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Abstract that for arbitrary two longitudinal positions the point= 0

In this article we consider a system where a bend mag- the fixed point and that the corresponding map can be

net block arranged in an achromat-like fashion is followe aylor expdar}Qeciljm gs nter:ghli)orhogd. WE]f will use that up
by a straight drift-quadrupole cell which is not a pure drif 0 any predefined orden the aberrations of a map4 can

space. We formulate the necessary and sufficient con 3 represented through a Lie factorization as

tions for this system to be a second-order achromat and : M :=,, exp(: Frup1+...+F3:): M, Q)
show that it can be achieved using six, four or even onl

two sextupole families. %here each of the functions}, is a homogeneous poly-

nomial of degree: in the variablesz and the symbot=,,
INTRODUCTION denotes equality up to ordet (inclusive) when maps on

As a second-order achromat we will understand a paRoth sides of (L) are applied to the phase space vectdle
ticle transport system whose linear transfer matrix is digwill also use that for the map1 of a magnetostatic system
persion free and whose transfer map does not have trafglich is symmetric about the horizontal midplage= 0
verse second-order aberrations. The first practical soiuti ll polynomials7;, in (I)) do not depend on the variabte
for the second-order achromat was presented at the ed are even functions of the variabjeandp,.
of 1970s in the paperl[[1], where the theory of achromats SECOND-ORDER ABERRATIONS OF

based on repetitive symmetry was developed, and quickly

becomes part of many accelerator designs. Unfortunately,REPET'TIVE SYSTEM ARRANGED IN
the overall transfer matrix of this achromat is always equal ACHROMAT-LIKE FASHION

to the identity matrix (except, possibly, for thg; element)
and variety of transfer matrices of all other known secondé
order achromats is also very limited. The most natural wa
to satisfy a need for a second-order achromat with an ar-
bitrary linear transfer matrix, as it seems at first sight, is s M=o exp(: F5(z):): M, :. (2)
to take a bend magnet system arranged in an achromat-lik
fashion with the total transfer matrix equal to the identit)i1
matrix, attach a drift-quadrupole block with the desired li
ear transfer matrix and then adjust the sextupoles indtall
in the first part in such a way that all transverse secon
order aberrations of the total system are canceled. In this M, = diag(M., M,,) . (3)
paper, using the group-theoretical point of view for the de- i . )

sign of magnetic optical achromats developediin [2], we W& Will say that a repetitive.-cell system is arranged
formulate the necessary and sufficient conditions for thi§ achromat-like fashion if its linear transfer matdix.” is

system to be a second-order achromat and show that it Mispersion free and if the cell transverse focusing matrix

be achieved using six, four or two sextupole families. wé/c g9enerates a cyclic group of orderwhich means that
also show that if one uses less than six sextupole familiesy/» — 1 and M7 £1 for m=1,....,n—1. (4)

then the linear transportin the achromat-like part caneoth_ . . .. fth | .
designed independently from the properties of the attach spersion Decomposition of the Cell Matrix

straight drift-quadrupole cell. If the n-cell system is arranged in the achromat-like fash-
ion, then its linear transfer matrid/”* is equal to the iden-

DYNAMICAL VARIABLESAND MAPS tity matrix (except, possibly, for the;s element) and, as a
We will consider the beam dynamics in a mid-plane symconsequence of this, the equations

metric magnetostatic system and will use a complete set of Mr =1, (5)

symplectic variablez = (x,p.,y,p,,0,¢)" as particle

coordinates. In this set the variables= (z,p.,y,p,)" (I + Mo+ ...+ Mfm’l) - (rfe 7’56)T = (0, O)T (6)

describe the transverse particle motion and the variablesy, o e satisfied. There are two possibilities regarding so-

ande characterize the longitudinal dynamics! [2, 3]. We tions of these equations. Eithef, + 5, # 2, M™ = I
will represent particle transport from one longitudinal lo andr¢, andrs, are arbitrary, on/ v IQQandré fwrc _
16 26 ’ cx — 16 — 26 —

cation to another by a symplectic map and we will assUMe |y poth cases the cell matrix/. can be represented in
*vladimir.balandin@desy.de the form

In this section we will consider a system constructed by
repetition ofn identical cells ¢ > 1) with the cell map
< given by the following Lie factorization

%_et two by two symplectic matrice¥/ ., andM., be the
orizontal and vertical focusing blocks of the six by six cel
transfer matrix)M, = (r¢,,) and let us define the four by

ggur cell transverse focusing matrid,. as follows
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M. = D.N.D; (7) F5 (and therefore the polynomidys) can have as much
as 18 nonzero monomials responsible for the independent
where the matrix transverse aberrations, while with the proper selection of
the cell phase advances the number of independent trans-

:il :EQ 8 8 8 8 verse aberrations of thecell system can be reduced to six
. c for n = 2,3 and to two for > 4 [1].

N, = 0 0 r33 5, 0 O ®)
0 0 iy 7iy O g SECOND-ORDER ABERRATIONS OF
O STRAIGHT DRIFT-QUADRUPOLE CELL

o ) ] The map of the straight drift-quadrupole céH, does

is dispersion-free and the matri. can be expressed in ot have second order geometric aberrations, does not gen-
the form of a Lie operator as follows erate second order dispersions and the transverse motion
still remains uncoupled with the first nonlinear correction

iD= exp(:e(Bx — Apyg) ). ) terms taken into account. Thus it can be written as
If r¢, + 75, # 2, then the decompositiohl(7) is unique, My =y expl: Fi(2) 1) : M, 1, (15)
A = Tfﬁc_ TgQC and B = T§6C+ Tglc (10) where
2—r{ =15 2—r{; =15

2
Fie) = =5+ (@) + Qnm) — 1.5 ) 19

are the initial conditions for the periodic (matched) cédd

persion and its derivative, and Q, andQ, are quadratic form, is the cell length, andy

is the Lorentz factor of the reference particle.
(11) The structure of the second-order aberratibnk (16) can be
further clarified using that for every drift-quadrupole sys
And in the second case, whéf., = I andr§; = 55 = 0, tem (which is not a pure drift space) there exists an unique
the matrixV, is equal to the cell matrid/, andA andB  set of Twiss parameters (apochromatic Twiss parameters),

C C C C
T16751 T T26752

_.c
C =5 + 2—r¢ —1rs
11 22

can be chosen arbitrarily (for examplé¢,= B = 0). which will be transported through that system without first
. . order chromatic distortions_[3]. Let? , ag , and~g
Representation of Second-Order Aberrations be these apochromatic Twiss parameters and

in the Form of a Sngle Lie Exponent

Using [7) the cell transfer map can be written as (17)

{Mﬂ=ﬁMﬁ+m%wm+@mﬁ
Ig(r) = vy (1) y* + 205 (1) ypy + By (7) Py
:Mei=9:D.: " exp(: PS(z):) : No:: D.:, (12)

the corresponding Courant-Snyder quadratic forms. Then,
where P§(z) = F5(x + Ae, p. + Be, y, py, €), and for  as it was shown in []3], the quadratic forngs, , can be

the map of the repetitive-cell systemM,,. we obtain after expressed through these Courant-Snyder quadratic forms

some straightforward manipulations taken at the cell entrance as follows
i Mpe i =2 exp(: nS3(D.'z) — nCe?/2:). (13) Quy = &ay(By,) - In,(0), (18)

In this representation the aberration functigyis givenby  where ¢, (52) and ¢,(35) are the cell chromaticities cal-
culated for the apochromatic Twiss parameters.

n—1
1 .
S == Ps(M" z, 14
(%) an:1 s 2, €) oK COMBINED SYSTEM AS
and is not an arbitrary polynomial anymore. It is the re- SECOND-ORDER ACHROMAT
sult of the application of the Reynolds (averaging) opera-
:ﬁr of tlhe cyc_:h;;)groudpﬁf'n generst{ed b{ @he maltrlMc t.ol paper. Let us consider a system where a bend magnet
€ polynomialps and for an arbitrary?; is a polynomia block arranged in an achromat-like fashion is followed by

which remains invariant under the group action. a straight drift-quadrupole cell. The formulas(13) dnd)(15

As_;n abs:r_actﬂgbjeit_ the_ group, is quue and for;llh tell us that the map of the combined systarm, (M,,..) will
possible matricesi. sa isfying [#) we have groups WHICN 116t have transverse second-order aberrations, if and bnly i
are isomorphic each other, but not all of them are conjugate.

We now turn our attention to the main subject of this

So that as groups of symmetries they can be distinct and n-Ss(x — Ae, pr — Be, y, py, €) —
can have different number of invariant homogeneous poly-
nomials (remaining aberrations in_{14)), and this depends n-83(—Ae, —Be, 0,0, ¢) =

on the choice of the periodic cell phase advanegsnd
py,. For the mid-plane symmetric system the polynomial

(&(B2) - I3(0) + &(8y) - 1/(0)) . (19)

N ™



This equation gives the necessary and sufficient conditiomgth the three sextupole families properly arranged in the
for the map of the combined system to be a second-ordéispersive regions of the achromat-like part of the system.
achromat and will be analyzed in more detail. As the firsif not, then there is only one functionally independent in-

step, let us rewrite the functia$y in the form variant of the group generated by the matki& which is
3 quadratic inz, p,,, and this invariant can be chosen equal
Ss5(z) = Z e™ - S33-m(2), (20) to the Courant-Snyder quadratic form corresponding to the
m=0 periodic Twiss parameters of the matfik.,.. So in this sit-

where each of the functionS; ,,, is a homogeneous poly- uation the equatioi (24) can be satisfied with one sextupole

nomial of degreen in the transverse variablez Accord- family, but if, and only if, the periodic Twiss parameters of

ing to the mid-plane symmetry we have, additionally, thatthe matrix}/., coincide with the horizontal apochromatic
Twiss parameters of the straight drift-quadrupole cell.

S3,1(2) = S3.(2, pa) (21) And finally, the equatior{23) can be satisfied either by
does not depend on the variabjeandp,, and that sextupoles or one can select such phase advarjcethat
. . y none of the combinatiorsy.; andyug + 2u; is multiple of
S32(2) = S5a(x, pa) + S55(y, py)- (22) 91 and use automatic cancellation, which excludes the case

Substituting[[2D) inta{19) we obtain that the equatfod (19y = 3 from considerations_[1].
is equivalent to the following system of four equations:
Condition for the absence of geometric aberrations SUMMARY

S3.3(2) =0, (23) In this paper we have considered a mid-plane symmet-

. . . ric magnetostatic beamline where a bend magnetll
two conditions for the absence of chromatic focusing terms™ .. ) ) .
repetitive system with the overall linear transfer matrix

2n - 83 (7w, p2) = &:(B7) - 13(0), (24) equal to the identity matrix is followed by a straight drift-
quadrupole block (which is not a pure drift space) and

2n - 8§ 5y, py) = &(By) - I (0), (25) presented the necessary and sufficient conditions for this
" , . _beamline to be a second-order achromat in the form of the
and condition for the absence of second-order d|sperS|or|[§)ur equations(23)(26). Besides that, we have shown that
n-8s1(x,ps) = E(8%) - ([(v2(0)A+ a2(0)B] - a2+ these equations can be satisfied using only six, four or two
sextupole families. In doing so one has to select such peri-

[@2(0) A + 52(0) B] - pa) - (26) odic cell phase advance$ , that none of the combinations

. . . 3u¢ andut + 2u¢ is multiple of 27 (which excludes from
The first important observation from the equatidng (23)-' > - /% y b .
(28) is that the functions in their left hand sides are invariconaderauons the case = 3) and then decide, for each

ants of the group generated by the mafilx, and therefore transverse plane separately, if the phase advance for this

. ) . . .plane (¢ or u¢) will be multiple of = or not. If it will be
so must be t_he functions in th? rl_ght hand sides. Otherw'%ultipl%ofw,ﬁ?li\)en one simplfuses three sextupole families
these equations cannot be satisfied whatever number of SEX this plane, and if not, then one sextupole family is suf-
tupole families we will use in the first dispersive part of ther ' '
system.
If the matrix M., is equal to the identity matrix, then

for n = 2 the functionSs has the same 18 independen
transverse aberrations as the functigf and forn > 3 gort matrix ), must be free from dispersions.

this number is reducgd to 12. That is not much andz if WE Eor completeness, let us note that if the attached drift-
want to use automatic cancellation of some aberranonsa:

icient, but one has to make the periodic Twiss parameters
of the matrix M, for this plane to coincide with the cor-
tresponding apochromatic Twiss parameters of the straight
drift-quadrupole cell. And in all cases the linear cell gan

. e uadrupole block is a drift space wi@,. , = —I;p? i
the achromat-like part of the SVSte'T‘ eff|C|entIy,_ we_havet en the solution with the minimal number of sextupole
assume thaf\/., # I. But from this assumption it fol-

) . . . . families requires:$ be odd multiple ofr andu¢ be multi-
lows that linear inc andp,. functions can not be invariants . T Y
e S — 0 and thus the riaht hand side of th ple of = (from this it follows thatn = 2), B in (I0) equal
(. S51(z,ps) = 0) and thus the right hand side of the,, zero, and six sextupole families.

equation[(Z2b) must be equal to zero. There is only one pos-
sibility to satisfy this condition, namely one has to make REFERENCES
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