根 类物种的吸附,即是在靠近 BaO 晶相表面活性中心 (1位)上的(NO*)₁、(NO₂*)₁和(O*)₁可以和 BaO 发生反应生成 Ba (NO₃)₂,见式(5)。而 (NO*), (NO,*), 和(O*), 在远离 BaO 晶相表 面(2位)上则生成亚硝酸根类物种,如式(3)、(4) 所示[12]。而在浓燃还原阶段,表面的活性位分数迅 速降低,大量的 NO, 气体从 BaO 表面脱附出来。这 是由于 NO_x 中的 O 原子留在 BaO 表面的氧空位上, 而 NO_{*} 中的 N 原子相互结合^[13],形成的 N, 分子被 脱附,如图 5 所示。即在 BaO 表面吸收 NO 后,以 N,分子脱附,存储的 NO,被还原,BaO 的活性中心 得到再生。

Fig. 1 Site fraction of NO (s1) on BaO

活性 O(s1) 在吸附储存剂 BaO 表面的活性位 分数如图 6 所示,结合图 2~7 可以看出,在贫燃吸 附阶段,由于活性氧(O*)浓度高,大量活性氧 O* 及吸附在 BaO 表面形成吸附氧会促进催化剂表面 的亚硝酸盐生成,亚硝酸盐进一步激活与之邻近的 表面活性氧生成硝酸盐。此外活性氧还会与 PM 反 应生成 C(O)中间产物。在浓燃脱附阶段活性氧的 活性位迅速增加,大量的吸附氧从 BaO 表面脱附出 来与 PM 及还原剂作用,氧化 PM 及还原 NO_x^[14]。

BaO 表面的活性位如图 8 所示,结合图 7 可以 看出,在稀燃吸附阶段,发动机排气中含氧量高, BaO 表面的活性位也随之增加,即催化剂表面的存 储能力增加。而在浓燃还原阶段, NO_x 中的 O 原子 留在 BaO 表面氧空位上,这也有利于提高催化剂下 一个吸附阶段的反应活性。

2.2 Pt 表面吸附还原反应机理的计算

活性氧 O * 及 Pt 表面的活性位分数如图 8、9 所示。在稀燃吸附阶段,活性氧 O * 在 Pt 表面的活 性位分布非常稳定,大量的活性 O * 在 Pt 表面形成 Pt - O,这是由于 Pt 表面是超晶包结构^[15],并且在 Pt 的表面有两种化学吸附位,贵金属 Pt 主要以氧化 态形式存在,在浓燃还原阶段表面的氧空位逐渐减 少,Pt 转变为还原态,从而获得比氧化态活性更高 的还原态 Pt。在高活性的 Pt 表面 PM 微粒 C(S)与 活性氧 O * 的反应按照式(6) ~ (8)进行,生成的 CO(s2)如图 10 所示。

3 发动机运行控制策略、排温、氧浓度对降 低柴油机 NO,和 PM 的影响

当通入催化反应器的 NO_x 为1000×10⁻⁶、温度 为350℃、稀/浓燃运行时间比值为680 s: 320 s 时, 与文献[16]在相同条件下,本文计算得到的 NO_x 和 其实验数据进行对比如图 11 所示,可以看出本文采 用的模型分析得到的 NO_x 与实验数据能较好吻合。

Fig. 11 Calculated and experimental values of NO_x

依照本课题组前期 LNT 和 NSR 研究经验和成 果^[17],计算了稀/浓燃绝对时间比值分别为 20 s: 2 s、40 s: 4 s、60 s: 6 s 对吸附还原催化系统的影响。 从图 12 可以看出,由于 NO, 被吸附在催化剂的表 面活性位,20 s:2 s 在 20 s 时吸附逐渐达到饱和,而 40 s:4 s、60 s:6 s 在 30 s 时吸附达到饱和,稀/浓燃 绝对时间比值为 40 s: 4 s 时将柴油机排出的 NO, 由 800×10-6降低到了 220×10-6。采用微粒 PM 在 Pt 表面的活性位浓度 C(s2) 来评价催化去除 PM 的能 力,其值越大 PM 活化去除的能力就越强。图 13 为 3 种稀、浓燃组合的 C(s2), 由于 20 s: 2 s 的浓燃还 原阶段持续时间较短,C(s2)远小于另外两种组合, 60 s: 6 s 的稀燃时间较长导致 NO, 吸附饱而不能将 其还原,40 s:4 s 在浓燃时的 C(s2)分布时间长且最 大值达到了 7.95 × 10⁻⁸。故稀/浓燃绝对时间比值 为40 s:4 s 能较好地同时降低 NO. 和 PM。

稀/浓燃远行时间比值分别为 40 s: 2 s、40 s: 4 s、40 s: 8 s 时 3 种组合对降低 NO_x 和氧化 PM 的影响如图 14 和 15 所示,可以看出采用 40 s: 2 s 时的浓燃还原阶段持续时间较短,被吸附的 NO_x 尚未完全

被还原净化,就转换为稀燃吸附状态,导致 NO_x 还 原不彻底,不利于吸附还原催化器在稀燃中排出物 NO_x 的再吸附,C(s2)也远小于浓燃的另外两种组 合,势必会降低催化器的性能。当浓燃时间为 8 s 时柴油机排出的 NO_x 由 900 × 10⁻⁶降低到 150 × 10⁻⁶,C(s2)高达 1.2 × 10⁻⁷。故稀/浓燃运行时间 比值为 40 s: 8 s 能较好降低 NO_x 和去除 PM。

图 16 和 17 分别为发动机的不同排温对降低 NO_x 和氧化 PM 的影响。当排温为 523 K 时降低 NO_x 幅度较小, C(s2)几乎为零,这是由于刚好达到 PM 的起燃温度。排温 573 K 较 523 K 时的 NO_x 排 放有较大幅度降低, 但 C(s2)仍然较小。排温为

673 K 较 523 K 时对 NO_x 的降低幅度较大, C(s2)也 达到了 4.9 × 10⁻⁷,故 673 K 能更好地同时降低 NO_x 和 PM 微粒。

Fig. 16 Influence of exhaust temperature on NO,

图 17 排温对 C(s2)的影响

图 18 和 19 为排气中不同氧体积分数对降低 NO_x和氧化 PM 的影响。氧体积分数为 5% 时 NO_x 转化率较小,而氧体积分数为 10% 较 15% 时降低 NO_x效果好,C(s2)是随着氧体积分数的增加而增 大,即氧体积分数为 15% 时降低 NO_x 和氧化 PM 出 现了此消彼长的关系。当氧体积分数较低时由 式(1)~(3)产生的活性氧和吸附的 NO₂ 都比较少, 从而导致氧体积分数为 5% 时 NO_x 降低幅度较 小^[18];氧体积分数增加有利于吸附较多的 NO₂并生 成吸附态硝酸盐,但过高的氧体积分数(如 15%)存 在竞争吸附,反而抑制了 NO₂ 的吸附^[19],从而使氧 体积分数为 15% 的 NO₂ 转化率较低,且氧体积分数 的增加提高了式(6)~(8)的反应速率,故C(s2)随 着氧体积分数的增加而增大。

Fig. 18 Influence of oxygen concentration on NO_x

Fig. 19 Influence of oxygen concentration on C(s2)

4 结论

(1)稀燃阶段大量的 O * 促使气相 NO(g)、NO₂(g)以 NO₂(s1)、NO₂NO₃(s1)、NO₃(s1)形式储存在 BaO 表面;在浓燃阶段 O 原子停留在 BaO 表面的氧空位上, NO_x中的 N 原子相互结合,形成的 N₂分子被脱附,进而使 BaO 的活性中心得到再生。

(2) 在稀燃吸附阶段活性氧 O * 在 Pt 表面以氧 化态 Pt - O 形式存在, 在浓燃阶段 Pt 以活性更高的 还原态存在, 在高活性 Pt 表面 C(s) 与活性氧 O * 进行表面反应。

(3)稀/浓燃运行时间比值40s:8s且氧体积分数为10%时能较好降低NO_x和还原PM,氧体积分数为15%时降低NO_x和氧化PM出现了此消彼长的关系。

- 参考文献
- 1 Koichiro Nakatani, Shinya Hirota, Shinichi Takeshima. Simultaneous PM and NO_x reduction system for diesel engines [C]. SAE Paper 2002 - 01 - 0957, 2002.
- 2 NejarN, Makkee M. Catalytic removal of NO_x and soot from diesel exhaust: oxidation behavior of carbon materials used as model soot[J]. Applied Catalysis B: Environmental, 2007, 75(1~2): 11~16.
- Peter Broqvist, Itai Panas, Erik Fridell. NO_x storage on BaO(100) surface from first principles: a two channel scenario[J].
 J. Phys. Chem. B, 2002, 106 (1):137 ~ 145.
- 4 Jan Koop, Olaf Deutschmann. Modeling and simulation of NO_x abatement with storage/reduction catalysts for lean burn and diesel engines [C]. SAE Paper 2007 − 01 − 1142, 2007.
- 5 Brian R Kromer, Lei Cao, Lasitha Cumaranatunge, et al. Modeling of NO oxidation and NO_x storage on Pt/BaO/Al₂O₃ NO_x traps[J]. Catalysis Today, 2008, 136(1~2): 93~103.
- 6 Louise Olsson, Erik Fridell. The Influence of Pt oxide formation and Pt dispersion on the reactions NO₂⇔NO + 1/2 O₂ over Pt/Al₂O₃ and Pt/BaO/Al₂O₃[J]. Journal of Catalysis, 2002, 210(2): 340 ~ 353.

Fig. 17 Influence of exhaust temperature on C(s2)

- Peter Broqvist, Henrik Gröbeck, Erik Fridell. Characterization of NO_x species adsorbed on BaO: experiment and theory[J].
 J. Phys. Chem. B, 2004, 108(11): 3523 ~ 3530.
- 8 Isabella Nova, Lidia Castoldi, Luca Lietti, et al. NO_x adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments[J]. Journal of Catalysis, 2004, 222(2): 377 ~ 388.
- 9 Christian Hess, Jack H Lunsford. Mechanism for NO₂ storage in barium oxide supported on magnesium oxide studied by in situ Raman spectroscopy [J]. J. Phys. Chem. B, 2002, 106(25): 6358~6360.
- 10 Louise Olsson, Hans Persson, Erik Fridell, et al. A kinetic study of NO oxidation and NO_x storage on Pt/Al₂O₃ and Pt/BaO/Al₂O₃[J]. J. Phys. Chem. B, 2001, 105(29):6895~6906.
- 11 Viviana G Milt, Ezequiel D Banús. Soot combustion and NO_x adsorption on Co, Ba, K/ZrO₂[J]. Catalysis Today, 2008, 133 ~ 135: 435 ~ 440.
- 12 Mahzoul H, Brilhac J F, Gilot P. Experimental and mechanistic study of NO_x adsorption over NO_x trap catalysts [J]. Applied Catalysis B: Environmental, 1999, 20(1): 47 ~ 55.
- 13 Chatterjee D, Deutschmann O, Warnatz J. Detailed surface reaction mechanism in a three-way catalyst [J]. Faraday Discuss, 2002, 119: 371 ~ 383.
- 14 Matarrese R, Castoldi L, Lietti L, et al. Simultaneous removal of NO_x and soot over Pt-Ba/Al₂O₃ and Pt-K/Al₂O₃ DPNR catalysts[J]. Topics in Catalysis, 2009, 52(13): 2041 ~ 2046.
- 15 Karen S Kabin, Pranav Khanna, Rachel L Muncrief, et al. Monolith and TAP reactor studies of NO_x storage on Pt/BaO/ Al₂O₃: elucidating the mechanistic pathways and roles of Pt[J]. Catalysis Today, 2006, 114(1):72~85.
- 16 Lidia Castoldi, Roberto Matarrese, Luca Lietti, et al. Simultaneous removal of NO_x and soot on Pt ~ Ba/Al₂O₃ NSR catalysts [J]. Applied Catalysis B: Environmental, 2006, 64(1~2): 25~34.
- 17 李志军,张瀛,马小强,等. 吸附还原催化系统降低稀燃汽油机 NO_x 排放试验研究[J]. 内燃机学报,2006,24(2): 152~155.

Li Zhijun, Zhang Ying, Ma Xiaoqiang, et al. Experimental study of NO_x reduction in the lean burn gasoline engine by absorber reduction catalysis system [J]. Transactions of CSICE, 2006, 24(2): 152 ~ 155. (in Chinese)

- 18 Burch R, Sullivan J A, Watling T C. Mechanistic considerations for the reduction of NO_x over Pt/Al_2O_3 and Al_2O_3 catalysts under lean-burn conditions [J]. Catalysis Today, 1998, $42(1 \sim 2)$: $13 \sim 23$.
- 19 Reichert D, Bockhorn H, Kureti S. Study of the reaction of NO_x and soot on Fe₂O₃ catalyst in excess of O₂[J]. Applied Catalysis B: Environmental, 2008, 80(3 ~ 4): 248 ~ 259.

(上接第9页)

- 8 蔡崧,杨亚军,罗勇刚,等.石油焦在旋风预燃室内燃烧的试验研究[J].动力工程,2002,22(2):1711~1718. Cai Song, Yang Yajun, Luo Yonggang, et al. Tests of burning petroleum coke in a pre-combustor [J]. Power Engineering, 2002,22(2):1711~1718. (in Chinese)
- 9 Ryan Ⅲ T W, Doge L G. Diesel engine injection and combustion of slurries of coal, charcoal, and coke in diesel fuel [C]. SAE Paper 840119, 1984.
- 10 Khandare S S, Garg R D, Gaur R R. Investigation on the use of solid fuels for diesel engine [C]. SAE Paper 872094, 1987.
- 11 Flynn P L, Hsu B D. Coal fueled diesel development [C]. SAE Paper 881159, 1988.
- 12 Prithiviraj M, Andrews M J. Atomization of coal water slurry sprays[C]. SAE Paper 940327, 1994.
- 13 柴保明,王祖讷,付晓恒. 小型高速柴油机燃烧精细油水煤浆的试验研究[J]. 机械工程学报,2005,41(9):190~193.

Chai Baoming, Wang Zune, Fu Xiaoheng. Research on high speed diesel engine fueled with ultra-clean micronized coal oil water slurry[J]. Chinese Journal of Mechanical Engineering, 2005, 41(9):190 ~ 193. (in Chinese)

14 张强,毛君,段鹏文,等. 柴油机燃用柴油/水煤浆混合燃料性能与排放研究[J]. 内燃机工程,2007,28(3):76~79. Zhang Qiang, Mao Jun, Duan Pengwen, et al. Study of the performance and emissions of direct injection diesel engine operating on diesel/coal water slurry blends [J]. Chinese Internal Combustion Engine Engineering,2007, 28(3):76~79. (in Chinese)