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Abstract

In this article we consider a system where a bend mag-
net block arranged in an achromat-like fashion is followed
by a straight drift-quadrupole cell which is not a pure drift
space. We formulate the necessary and sufficient condi-
tions for this system to be a second-order achromat and
show that it can be achieved using six, four or even only
two sextupole families.

INTRODUCTION
As a second-order achromat we will understand a par-

ticle transport system whose linear transfer matrix is dis-
persion free and whose transfer map does not have trans-
verse second-order aberrations. The first practical solution
for the second-order achromat was presented at the end
of 1970s in the paper [1], where the theory of achromats
based on repetitive symmetry was developed, and quickly
becomes part of many accelerator designs. Unfortunately,
the overall transfer matrix of this achromat is always equal
to the identity matrix (except, possibly, for ther56 element)
and variety of transfer matrices of all other known second-
order achromats is also very limited. The most natural way
to satisfy a need for a second-order achromat with an ar-
bitrary linear transfer matrix, as it seems at first sight, is
to take a bend magnet system arranged in an achromat-like
fashion with the total transfer matrix equal to the identity
matrix, attach a drift-quadrupole block with the desired lin-
ear transfer matrix and then adjust the sextupoles installed
in the first part in such a way that all transverse second-
order aberrations of the total system are canceled. In this
paper, using the group-theoretical point of view for the de-
sign of magnetic optical achromats developed in [2], we
formulate the necessary and sufficient conditions for this
system to be a second-order achromat and show that it can
be achieved using six, four or two sextupole families. We
also show that if one uses less than six sextupole families,
then the linear transport in the achromat-like part cannot be
designed independently from the properties of the attached
straight drift-quadrupole cell.

DYNAMICAL VARIABLES AND MAPS
We will consider the beam dynamics in a mid-plane sym-

metric magnetostatic system and will use a complete set of
symplectic variablesz = (x, px, y, py, σ, ε)

⊤ as particle
coordinates. In this set the variablesẑ = (x, px, y, py)

⊤

describe the transverse particle motion and the variablesσ
andε characterize the longitudinal dynamics [2, 3]. We
will represent particle transport from one longitudinal lo-
cation to another by a symplectic map and we will assume
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that for arbitrary two longitudinal positions the pointz = 0

is the fixed point and that the corresponding map can be
Taylor expanded in its neighborhood. We will use that up
to any predefined orderm the aberrations of a mapM can
be represented through a Lie factorization as

: M : =m exp(: Fm+1 + . . .+ F3 :) : M :, (1)

where each of the functionsFk is a homogeneous poly-
nomial of degreek in the variablesz and the symbol=m

denotes equality up to orderm (inclusive) when maps on
both sides of (1) are applied to the phase space vectorz. We
will also use that for the mapM of a magnetostatic system
which is symmetric about the horizontal midplaney = 0
all polynomialsFk in (1) do not depend on the variableσ
and are even functions of the variablesy andpy.

SECOND-ORDER ABERRATIONS OF
REPETITIVE SYSTEM ARRANGED IN

ACHROMAT-LIKE FASHION

In this section we will consider a system constructed by
a repetition ofn identical cells (n > 1) with the cell map
Mc given by the following Lie factorization

: Mc : =2 exp(: Fc
3(z) :) : Mc : . (2)

Let two by two symplectic matricesMcx andMcy be the
horizontal and vertical focusing blocks of the six by six cell
transfer matrixMc = (rcmk) and let us define the four by
four cell transverse focusing matrix̂Mc as follows

M̂c = diag(Mcx, Mcy) . (3)

We will say that a repetitiven-cell system is arranged
in achromat-like fashion if its linear transfer matrixMn

c is
dispersion free and if the cell transverse focusing matrix
M̂c generates a cyclic group of ordern, which means that

M̂n
c = I and M̂m

c 6= I for m = 1, . . . , n− 1. (4)

Dispersion Decomposition of the Cell Matrix
If then-cell system is arranged in the achromat-like fash-

ion, then its linear transfer matrixMn
c is equal to the iden-

tity matrix (except, possibly, for ther56 element) and, as a
consequence of this, the equations

Mn
cx = I, (5)

(

I +Mcx + . . .+Mn−1
cx

)

· (rc16, r
c
26)

⊤
= (0, 0)

⊤ (6)

must be satisfied. There are two possibilities regarding so-
lutions of these equations. Eitherrc11 + rc22 6= 2, Mn

cx = I,
andrc16 andrc26 are arbitrary, orMcx = I andrc16 = rc26 =
0. In both cases the cell matrixMc can be represented in
the form
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Mc = Dc NcD
−1
c , (7)

where the matrix

Nc =

















rc11 rc12 0 0 0 0
rc21 rc22 0 0 0 0
0 0 rc33 rc34 0 0
0 0 rc43 rc44 0 0
0 0 0 0 1 C
0 0 0 0 0 1

















(8)

is dispersion-free and the matrixDc can be expressed in
the form of a Lie operator as follows

: Dc : = exp(: ε (B x − Apx) :). (9)

If rc11 + rc22 6= 2, then the decomposition (7) is unique,

A =
rc16 − rc52

2− rc11 − rc22
and B =

rc26 + rc51
2− rc11 − rc22

(10)

are the initial conditions for the periodic (matched) cell dis-
persion and its derivative, and

C = rc56 +
rc16r

c
51 + rc26r

c
52

2− rc11 − rc22
. (11)

And in the second case, whenMcx = I andrc16 = rc26 = 0,
the matrixNc is equal to the cell matrixMc andA andB
can be chosen arbitrarily (for example,A = B = 0).

Representation of Second-Order Aberrations
in the Form of a Single Lie Exponent

Using (7) the cell transfer map can be written as

: Mc : =2 : Dc :
−1 exp(: Pc

3(z) :) : Nc : : Dc :, (12)

wherePc
3(z) = Fc

3(x + Aε, px + Bε, y, py, ε), and for
the map of the repetitiven-cell systemMnc we obtain after
some straightforward manipulations

: Mnc : =2 exp(: nS3(D
−1
c z) − nCε2/2 :). (13)

In this representation the aberration functionS3 is given by

S3(z) =
1

n

n−1
∑

m=1

Pc
3(M̂

m
c ẑ, ε) (14)

and is not an arbitrary polynomial anymore. It is the re-
sult of the application of the Reynolds (averaging) opera-
tor of the cyclic groupCn generated by the matrix̂Mc to
the polynomialPc

3 and for an arbitraryPc
3 is a polynomial

which remains invariant under the group action.
As an abstract object the groupCn is unique and for all

possible matriceŝMc satisfying (4) we have groups which
are isomorphic each other, but not all of them are conjugate.
So that as groups of symmetries they can be distinct and
can have different number of invariant homogeneous poly-
nomials (remaining aberrations in (14)), and this depends
on the choice of the periodic cell phase advancesµc

x and
µc
y. For the mid-plane symmetric system the polynomial

Fc
3 (and therefore the polynomialPc

3) can have as much
as 18 nonzero monomials responsible for the independent
transverse aberrations, while with the proper selection of
the cell phase advances the number of independent trans-
verse aberrations of then-cell system can be reduced to six
for n = 2, 3 and to two forn ≥ 4 [1].

SECOND-ORDER ABERRATIONS OF
STRAIGHT DRIFT-QUADRUPOLE CELL

The map of the straight drift-quadrupole cellMs does
not have second order geometric aberrations, does not gen-
erate second order dispersions and the transverse motion
still remains uncoupled with the first nonlinear correction
terms taken into account. Thus it can be written as

: Ms : =2 exp(: Fs
3 (z) :) : Ms :, (15)

where

Fs
3 (z) = −

ε

2
·

(

Qx(x, px) +Qy(y, py) − ls
ε2

γ2
0

)

, (16)

Qx andQy are quadratic forms,ls is the cell length, andγ0
is the Lorentz factor of the reference particle.

The structure of the second-order aberrations (16) can be
further clarified using that for every drift-quadrupole sys-
tem (which is not a pure drift space) there exists an unique
set of Twiss parameters (apochromatic Twiss parameters),
which will be transported through that system without first
order chromatic distortions [3]. Letβa

x,y, αa
x,y and γa

x,y

be these apochromatic Twiss parameters and
{

Iax(τ) = γa
x(τ)x

2 + 2αa
x(τ)x px + βa

x(τ) p
2
x

Iay (τ) = γa
y (τ) y

2 + 2αa
y(τ) y py + βa

y (τ) p
2
y

(17)

the corresponding Courant-Snyder quadratic forms. Then,
as it was shown in [3], the quadratic formsQx,y can be
expressed through these Courant-Snyder quadratic forms
taken at the cell entrance as follows

Qx,y = ξx,y(β
a
x,y) · I

a
x,y(0), (18)

where ξx(β
a
x) and ξy(β

a
y ) are the cell chromaticities cal-

culated for the apochromatic Twiss parameters.

COMBINED SYSTEM AS
SECOND-ORDER ACHROMAT

We now turn our attention to the main subject of this
paper. Let us consider a system where a bend magnet
block arranged in an achromat-like fashion is followed by
a straight drift-quadrupole cell. The formulas (13) and (15)
tell us that the map of the combined systemMs(Mnc) will
not have transverse second-order aberrations, if and only if

n · S3(x−Aε, px −Bε, y, py, ε)−

n · S3(−Aε, −Bε, 0, 0, ε) =

ε

2
·
(

ξx(β
a
x) · I

a
x(0) + ξy(β

a
y ) · I

a
y (0)

)

. (19)



This equation gives the necessary and sufficient conditions
for the map of the combined system to be a second-order
achromat and will be analyzed in more detail. As the first
step, let us rewrite the functionS3 in the form

S3(z) =

3
∑

m=0

εm · S3,3−m(ẑ), (20)

where each of the functionsS3,m is a homogeneous poly-
nomial of degreem in the transverse variableŝz. Accord-
ing to the mid-plane symmetry we have, additionally, that

S3,1(ẑ) = S3,1(x, px) (21)

does not depend on the variablesy andpy, and that

S3,2(ẑ) = Sx
3,2(x, px) + S

y
3,2(y, py). (22)

Substituting (20) into (19) we obtain that the equation (19)
is equivalent to the following system of four equations:
Condition for the absence of geometric aberrations

S3,3(ẑ) = 0, (23)

two conditions for the absence of chromatic focusing terms

2n · Sx
3,2(x, px) = ξx(β

a
x) · I

a
x(0), (24)

2n · S
y
3,2(y, py) = ξy(β

a
y ) · I

a
y (0), (25)

and condition for the absence of second-order dispersions

n · S3,1(x, px) = ξx(β
a
x) · ([γ

a
x(0)A+ αa

x(0)B] · x+

[αa
x(0)A + βa

x(0)B] · px) . (26)

The first important observation from the equations (23)-
(26) is that the functions in their left hand sides are invari-
ants of the group generated by the matrixM̂c, and therefore
so must be the functions in the right hand sides. Otherwise
these equations cannot be satisfied whatever number of sex-
tupole families we will use in the first dispersive part of the
system.

If the matrixMcx is equal to the identity matrix, then
for n = 2 the functionS3 has the same 18 independent
transverse aberrations as the functionFc

3 and forn ≥ 3
this number is reduced to 12. That is not much and, if we
want to use automatic cancellation of some aberrations in
the achromat-like part of the system efficiently, we have to
assume thatMcx 6= I. But from this assumption it fol-
lows that linear inx andpx functions can not be invariants
(i.e. S3,1(x, px) = 0) and thus the right hand side of the
equation (26) must be equal to zero. There is only one pos-
sibility to satisfy this condition, namely one has to make
the basic cell of the achromat-like part of our system to be
free from the linear dispersions, i.e.rc16 andrc26 must be
equal to zero.

The equations (24) and (25) are similar to each other and
we consider only the first. The way of satisfying the equa-
tion (24) depends on the choice of the horizontal phase ad-
vance. If this phase advance is in the second order reso-
nance (i.e. ifµc

x is multiple ofπ), then monomialsx2, xpx
andp2x are invariants and the equation (24) can be solved

with the three sextupole families properly arranged in the
dispersive regions of the achromat-like part of the system.
If not, then there is only one functionally independent in-
variant of the group generated by the matrix̂Mc which is
quadratic inx, px, and this invariant can be chosen equal
to the Courant-Snyder quadratic form corresponding to the
periodic Twiss parameters of the matrixMcx. So in this sit-
uation the equation (24) can be satisfied with one sextupole
family, but if, and only if, the periodic Twiss parameters of
the matrixMcx coincide with the horizontal apochromatic
Twiss parameters of the straight drift-quadrupole cell.

And finally, the equation (23) can be satisfied either by
sextupoles or one can select such phase advancesµc

x,y that
none of the combinations3µc

x andµc
x ± 2µc

y is multiple of
2π and use automatic cancellation, which excludes the case
n = 3 from considerations [1].

SUMMARY

In this paper we have considered a mid-plane symmet-
ric magnetostatic beamline where a bend magnetn-cell
repetitive system with the overall linear transfer matrix
equal to the identity matrix is followed by a straight drift-
quadrupole block (which is not a pure drift space) and
presented the necessary and sufficient conditions for this
beamline to be a second-order achromat in the form of the
four equations (23)-(26). Besides that, we have shown that
these equations can be satisfied using only six, four or two
sextupole families. In doing so one has to select such peri-
odic cell phase advancesµc

x,y that none of the combinations
3µc

x andµc
x ± 2µc

y is multiple of2π (which excludes from
considerations the casen = 3) and then decide, for each
transverse plane separately, if the phase advance for this
plane (µc

x or µc
y) will be multiple ofπ or not. If it will be

multiple ofπ, then one simply uses three sextupole families
for this plane, and if not, then one sextupole family is suf-
ficient, but one has to make the periodic Twiss parameters
of the matrixMc for this plane to coincide with the cor-
responding apochromatic Twiss parameters of the straight
drift-quadrupole cell. And in all cases the linear cell trans-
port matrixMc must be free from dispersions.

For completeness, let us note that if the attached drift-
quadrupole block is a drift space withQx,y = −lsp

2
x,y,

then the solution with the minimal number of sextupole
families requiresµc

x be odd multiple ofπ andµc
y be multi-

ple ofπ (from this it follows thatn = 2), B in (10) equal
to zero, and six sextupole families.
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