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Theoretical description of two ultracold atoms in finite 3D optical lattices using

realistic interatomic interaction potentials
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A theoretical approach is described for an exact numerical treatment of a pair of ultracold atoms
interacting via a central potential that are trapped in a finite three-dimensional optical lattice. The
coupling of center-of-mass and relative-motion coordinates is treated using an exact diagonaliza-
tion (configuration-interaction) approach. The orthorhombic symmetry of an optical lattice with
three different but orthogonal lattice vectors is explicitly considered as is the Fermionic or Bosonic
symmetry in the case of indistinguishable particles.

I. INTRODUCTION

The physics of ultracold quantum gases attracts a
lot of interest since the experimental observation of
Bose-Einstein condensation in dilute alkali-metal atom
gases [1, 2]. Besides the exciting physics of ultracold
gases by itself, a further important progress was the load-
ing of the ultracold gas into an optical lattice formed
with the aid of standing light waves [3–5]. The optical
lattice resembles in some sense the periodicity of a crys-
tal potential [6–9], but is practically free of phonons. In
contrast to real solids the lattice parameters are, in addi-
tion, easily tunable by a variation of the laser intensity,
the relative orientation of the laser beams, or the wave-
length. In the first case the lattice depth, in the other
cases the lattice geometry can be manipulated.

Moreover, in the ultracold regime the effective long-
range interaction between atoms is usually well charac-
terized by a single parameter, the scattering length [10].
This simplifies the investigation of atomic systems in the
ultracold regime. The effective interaction can be either
attractive or repulsive, depending on the type of atoms
involved. While different kinds of chemical elements,
their isotopes, or atoms in different electronic or spin
states cover already a wide range of interaction strengths,
an almost full tunability of the atom-atom interactions in
ultracold gases is achieved using magnetic Feshbach reso-
nances [11, 12]. Close to the resonance value of the mag-
netic field the scattering length diverges and the effec-
tive interaction varies in a wide range, in principle from
being infinitely strongly repulsive to infinitely strongly
attractive. This possibility of active control of the in-
terparticle interaction makes ultracold atoms in optical
lattices an ideal tool for, e. g., exploring the properties of
many-body Hamiltonians describing particles in periodic
potentials, like the Hubbard model [3, 13]. Examples are
the experimental studies of a Bosonic Mott insulator [4],
a Fermionic band insulator [5], or the simulation of anti-
ferromagnetic spin chains in an optical lattice [14].

A further important aspect of ultracold quantum gases

∗present address: Institut für Theoretische Physik, Universität des

Saarlandes, 66041 Saarbrücken, Germany

in optical lattices is the in principle arbitrary filling that
can be realized, while the filling is strongly constrained in
usual solid-state systems by charge neutrality. Ultracold
quantum gases thus allow studies far away from the often
considered half-filling case. One interesting limit is the
one of very sparsely populated lattices in which few-body
quantum dynamics can be studied very accurately [15].
This initiated recently a number of corresponding the-
oretical studies [16–18]. These investigations are often
further motivated by the fact that the direct experimen-
tal control of many parameters together with the high
degree of coherence that is not destroyed by phonons led
to proposals to use ultracold quantum gases in optical lat-
tices in quantum-information applications like quantum
simulators or even quantum computers [8, 9, 14, 19–21].
For such applications a very precise knowledge about the
microscopic interactions between quantum particles in an
optical lattice is a prerequisite.

At the required level of accuracy a description of the
atoms as simply being trapped in an array of harmonic
potentials becomes inappropriate. For example, during
a controlled quantum-gate operation it is usually neces-
sary to bring two atoms from different sites into contact
with each other. Atoms in different electronic states may
be involved in such an operation, as those states may
encode the two qubit states (|0〉 and |1〉). However, in
such a case the center-of-mass (c.m.) and relative (rel.)
motions of two atoms even in the same potential well
do not separate, even not within the harmonic approx-
imation [22, 23]. This is due to the fact that different
hyperfine states are usually accompanied by different po-
larizabilites. Thus the atoms in different states experi-
ence different trapping frequencies even within the har-
monic approximation. Evidently, such a non-separability
of c.m. and rel. motions always occurs for heteronuclear
systems (different atomic species) with different masses
and polarizabilites. Experimental evidence for the corre-
sponding breakdown of the harmonic approximation for
a heteronuclear system was given in [24] and theoreti-
cally confirmed [25, 26]. If the considered atoms are not
tightly bound in the same potential well and thus if the
multi-well structure of the optical lattice is important,
there is evidently no separability of c.m. and rel. motion,
even not for identical atoms.

Already the theoretical treatment of two atoms in an
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optical lattice is a formidable task, if realistic atom-atom
interaction needs to be considered. While this interaction
may often be described by a central force, the interaction
potential stems from laborious quantum-chemistry calcu-
lations and is thus only numerically given. The transition
to c.m. and rel. coordinates simplifies the problem dra-
matically, since the interatomic interaction affects only
the rel. motion and in the case of an isotropic interac-
tion even only the radial part of it. However, the above-
mentioned non-separability demands finally to treat the
full six-dimensional problem. Furthermore, the matrix
elements describing the interaction with the trapping po-
tential become more involved, since they do not separate
in c.m. and rel. coordinates. Alternatively, the problem
may be solved in (absolute) Cartesian coordinates. In
this case the potential describing the optical lattice sep-
arates for both particles and, e. g., in the orthorhombic
case even for the three Cartesian coordinates. However,
in this case the particle interaction terms restore the non-
separability of the six-dimensional problem, except for
very special cases like the r2n potentials [27] where r is
the radial coordinate of rel. motion and n is an integer.
In view of its universality with respect to the interparti-
cle interaction the treatment in c.m. and rel. coordinates
is favorable. Furthermore, as will be shown in detail be-
low, the use of Taylor expansions of the optical-lattice
potential allows for a reasonable efficiency.

In this work a numerical approach is presented for the
theoretical treatment of two particles that interact via a
central (isotropic) interaction potential and are trapped
in a finite orthorhombic sin2- or cos2-type periodic po-
tential. While the main motivation is the treatment of
ultracold atoms and molecules in optical lattices, the
code allows also to treat other particles and was, e. g., re-
cently also employed in a study of electrons and excitons
in quantum-dot molecules. The uncoupled Schrödinger
equations for c.m. and rel. motion are solved by an ex-
pansion of the radial parts in B splines and the angular
parts in spherical harmonics. The coupling is then con-
sidered by means of configuration interaction (exact di-
agonalization). The orthorhombic D2h symmetry is fully
accounted for.

The approach was already successfully applied in a sys-
tematic investigation of the effects of anharmonicity and
coupling of c.m. and rel. motion for two atoms in a single
well of an optical lattice [26]. Together with the exper-
imental results in [24] this allowed the conclusion that
only the inclusion of the effects of anharmonicity and cou-
pling (and thus deviations from a simple uncoupled har-
monic model) lead to agreement with experiment. Fur-
thermore, considering a triple-well potential the optimal
Bose-Hubbard parameter were obtained and the range of
validity of the Bose-Hubbard model was explored quanti-
tatively [28]. Such a study is of importance, as it provides
a link to many-body physics and large lattices within the
most popular model for the description of ultracold atoms
in optical lattices [3]. It should be emphasized that in
view of proposed quantum-information applications the

physics of, e. g., few atoms in double-well potentials is,
however, already of interest by itself [29–34]. The triple-
well system was on the other hand, e. g., proposed to
serve as a transistor, where the population of the middle
well controls the tunneling of particles from the left to
the right well [35].
The paper is organized in the following way. In Sec. II

the system and its Hamiltonian is introduced. This
includes the choice of coordinate system in Sec. II A,
the Taylor expansion of the optical-lattice potential in
Sec. II B, and the consequent expansion of its angular
part in spherical harmonics in Sec. II C. The obtained
final form of the Hamiltonian and the alternative cos2

lattice are discussed in Secs. II C 2 and IIC 3, respec-
tively. Sec. III describes the exact diagonalization ap-
proach with the corresponding Schrödinger equations in
Sec. III A and all matrix elements that have to be calcu-
lated in Sec. III B. The implementation of symmetry into
the approach is described in Sec. IV. In Sec. V computa-
tional details are given. This includes practical aspects of
the interaction potential in Sec. VA, basis-set consider-
ations in Sec. VB, an example calculation of rel. motion
orbitals for a highly anisotropic trap potential including a
convergence study in Sec. VC, and practical issues of the
final exact-diagonalization step in Sec. VD. The paper
closes with a brief summary and outlook in Sec. VI.

II. HAMILTONIAN FOR TWO ATOMS IN AN
OPTICAL LATTICE

A. System and coordinates

The Hamiltonian describing two interacting atoms
with coordinate vectors ~r1, ~r2 that are trapped in a three-
dimensional optical lattice is given by

Ĥ(~r1, ~r2) =

2∑

j=1

Ĥj(~rj) + Û(~r1, ~r2) (1)

with

Ĥj(~rj) = T̂j(~rj) + V̂j(~rj) (2)

where T̂j is the one-particle kinetic energy operator, V̂j

is the trapping potential of the optical lattice for particle
j, and Û is the atom-atom interaction potential. If the
lattice is formed by three counterpropagating laser fields
that are orthogonal to each other, the atoms experience
the periodic potential

V̂j(~rj) =
∑

c=x,y,z

V j
c sin2(kccj) , (3)

due to the dipole forces, if the laser frequencies are suffi-
ciently far-detuned from resonant transitions. In Eq. (3)
V j
c is the potential depth acting on particle j along the

direction c (= x, y, z) and is equal to the product of the
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laser intensity Ic and the polarizability of the particle j.
Furthermore, kc = 2π/λc is the wave vector and λc is the
wavelength of the laser that creates the lattice potential
along the coordinate c.
A direct solution of the Schrödinger equation with the

Hamiltonian given in the form of Eq. (1) is complicated,

since Û depends in general on all six coordinates describ-
ing the two-particle system, even if the atom-atom inter-
action is central, i. e., Û(~r1, ~r2) = Û(|~r1−~r2|) =: û(r) with
r = |~r1 − ~r2|. For realistic interatomic interaction poten-
tials, there is no separability and this leads to very de-
manding six-dimensional integrals. Therefore, it is more
convenient to treat the two-particle problem in the c.m.

and rel. coordinates, ~R and ~r respectively, defined as

~r = ~r1 − ~r2 , ~R = µ1~r1 + µ2~r2 (4)

with the dimensionless parameters µ1 = m1/(m1 +m2)
and µ2 = m2/(m1+m2) where mj is the mass of the jth
particle. The system of two atoms in a 3D space as well
as the c.m.-rel. coordinate system is sketched in Fig. 1.
The evident advantage of this choice of coordinates is the
fact that the interaction potential acts only on the rel.
coordinate ~r and thus on three instead of six dimensions.
If spherical coordinates are adopted, a central interaction
potential û(r) depends even on the radial coordinate r
only.

r

r2

r1

R

0

Z

Y

X

2

1

FIG. 1: Two particles 1 and 2 in the absolute and c.m.-rel. Carte-

sian coordinate systems.

On the other hand, the formulation of the two-particle
problem in the c.m. and rel. coordinates complicates the
treatment of the trapping potential, because its original
separability in the absolute Cartesian coordinates ~rj is
lost in the c.m.-rel. system. Only within the harmonic
approximation for the trapping potential and for two
identical atoms in the same internal state there is com-
plete separability in c.m.-rel. coordinates [36]. If the true
atom-atom interaction is furthermore replaced by a δ-
function pseudopotential, the corresponding Schrödinger
equation possesses an analytical solution for isotropic and
some anisotropic harmonic traps [37, 38]. However, even
within the harmonic approximation the separability is
lost, if the two atoms experience different trapping po-
tentials. This is the case, if a heteronuclear system or

two identical atoms in different electronic states are con-
sidered. In the general case of a treatment beyond the
harmonic approximation and, especially, if the atoms are
spread over more than one potential well, there is evi-
dently no separability at all.
In order to keep the flexibility with respect to the inter-

particle interaction and the advantage of its simple han-
dling by using spherical c.m. and rel. coordinates, the
optical-lattice potential has to be brought into a form
that is convenient for its numerical treatment in those
coordinates. This is done in two steps. First, a Taylor
expansion of the sinusoidal trapping potential (3) is per-
formed in Cartesian c.m. and rel. coordinates (Sec. II B).
The result is then transformed into spherical coordinates
using an expansion in spherical harmonics (Sec. II C).

B. Taylor expansion of the optical-lattice potential

The optical-lattice potential for both particles in
Eq. (3) is given in the Cartesian c.m.-rel. coordinates
~Rc and ~rc (c = x, y, z) as

V̂(~R,~r ) =
2∑

i=1

∑

c=x,y,z

V i
c

× sin2(kc[Rc + (−1)i−1µηi
rc]) (5)

where the index ηi = i + (−1)i−1 was introduced for
compactness. Using the standard trigonometric relations
the optical-lattice potential can be rewritten in the more
suitable form

V̂(~R,~r ) =
1

2

2∑

i=1

∑

c=x,y,z

V i
c [1 + (−1)ηi sin(2kcRc)

× sin(2kcrcµηi
)− cos(2kcRc) cos(2kcrcµηi

)] . (6)

In order to achieve a maximal separation of the coordi-

nates ~R and ~r the trigonometric functions in Eq. (6) are
expanded in Taylor series around the origin of the c.m.
and rel. coordinates,

sin(2kcRc) sin(2kcrcµηs
) =

∞∑

j=0

∞∑

i=0

(−1)i+j

(2i+ 1)!(2j + 1)!

× (2kc)
2i+1(2kcµηs

)2j+1R2i+1
c r2j+1

c , (7)

cos(2kcRc) cos(2kcrcµηs
) =

∞∑

t=0

∞∑

k=0

(−1)k+t

(2k)!(2t)!

× (2kc)
2k(2kcµηs

)2tR2k
c r2tc . (8)

In a practical numerical implementation, the infinite
sum must be truncated. If, for example, the expan-
sion is restricted up to the (2n)th degree (with the or-
der n = 1, 2, 3, ...), the infinite summations in Eqs. (7)
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and (8) are changed, since the indices fulfill

2i+ 1 + 2j + 1 ≤ 2n with

i ≤ n− 1− j and j ≤ n− 1 ,

2k + 2t ≤ 2n with

k ≤ n− t and t ≤ n . (9)

Hence, the optical-lattice potential can be approximated
by a Taylor expansion of degree (2n) as

V̂(~R,~r) ≈
1

2

2∑

s=1

∑

c=x,y,z

V s
c

[

1 + (−1)ηs

n−1∑

j=0

×

n−1−j
∑

i=0

C
sin
ijcsR

2i+1
c r2j+1

c −

n∑

t=0

n−t∑

k=0

C
cos
tkcsR

2k
c r

2t
c

]

(10)

where the coefficients

C
cos
tkcs =

(−1)k+t

(2k)!(2t)!
(2kc)

2(k+t)µ2t
ηs
, (11)

C
sin
ijcs =

(−1)i+j

(2i+ 1)!(2j + 1)!
(2kc)

2(i+j+1)µ2j+1
ηs

(12)

are introduced for compactness.
Using Eq. (10) it is possible to split the optical-lattice

potential according to

V̂(~R,~r) = v̂c.m.(~R) + v̂rel.(~r) + Ŵ(~R,~r) (13)

into v̂c.m. and v̂rel. that contain all terms depending solely
on the c.m. coordinate and the rel. coordinate, respec-
tively. The coupling terms between c.m. and rel. motion
are now contained in Ŵ. The three components of V̂ are

v̂c.m.(~R) = −
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

k=1

C
cos
0kcsR

2k
c (14)

v̂rel.(~r) = −
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

t=1

C
cos
t0csr

2t
c (15)

Ŵ(~R,~r) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

[

(−1)ηs

×
n−1∑

j=0

n−1−j
∑

i=0

C
sin
ijcsR

2i+1
c r2j+1

c −
n∑

t=1

n−t∑

k=1

C
cos
tkcsR

2k
c r2tc

]

.

(16)

Note that the sum
0∑

k=1

that occurs for n = 1 in the second

term of Eq. (16) does not indicate an inverse summation
but its absence, i.e., no sum at all.

As a result of the Taylor expansion the Hamiltonian
(1) is transformed into the more convenient form

Ĥ(~R,~r ) = ĥc.m.(~R ) + ĥrel.(~r ) + Ŵ(~R,~r ) (17)

with

ĥc.m.(~R ) = t̂c.m.(~R ) + v̂c.m.(~R ), (18)

ĥrel.(~r ) = t̂rel.(~r ) + v̂rel.(~r ) + û(r) (19)

where we introduced t̂rel. and t̂c.m. for the kinetic-energy
operators of the c.m. and the rel. motion, respectively. It
is worth emphasizing that in the present formulation only
the truly non-separable terms (represented by products of
the c.m. and rel. coordinates) are left in the coupling term

Ŵ. All separable terms of the optical lattice potential are

included into the c.m. and rel. Hamiltonians ĥc.m. and
ĥrel., respectively.

In fact, there is a specific case in which the optical-
lattice potential in Eq. (6) can be brought into the form
of Eq. (13) and thus the Hamiltonian (17) can be ob-
tained without performing the Taylor expansion. This is
the case for two identical particles that are both in the
same state, if they are deposited in a cubic lattice with
equal intensities and k vectors along each of the spatial
directions [22]. If all these conditions are satisfied, then
Eq. (6) can be written as

v̂c.m.(~R) = 2V0
∑

c=x,y,z

sin2 (kRc) , (20)

v̂rel.(~r) = 2V0
∑

c=x,y,z

sin2
(
krc
2

)

, (21)

Ŵ(~R,~r) = −4V0
∑

c=x,y,z

sin2(kRc) sin
2

(
krc
2

)

. (22)

Noteworthy, the sum of the sin2-shaped lattice po-
tentials for the two individual particles transforms into
sin2-shaped potentials for both the c.m. and rel. motion,
though the one of the c.m. motion possesses a different
periodicity. In fact, this is also true in the here con-
sidered general case of a heteronuclear atom pair in an
orthorhombic lattice. This is easily seen by extending
the Taylor expansions in Eqs. (14) to (16) which gives

lim
n→∞

v̂c.m.(~R) =

2∑

s=1

∑

c=x,y,z

V s
c sin2(kcRc) , (23)

lim
n→∞

v̂rel.(~r) =

2∑

s=1

∑

c=x,y,z

V s
c sin2(kcrcµηs

) , (24)
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lim
n→∞

Ŵ(~R,~r) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

[

(−1)ηs

sin(2kcRc) sin(2kcrcµηs
)

−

n∑

t=1

n−t∑

k=1

C
cos
tkcsR

2k
c r

2t
c

]

. (25)

Since an analytical solution for the sin2-like lattice
and non-interacting particles exists [39], those uncoupled
known solutions of the Schrödinger equations with the
Hamiltonians in Eqs. (23) and (24) could be used as a
basis for solving the coupled problem. However, due to
the presence of the central interaction potential a trans-
formation to the spherical coordinate system is advan-

tageous, since Û(~r) = Û(
√

x2 + y2 + z2) does normally
not allow for a simple solution in Cartesian coordinates.
However, this change of coordinates is inconvenient, since
the mentioned analytical solutions of the sin2 potential
do not split into simple products of the radial and an-
gular parts. Since Û can in principle have any possible
functional form, it is more convenient to transform the
optical-lattice potential into a form that is suitable for a
calculation in spherical coordinates. This is done in the
following subsection by an expansion in spherical har-
monics.

C. Expansion of the optical-lattice potential in
spherical harmonics

1. Auxiliary functions Y
c
lmt and Ỹ

c
lmt

In order to express the optical-lattices potentials v̂c.m.,
v̂rel., and Ŵ in Eqs. (14), (15), and (16), respectively, in
terms of the spherical harmonics Y m

l , the corresponding

polynomials in the Cartesian coordinates ~r t
c and ~Rt

c have
to be rewritten as radial part times an angular function,
i. e., as rtc F

c
t (θ, φ) and Rt

c F
c
t (θ, φ), respectively. Every

function of the angles φ and θ and thus F c
t can be ex-

panded in spherical harmonics according to

F c
t (θ, φ) =

∞∑

l=0

l∑

m=−l

Y
c
lmtY

m
l (θ, φ) (26)

where the projection coefficients Yc
lmt are given as

Y
c
lmt = (−1)mAl−m

∫

Ω

dΩF c
t (θ, φ)P

−m
l (θ)e−imφ . (27)

In Eq. (27) i stands for the imaginary unit, Pm
l (θ) are the

associated Legendre polynomials and Al−m is a constant
prefactor which is defined by

Alm =

√

2l + 1

4π

(l −m)!

(l +m)!
. (28)

Finally, the integral over the angular arguments is
∫

Ω dΩ =
π∫

0

dθ
2π∫

0

dφ sin(θ). Due to their different proper-

ties, it is useful to distinguish two types of the expansion
coefficients Yc

lmt, those with even values of t and those
with odd t. The latter ones are in the following denoted
as Ỹc

lmt. According to Eqs. (14) and (15) only even pow-
ers of the Cartesian c.m. and rel. coordinates occur in the
Taylor expansions of v̂c.m. and v̂rel. and thus only Yc

lmt
has to be evaluated in those cases. However, the coupling
term Ŵ contains additionally odd powers of Rc and rc
and thus requires also the calculation of Ỹc

lmt.
First, the calculation of the even-order coefficients

Yx
lmt, Y

y
lmt, and Yz

lmt will be considered. They contain

the functions F c
t (θ, φ) that are equal to cos2t(φ) sin2t(θ)

(c = x), sin2t(φ) sin2t(θ) (c = y), and cos2t(θ) (c = z).
Consider the integral for Yx

lmt. The derivation of Yx
lmt is

simplified by applying the Euler formula for cos2t(φ) and
making use of Eq. (1.111) in Ref. [40]. The introduction
of the new integration variable ξ = cos (θ) transforms
the integration limits in (27) from [0, π] of θ to [−1, 1] for
ξ. Clearly, the integral is non-zero only, if the integrand
is symmetric in the [−1, 1] interval. At this point it is
important to note that the associated Legendre function
Pm
l is even, if the l + |m| sum is even, and odd other-

wise. Since the summation index k in Eq. (1.111) from
Ref. [40] is an integer that lies in the interval 0 ≤ k ≤ 2t,
the relation −2t ≤ m ≤ 2t is valid. Hence, the m index
is always even. Therefore, the integral is non-zero only
for even values of l. Additionally, there are, of course,
the natural restrictions on the l and m coefficients, i. e.,
l ≥ 0 and |m| ≤ l. Another important fact is that the

functions P
|m|≤l,|m|≤2t
l>2t (ξ) are oscillatory in the interval

[−1, 1] and the symmetry of the integrand causes the con-
tribution of negative and positive parts to cancel out,
leading to a vanishing integral. Hence, one more restric-
tion on l is l ≤ 2t. Additionally, Eq. (7.132.1) for the inte-
gral over the associated Legendre function together with
Eqs. (8.339.2), (8.339.3) and (8.331.1) (all from Ref. [40])
were used in the calculations.
Summarizing all the steps mentioned above and col-

lecting the indices that do not give trivial zero contribu-
tions, the analytical form of Yx

lmt can be given as

Y
x
lmt = (−1)

l+m
2 2−

m
2
−t+2Al−m π

(
2t

t+ m
2

)

×
(t− m

2 )!(t+
m
2 )!(l −m− 1)!!

(t− l
2 )!(

l
2 + m

2 )!(2t+ l + 1)!!
,

l,m even, − 2t ≤ m ≤ 2t, |m| ≤ l, l ≤ 2t . (29)

The derivation of the Y
y
lmt coefficient is similar to the

one for Yx
lmt and results in

Y
y
lmt = (−1)

m
2 Y

x
lmt (30)

with the same constraints for the indices as for Y
x
lmt.

In order to derive the Y
z
lmt coefficients, Eqs. (7.231.1)
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and (8.752.2) from Ref. [40] were additionally used. This
gives

Y
z
lmt = Al0 (−1)

l
2πδm,0

2
l
2
+2(2t− 1)!!

(l + 2t+ 1)!!

l/2−1
∏

i=0

(−t+ i) ,

l even, l ≤ 2t , (31)

where δi,j is Kronecker’s delta.

Finally, the odd-order coefficients Ỹx
lmj , Ỹ

y
lmj ,

and Ỹz
lmj have to be calculated efficiently. They

contain the F c
t (θ , φ) functions that are equal to

cos2j+1(φ) sin2j+1(θ), sin2j+1(φ) sin2j+1(θ), and

cos2j+1(θ), respectively. The Ỹ
c
lmt coefficients can

also be calculated analytically. Consider, for example,
the integral for Ỹx

lmj . Application of the Euler for-

mula for the cos2j+1(φ) term and use of Eqs. (1.111)
and (7.231.2) from Ref. [40] leads to

Ỹ
x
lmj = (−1)

l+m
2 2

3−2j−m
2 Al−m

(
2j + 1

j +
m+ 1

2

)

× π

(
2j+1−m

2

)
!
(
2j+1+m

2

)
!(l −m− 1)!!

(
2j+1−l

2

)

!
(
m+l
2

)
!(2j + l + 2)!!

,

l,m are odd, − 2j − 1 ≤ m ≤ 2j + 1, l ≤ 2j + 1 . (32)

The derivation of Ỹy
lmj is also similar to the one of Ỹx

lmj
and results in

Ỹ
y
lmj = i (−1)

m−3

2 Ỹ
x
lmj (33)

with the same constraints on the indices as for Ỹx
lmj .

Finally, Ỹz
lmj is given by

Ỹ
z
lmj = Al04πδm,0(−2)

l−1

2
(2j + 1)!!

(2j + l + 2)!!

l−3

2∏

i=0

(−j+i) (34)

2. Final form of the Hamiltonian

The final expression for the optical-lattice potential is
obtained by inserting F c

t (θ, φ) as defined in Eq. (26) for

the angular part of the polynomials of ~R and ~r occurring
in Eqs. (14), (15), and (16). For the three terms

v̂c.m.(R,Θ,Φ) = −
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

k=1

C
cos
0kcsR

2k

×

2k∑

L=0,{2}

L∑

M=−L,{2}

Y
c
LMkY

M
L (Θ,Φ) , (35)

v̂rel.(r, θ, φ) = −
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

t=1

C
cos
t0cs r

2t

×

2t∑

l=0,{2}

l∑

m=−l,{2}

Y
c
lmtY

m
l (θ, φ) , (36)

and

Ŵ(R,Θ,Φ, r, θ, φ) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

×



(−1)ηs

n−1∑

j=0

n−1−j
∑

i=0

C
sin
ijcsR

2i+1r2j+1

×

2j+1
∑

l=1,{2}



Ỹ
c
l0jY

0
l (θ, φ) +

l∑

m=−l,{2}

Ỹ
c
lmjY

m
l (θ, φ)





×

2i+1∑

L=1,{2}



Ỹ
c
L0iY

0
L (Θ,Φ) +

L∑

M=−L,{2}

Ỹ
c
LMiY

M
L (Θ,Φ)





−

n∑

t=1

n−t∑

k=1

C
cos
tkcsR

2kr2t
2t∑

l=0,{2}

l∑

m=−l,{2}

Y
c
lmtY

m
l (θ, φ)

×
2k∑

L=0,{2}

L∑

M=−L,{2}

Y
c
LMkY

M
L (Θ,Φ)



 (37)

is found where, e. g.,
2t∑

l=0,{2}

stands for
2t∑

l=0,2,4,...

. In

Eq. (37) Ỹx
l0j = Ỹ

y
l0j = 0 and Ỹz

lmj = 0 for m 6= 0 is
implied.
As a result of adopting spherical c.m. and rel. coordi-

nates the Hamiltonian

Ĥ(r, θ, φ,R,Θ,Φ) = ĥrel.(r, θ, φ) + ĥc.m.(R,Θ,Φ)

+ Ŵ(r, θ, φ,R,Θ,Φ) (38)

is obtained with

ĥc.m.(R,Θ,Φ) = −
1

2M

[
∂2

∂R2
+

2

R

∂

∂R
−

Î
2
c.m.

R2

]

+ v̂c.m.(R,Θ,Φ) (39)

and

ĥrel.(r, θ, φ) = −
1

2µ

[
∂2

∂r2
+
2

r

∂

∂r
−

Î
2
rel.

r2

]

+ û(r)

+ v̂rel.(r, θ, φ) . (40)

In these equations Îc.m. and Îrel. are the operators of
angular momentum, µ = m1m2/(m1+m2) is the reduced
mass, and M = m1 + m2 is the total mass of the two
particles.
The key achievement is that now all terms in the

Hamiltonian are at most a sum over products of func-
tions that depend only on a single coordinate, i. e.,
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f1(R)f2(Θ)f3(Φ)g1(r)g2(θ)g3(φ). As a result all required
integrals are at most products of one-dimensional inte-
grals.

3. Finite and cos2 lattices

-6 -4 -2 0 2 4 6
X

0

0.5

1

f(
X

)

(a)

-6 -4 -2 0 2 4 6
X

0

0.5

1

f(
X

)

(b)

FIG. 2: (a) The sin2(x) function (black solid) together with
the 2nd- (blue dashes), 3rd- (red dashes), 5th- (blue solid),
7th- (red solid) and 11th-order (green solid) expansion of the
Taylor series. (b) The cos2(x) function (black) together with
the 6th- (green), 7th- (red) and 8th-order (blue) expansion of
the Taylor series.

For practical reasons, the infinite Taylor expansion of
the sin2 potential has to be truncated in a calculation. In
such a situation convergence of the results with respect
to the expansion length is usually aimed for. However,
in the present case some caution has to be applied in
such a study and the interpretation of its outcome [26].
The problem is due to the fact that the Taylor expansion
is performed around the origin. Hence the sin2 lattice is
best described close to the origin, while the deviations in-
crease with increasing distance from it. This is illustrated
in Fig. 2(a) in which the sin2 lattice (along one coordi-
nate) is compared to Taylor expansions of different order.
While the 2nd-order expansion works already very well at
and close to the origin, even the barrier height of the cen-
tral well is not correctly described. On the other hand,
the 3rd-order expansion that includes polynomials up to
6th order and may thus be called sextic potential agrees

very well with the central well of the sin2 potential. The
sextic potential is thus a very good choice for the investi-
gation of the effects of anharmonicity on (tightly) bound
states in a single site of an optical lattice [26]. While in-
creasing the order of the expansion by considering, e. g.,
the 5th- or 7th-order expansion improves the agreement
with the sin2 potential further away from the origin, a
problem occurs. The resulting potential possesses three
wells, but the outer ones have a depth that differs from
the correct one, as is also illustrated in Fig. 2(a). As a
consequence, non-physical resonances may occur due to
tunneling. Hence, a simple convergence study in which
the Taylor expansion is expanded order by order is prob-
lematic. In fact, an even more severe problem is observed
for all even-order expansions like the already discussed
2nd-order one. Those expansions tend to −∞ for x go-
ing to either −∞ or +∞ (or even in both cases as for the
shown 2nd-order expansion). As a consequence, an infi-
nite number of unphysical negative-energy states occur.
In conclusion, the present approach that is based on a

Taylor expansion of the optical-lattice potential is espe-
cially suitable for describing finite optical lattices. With a
judicious choice of the expansion of the sin2 potential the
physics of single- triple-, or higher multiple-well poten-
tials can be well described. For example, the 11th-order
expansion also shown in Fig. 2(a) provides a very good
description of the physics in a triple-well potential [28].
Clearly, even an expansion like the 5th-order one may be
useful, if an asymmetric potential with different depths
of the wells should be considered. Furthermore, with a
sufficiently large number of wells even the physics of a
complete optical lattice can be described in which the
continuum states (or transitions to them) are involved.
In that case convergence with respect to the number of
wells (and not with respect to the expansion length) has
to be achieved, since the true continuum is replaced by
a correspondingly discretized spectrum. In fact, it may
also be reminded that in most experiments involving ul-
tracold atoms in optical lattices there is an additional
confining potential and thus the whole (relevant) spec-
trum can be discrete.
An evident limitation of the sin2 lattice and its Taylor

expansion discussed so far is that only finite lattices with
an odd number of wells can easily be described. Clearly,
in many situations also finite lattices with an even num-
ber of potential wells are of interest. The most promi-
nent example is certainly the double-well potential that is
also of special interest for quantum-information studies.
The physics of few atoms in (one-dimensional) double-
well potentials was recently studied, e. g., in [41]. The
most straightforward extension of the present approach
towards such potentials is by considering a Taylor expan-
sion of the cos2 (or π/2-shifted sin2) potential

V̂cos(~R,~r) =

2∑

s=1

∑

c=x,y,z

V s
c sin2(kccs +

π

2
) . (41)

Using trigonometric relations the optical-lattice potential



8

can be written in the more suitable form

V̂cos(~R,~r) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c [1 + (−1)s sin(2kcRc)

× sin(2kcrcµηs
) + cos(2kcRc) cos(2kcrcµηs

)] . (42)

After derivations similar to the case of the sin2 potential
the splitting of the optical lattice into the c.m. and rel.
motion in the Cartesian frame yields

v̂cos0 =
2∑

s=1

∑

c=x,y,z

V s
c (43)

v̂cosc.m.(
~R) =

1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

k=1

C
cos
0kcsR

2k
c (44)

v̂cosrel.(~r) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

t=1

C
cos
t0csr

2t
c (45)

Ŵcos(~R,~r) =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

[

(−1)s
n−1∑

j=0

(46)

×

n−1−j
∑

i=0

C
sin
ijcsR

2i+1
c r2j+1

c +

n∑

t=1

n−t∑

k=1

C
cos
tkcsR

2k
c r

2t
c

]

where the constant term v̂cos0 appears that was zero for
the sin2 case. Equations (43)-(46) are almost analogous
to Eqs. (14)-(16) for the sin2-like potential. In Fig. 2(b)
the cos2 lattice (along one coordinate) is shown together
with Taylor expansions of different order. In this case, an
even-order expansion should be used to avoid unphysical
negative energy states. For example, while the 6th-order
expansion provides a rather good representation of two
neighbor wells in an optical lattice, the 7th-order expan-
sion leads to negative energy states and does in fact even
not represent the outer potential barriers properly. The
8th-order expansion is again rather good, but leads al-
ready to small artificial side minima.
Since the adopted expansions are independent for the

three orthogonal directions x, y, and z, the present ap-
proach is capable of describing two particles in any com-
bination of different lattices along those three directions.
While, e. g., in [28] a true triple well was described using
the 11th-order expansion of sin2 in one and a harmonic
(1st-order) expansion in the two other directions, alterna-
tively an array of 3×3×3 lattice sites could be described
equally well.

III. EXACT DIAGONALIZATION

A. Schrödinger equations

After having formulated the optical lattice potential
in a suitable form, the solution of the eigenvalue problem
is described in the following. The Schrödinger equation

with the Hamiltonian of (38)

Ĥ |Ψi〉 = Ei |Ψi〉 , (47)

is solved by expanding Ψ in terms of configurations,

Ψi(~R,~r ) =
∑

κ

Ci,κ Φκ(~R,~r ) . (48)

The configurations

Φκ(~R,~r) = ϕiκ(~r )ψjκ (~R ) (49)

are products of the eigenfunctions of the Hamiltonians
of rel. and c.m. motions, respectively, i. e., ϕ and ψ are
solutions of

ĥrel. |ϕi〉 = ǫrel.i |ϕi〉 (50)

and

ĥc.m. |ψj〉 = ǫc.m.
j |ψj〉. (51)

Finally, the wavefunctions of rel. and c.m. motion that
we denote as orbitals (in formal analogy to the one-
particle solutions in electronic-structure calculations) are

expressed in basis functions ϕ̃ and ψ̃ that are products
of B splines and spherical harmonics Y m

l for describing
the radial and the angular parts, respectively,

ϕi(~r) =
∑

a

c̃rel.i,a ϕ̃a (52)

=

Nr∑

α=1

Nl∑

l=0

l∑

m=−l

c̃rel.i,αlm r−1 Bα(r)Y
m
l (θ, φ) (53)

and

ψj(~R) =
∑

b

c̃c.m.
j,b ψ̃b (54)

=

NR∑

β=1

NL∑

L=0

L∑

M=−L

c̃c.m.
j,βLM R−1Bβ(R)Y

M
L (Θ,Φ) .

(55)

In Eqs. (52) and (54), we introduced the compact indices
a ≡ α, l,m and b ≡ β, L,M .
A specific basis set is characterized by the upper lim-

its of angular momentum Nl and NL in the spherical-
harmonic expansions and the numbers Nr and NR of B
splines used in the expansions in Eqs. (53) and (55) as
well as their order krel. (and kc.m.) and knot sequences
[42, 43]. The knot sequences define the ranges of r and R
in which the wave functions are calculated, the so-called
box, though it is, in fact, often a sphere as in the present
case. If the box is chosen sufficiently large for a given
finite trapping potential, all wavefunctions will have de-
cayed before reaching the box boundaries. Otherwise, an
artificial discretization occurs, if a zero-boundary condi-
tion at the wall of the box is enforced by removing the
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last B spline. In this case an investigation of the conver-
gence of the results with respect to the box size has to
be performed.
The insertion of the expansions for ϕ in (53) and ψ

in (55) into the Schrödinger equations (50) and (51), re-
spectively, followed by a multiplication with either ϕ̃∗

i or

ψ̃∗
j (from left) and integration over ~r or ~R leads to gen-

eralized matrix eigenvalue problems of the type

hc̃i = ǫi sc̃i . (56)

Their solutions provide the energies ǫrel.i (and ǫc.m.
j ) as

well as the coefficients c̃rel.i,a (and c̃c.m.
j,b ). The latter define

the rel. and c.m. orbitals ϕ and ψ according to Eqs. (52)
and (54), respectively. Generalized eigenvalue equations
occur due to the non-orthogonality of the B splines. Fur-
thermore, the explicit consideration of the factors r−1

and R−1 transforms the radial part of the Schrödinger
equations into effective one-dimensional ones by remov-
ing the ∂/∂R and ∂/∂r terms in Eqs. (39) and (40). As
a consequence, the diagonalizations provide in fact the
solutions rϕ and Rψ from which ϕ and ψ can, of course,
easily be obtained. Since rϕ and Rψ vanish for r → 0 and
R → 0, respectively, this additional boundary condition
is implemented by removing the first B spline. Together
with the corresponding boundary condition at the outer
box boundaries, the summations in Eqs. (53) and (55)

change into
∑Nr−1

α=2 and
∑Nr−1

β=2 , respectively. In fact,
the actual implementation of the code is flexible with re-
spect to different choices of the boundary conditions at
the origin of rel. and c.m. motions, but in the following
only the standard use based on the reduced summation
limits is considered explicitly for reasons of better read-
ability.
Once the eigenvectors ϕ and ψ are obtained, a set of

configurations Φ is built according to Eq. (49). Again,
insertion of the expansion for Ψ in Eq. (48) into the
Schrödinger equation (47), multiplication with Φ∗

k (from

left), and integration over ~r and ~R yields the matrix
eigenvalue equation

HCi = EiCi . (57)

Due to the orthonormality of the orbitals ϕ and ψ also the
configurations Φ are orthonormal. Therefore, the overlap
matrix is equal to the identity and Eq. (57) is an ordinary
eigenvalue problem.

B. Matrix elements

In order to set up the matrix eigenvalue problems in
Eqs. (56) and (57), the corresponding matrices

hrel.
a,a′ = 〈ϕ̃a|ĥrel.|ϕ̃a′〉 , srel.

a,a′ = 〈ϕ̃a|ϕ̃a′〉 , (58)

hc.m.
b,b′ = 〈ψ̃b|ĥc.m.|ψ̃b′〉 , sc.m.

b,b′ = 〈ψ̃b|ψ̃b′〉 (59)

and

Hκ,κ′ = 〈Φκ|Ĥ|Φκ′〉 (60)

have to be set up. As already mentioned, the overlap
matrix elements between configurations are trivial,

Sκ,κ′ = 〈Φκ|Φκ′〉

= 〈ϕiκψjκ |ϕiκ′
ψjκ′

〉 = δi
κ
,iκ′

δj
κ
,jκ′

= δκ,κ′ . (61)

For convenience, the integrals over B splines and their
derivatives are denoted as

B
λ
∂µα ∂να′ =

∞∫

0

dr rλ
∂µBα(r)

∂rµ
∂νBα′(r)

∂rν
. (62)

Furthermore, the index λ and the orders of the deriva-
tives µ (or ν) are omitted for µ = 0 (ν = 0). For ex-
ample, one has Bαα′ ≡ B0

∂0α∂0α′ . Additionally, it is re-
minded that the character α is reserved for rel. motion
matrix elements and β for c.m. elements. Hence, the cor-
responding notation for the c.m. integral over B splines
analogous to Eq. (62) is

B
λ
∂µβ ∂νβ′ =

∞∫

0

dRRλ ∂
µBβ(R)

∂Rµ

∂νBβ′(R)

∂Rν
. (63)

Since B splines are polynomials, the integrals B can be
calculated exactly by means of Gauss-Legendre quadra-
ture. Due to the compactness (finite local support) of the
B splines the integration limits are in fact finite. If the
two involved B splines do not possess a common interval
where both of them are non-zero, the integral vanishes.
Therefore, only a very limited number of integrals has to
be calculated and the resulting overlap and Hamiltonian
matrices are sparse. In the following, all integrals that
occur in the calculation are discussed individually.

1. Overlap

The overlap matrices between the basis functions ϕ̃
and ψ̃ are not equal to the identity matrix, but

srel.a,a′ = Bαα′

∫

Ω

dΩY m
l

∗(θ, φ)Y m′

l′ (θ, φ) = Bαα′δll′δmm′

(64)
and, similarly,

sc.m.
b,b′ = Bββ′δLL′δMM ′ . (65)

2. Kinetic energy

Since the basis functions are a product of a radial
B spline and a spherical harmonic, the action of the
kinetic-energy operator on them is straightforwardly cal-
culated. Using Î

2
rel.Y

m
l (θ, φ) = l(l + 1)Y m

l (θ, φ) and

Î
2
c.m.Y

M
L (Θ,Φ) = L(L+ 1)YM

L (Θ,Φ), one finds

trel.a,a′ = −
1

2µ
B∂2αα′ δll′δmm′ +

1

2µ
l(l + 1)B−2

αα′ δll′δmm′

=
1

2µ

(
B∂1α ∂1α′ + l(l+ 1)B−2

αα′

)
δll′δmm′ (66)
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for the rel. motion and analogously

tc.m.
b,b′ =

1

2M

(

B∂1β ∂1β′ + L(L+ 1)B−2
ββ′

)

δLL′δMM ′

(67)
for the c.m. motion. Note, the second equality in Eq. (66)
as well as Eq. (67) have to be (slightly) modified, if non-
zero boundary conditions are applied at the origin and
the box boundary.

3. Interparticle interaction

The matrix elements of the interparticle interaction
potential are

ua,a′ = δll′δmm′

∞∫

0

dr u(r)Bα(r)Bα′ (r) . (68)

The compactness of the B splines turns the semi-
indefinite integral into a definite one that has to be calcu-
lated only within a small spatial interval in which Bα and
Bα′ (and, of course, u(r)) are simultaneously non-zero.
In contrast to the case of the B integrals Gauss quadra-
ture is in this case only exact, if u(r) can be expressed
in terms of a finite polynomial expansion. In practice,
the quadrature converges quite well even with a relative
small number of terms. This is again partly due to the
fact that it is sufficient, if a polynomial expansion works
well piecewise, i. e., only within small spatial intervals.

4. Separable part of the trapping potential

Using the property Y mt

lt

∗(θ, φ) = (−1)mtY −mt

lt
(θ, φ)

the product of two spherical harmonics can be expressed
as a sum of products between a spherical harmonic and
the 3j-Wigner symbols,

Y m
l (θ, φ)Y mt

lt
(θ, φ) =

∑

lt,mt

A
0
lt l lt

(
lt l lt
mt m mt

)(
lt l lt
0 0 0

)

Y mt

lt

∗
(θ, φ) . (69)

Here, the coefficient

A
a
b c d = (−1)a

√

(2b+ 1)(2c+ 1)(2d+ 1)

4π
(70)

was introduced for compactness. The Gaunt coefficient
may be obtained as [44, 45]

∫

Ω

dΩY m
l (θ, φ)Y mt

lt
(θ, φ)Y m′

l′
∗
(θ, φ)

=
∑

lt,mt

A
mt

lt l lt

(
lt l lt
mt m mt

)(
lt l lt
0 0 0

)

×

∫

Ω

dΩY −mt

lt
(θ, φ)Y m′

l′
∗
(θ, φ)

︸ ︷︷ ︸

δltl′ δ−mtm′

= A
m′

lt l l′

(
lt l l′

mt m −m′

)(
lt l l′

0 0 0

)

. (71)

Making use of Eq. (71), the angular parts for the ma-
trix elements of the trapping potential can be calculated
straightforwardly. For the separable (uncoupled) parts

vrel.a,a′ = −
1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

t=1

C
cos
t0cs B

2t
α α′

2t∑

lt=0,{2}

×

lt∑

mt=−lt,{2}

Y
c
ltmttA

m′

lt l l′

(
lt l l′

mt m −m′

)(
lt l l′

0 0 0

)

(72)

and

V c.m.
b,b′ = −

1

2

2∑

s=1

∑

c=x,y,z

V s
c

n∑

k=1

C
cos
0kcs B

2k
β β′

×

2k∑

Lk=0,{2}

Lk∑

Mk=−Lk,{2}

Y
c
LkMkkA

M ′

Lk LL′

×

(
Lk L L′

Mk M −M ′

)(
Lk L L′

0 0 0

)

. (73)

are found for the rel. and c.m. matrix elements, respec-
tively. With the aid of Eqs. (64), (66), (68), and (72) the
rel. overlap and Hamiltonian matrices in Eqs. (58) are
obtained. Insertion into Eq. (56) and subsequent diago-
nalization yields the uncoupled eigenenergies and eigen-
functions of the rel. motion, as discussed above. Analo-
gously, Eqs. (65), (67), and (73) provide the overlap and
Hamiltonian matrices in Eqs. (59), thus the eigenenergies
and eigenfunctions of the uncoupled c.m. motion can be
found.

5. Matrix elements of the coupled Hamiltonian

Finally, for obtaining the coupled solutions the Hamil-
tonian matrix elements Hκ,κ′ in Eq. (60) have to be cal-

culated. Remind, the total Hamiltonian Ĥ was written
as a sum of the uncoupled Hamiltonians of rel. and c.m.

motion, ĥrel., ĥc.m., and the coupling term Ŵ (38). Since
the configurations are build with the eigenfunctions ϕ
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and ψ of the uncoupled Hamiltonians, only the simple
diagonal contribution

〈Φκ|ĥc.m. + ĥrel.|Φκ′〉

= 〈ϕiκψjκ |ĥc.m. + ĥrel.|ϕiκ′
ψjκ′

〉

= (ǫrel.iκ + ǫc.m.
jκ ) δi

κ
,iκ′

δj
κ
,jκ′

(74)

is obtained from ĥrel. and ĥc.m..

The remaining task is thus the calculation of the ma-
trix elements that couple rel. and c.m. motions, i. e., the
ones of Ŵ. They are given as

Wκ,κ′ =
1

2

2∑

s=1

∑

c=x,y,z

V s
c

{

(−1)ηs

n−1∑

j=0

(−1)j
(2kcµηs

)2j+1

(2j + 1)!

Nr−1∑

α=2

Nl∑

l=0

l∑

m=−l

c̃rel.pκ,a

Nr−1∑

α′=2

Nl∑

l′=0

l∑

m′=−l

c̃rel.pκ′ ,a′ B
2j+1
αα′

×

2j+1
∑

lj=1,{2}

[(

Ỹ
c
lj0j

(
lj l l′

0 m m′

)

+

lj∑

mj=−lj ,{2}

Ỹ
c
ljmjj

(
lj l l′

mj m −m′

))

A
m′

lj ll′

(
lj l l′

0 0 0

)]

×

n−1−j
∑

i=0

(−1)i
(2kc)

2i+1

(2i+ 1)!

NR−1∑

β=2

NL∑

L=0

L∑

M=−L

c̃c.m.
qκ,b

NR−1∑

β′=2

NL∑

L′=0

L′

∑

M ′=−L′

c̃c.m.
qκ′ ,b′ B

2i+1
β β′

×

2i+1∑

Li=1,{2}

[(

Ỹ
c
Li0i

(
Li L L′

0 M M ′

)

+

Li∑

Mi=−Li,{2}

Ỹ
c
LiMii

(
Li L L′

Mi M −M ′

))

A
M ′

LiLL′

(
Li L L′

0 0 0

)]

−
n∑

t=1

(−1)t
(2kcµηs

)2t

(2t)!

Nr−1∑

α=2

Nl∑

l=0

l∑

m=−l

c̃rel.pκ,a

Nr−1∑

α′=2

Nl∑

l′=0

l∑

m′=−l

c̃rel.pκ′ ,a′ B
2t
α α′

×

2t∑

lt=0,{2}

lt∑

mt=−lt,{2}

Y
c
ltmttA

m′

ltll′

(
lt l l′

mt m −m′

)(
lt l l′

0 0 0

) n−t∑

k=1

(−1)k
(2kc)

2k

(2k)!

NR−1∑

β=2

NL∑

L=0

L∑

M=−L

c̃c.m.
qκ,b

×

NR−1∑

β′=2

NL∑

L′=0

L′

∑

M ′=−L′

c̃c.m.
qκ′ ,b′ B

2k
β β′

2k∑

Lk=0,{2}

Lk∑

Mk=−Lk,{2}

Y
c
LkMkk

A
M ′

LkLL′

(
Lk L L′

Mk M −M ′

)(
Lk L L′

0 0 0

)}

. (75)

Despite the fact that Eq. (75) is somewhat lengthy it
is convenient and practical for computational purposes.
While in the computer implementation the summations
are ordered in such a fashion that the numerical efforts
are minimized, the order given in Eq. (75) is more trans-
parent.

IV. SYMMETRY OF THE SYSTEM

The Hamiltonian of two atoms interacting via a cen-
tral potential and trapped in sin2-like or cos2-like po-
tentials that are oriented along three orthogonal direc-
tions is invariant under the symmetry operations of the
point group D2h. Since the optical-lattice potential is
chosen along the three Cartesian axes x, y, and z, the
single particle Hamiltonians in Eq. (2) Ĥj(x, y, z) =

Ĥj(−x,−y,−z) = Ĥj(−x, y, z) = Ĥj(x,−y, z) =

Ĥj(x, y,−z) = Ĥj(−x,−y, z) = Ĥj(x,−y,−z) =

Ĥj(−x, y,−z) are equivalent. This is a consequence of
the symmetry elements of the orthorhombic D2h group

that contains besides the identity operation E and the
inversion symmetry i also three twofold rotations (by the
angle π) C2(x), C2(y), and C2(z) as well as the three
mirror planes σ(xy), σ(xz), and σ(yz). The symmetry
elements are illustrated in Fig. 3.

The symmetry group D2h has eight irreducible repre-
sentations (see Table I): Ag, B1g, B2g, B3g, Au, B1u,
B2u, B3u. Clearly, the explicit use of symmetry is ad-
vantageous, since it reduces the numerical efforts dra-
matically as the different irreducible representations can
be treated independently of each other. This reduces the
dimensions of the matrices that have to be diagonalized
by approximately a factor of 8 × 8 = 64. Furthermore,
many integrals vanish for symmetry reasons and have
thus not to be calculated at all.

In fact, the D2h symmetry is a consequence of the con-
sidered shape of the potential and thus the symmetry
of the single-particle Hamiltonians in absolute Cartesian
coordinates, Ĥj in Eq. (2). Since the atom-atom interac-
tion û is invariant under all operations in D2h, the total
Hamiltonian Ĥ in Eq. (1) belongs also to the D2h group.
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2C y( )2C x( )

2C z( ) σ (x z )

σ (y z )

σ (x y)

0
i

FIG. 3: The symmetry elements of the two particles interacting

by a central potential in a sin2-like trap. The list is complete with

the identity element E added.

TABLE I: Character table of the D2h point group

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Ag 1 1 1 1 1 1 1 1

B1g 1 1 -1 -1 1 1 -1 -1

B2g 1 -1 1 -1 1 -1 1 -1

B3g 1 -1 -1 1 1 -1 -1 1

Au 1 1 1 1 -1 -1 -1 -1

B1u 1 1 -1 -1 -1 -1 1 1

B2u 1 -1 1 -1 -1 1 -1 1

B3u 1 -1 -1 1 -1 1 1 -1

As may be less transparent on a first glance, but can be
shown from a complete symmetry analysis, also the rel.

and c.m. Hamiltonians ĥrel.(~r) and ĥc.m.(~R) possess the
same symmetry as the total Hamiltonian. Therefore, it is
sufficient to examine the symmetry properties, e. g., for
the rel. part only. The c.m. part has the same properties
and the ones of the total Hamiltonian can then be de-
duced from the properties of the direct tensor products.

In order to use the symmetry when solving the eigen-
value problems of the uncoupled rel. and c.m. motions,
symmetry-adapted basis functions have to be obtained.
Since all basis functions adopted in this work are cen-
tered at the origin and are products of a radial part
times a spherical harmonic, (53) and (55), the symme-
try operations affect only the angular part. Therefore,
linear combinations of the spherical harmonics have to
be found that transform like the irreducible represen-
tations of the D2h group. The problem of determining
symmetry-adapted basis functions from the complete set
of spherical harmonics has a long history, starting with
the introduction of cubic harmonics for the cubic point

TABLE II: Results of the D2h group operations on the abso-
lute and spherical coordinates, and the corresponding trans-
formations of spherical harmonics. Given are the values of
a, b, c that are multipliers for the x, y, z coordinates, respec-
tively, and θ′, φ′ that are shifts of the spherical coordinates
θ, φ, respectively.

symmetry Absolute Spherical Y m
l

(ax, b y, c z) (θ′ + θ,φ′ + φ) Y m
l (θ′ + θ, φ′ + φ)

E (1, 1, 1) (0 + θ, 0 + φ) Y m
l (θ, φ)

C2(z) (−1,−1, 1) (0 + θ, π + φ) (−1)m Y m
l (θ, φ)

C2(y) (−1, 1,−1) (π − θ, π − φ) (−1)l+m Y −m
l (θ, φ)

C2(x) (1,−1,−1) (π − θ, 2π − φ) (−1)l Y −m
l (θ, φ)

i (−1,−1,−1) (π − θ, π + φ) (−1)l Y m
l (θ, φ)

σ(xy) (1, 1,−1) (π − θ, 0 + φ) (−1)l+m Y m
l (θ, φ)

σ(xz) (1,−1, 1) (0 + θ, 2π − φ) (−1)m Y −m
l (θ, φ)

σ(yz) (−1, 1, 1) (0 + θ, π − φ) Y −m
l (θ, φ)

group [46]. Since it appears, however, to be not that
trivial to find the orthorhombic harmonics in easily ac-
cessible form, they are given explicitly together with a
brief derivation. First, the action of the symmetry ele-
ments of D2h on the spherical harmonics has to be con-
sidered. The result is shown in Table II that provides
also the intermediate steps, the result of applying the
symmetry operations on the Cartesian and the spheri-
cal coordinates. The most important result is that all
symmetry operations of D2h leave l unchanged, i. e., only
Y m
l with identical values of l are transformed into each

other. As a consequence, the symmetry-adapted basis
functions are superpositions of spherical harmonics with
a fixed value of l.

In view of the eight irreducible representations of D2h

(see Table I) one needs to find the required eight sets of
orthonormal linear combinations of spherical harmonics.
In the present case, this is easily achieved using the stan-
dard projector technique, i. e., by applying the projector

P̂i =
1

h

h∑

k=1

χi(Ôk)
∗ Ôk (76)

of the irreducible representation i onto a spherical har-
monic Y m

l . In Eq. (76) it is used that all irreducible
representations in D2h are non-degenerate. Furthermore,
h is the total number of symmetry operations (eight for

D2h), Ôk the operator corresponding to symmetry ele-

ment k, and χi(Ôk) the character of symmetry element
k for the irreducible representation i. While all char-
acters are listed in Table I, the results of the symmetry
operations on Y m

l are given in the last column of Table II.
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For example, the application of P̂B3u
gives

P̂B3u
Y m
l =

1

8

[
1− (−1)m − (−1)l + (−1)l+m

]
Y m
l

+
[
(−1)l − (−1)l+m + (−1)m − 1

]
Y −m
l . (77)

Clearly, only the combination of odd values of l and m
yields in this case a non-zero result and thus a symmetry-
adapted basis function,

P̂B3u
Y m
l =

1

2

(
Y m
l − Y −m

l

)
l,m odd . (78)

The use of these symmetry-adapted basis functions (su-
perposition of spherical harmonics instead of a single one
and restriction on l and m) modifies the wave functions
of the rel. motion in Eq. (53) into

ϕ
Ag

i =

Nr∑

α=1

Nl∑

l=0,{2}

l∑

m=0,{2}

c̃
Ag

i,αlm r−1Bα(r)Y
+
lm (79)

ϕ
B1g

i =

Nr∑

α=1

Nl∑

l=2,{2}

l∑

m=2,{2}

c̃
B1g

i,αlm r−1Bα(r)Y
+
lm (80)

ϕ
B2g

i =

Nr∑

α=1

Nl∑

l=2,{2}

l∑

m=1,{2}

c̃
B2g

i,αlm r−1Bα(r)Y
−
lm (81)

ϕ
B3g

i =

Nr∑

α=1

Nl∑

l=2,{2}

l∑

m=1,{2}

c̃
B3g

i,αlm r−1Bα(r)Y
+
lm (82)

ϕAu

i =

Nr∑

α=1

Nl∑

l=3,{2}

l∑

m=2,{2}

c̃Au

i,αlm r−1Bα(r)Y
−
lm (83)

ϕB1u

i =

Nr∑

α=1

Nl∑

l=1,{2}

l∑

m=0,{2}

c̃B1u

i,αlm r−1Bα(r)Y
+
lm (84)

ϕB2u

i =

Nr∑

α=1

Nl∑

l=1,{2}

l∑

m=1,{2}

c̃B2u

i,αlm r−1Bα(r)Y
+
lm (85)

ϕB3u

i =

Nr∑

α=1

Nl∑

l=1,{2}

l∑

m=1,{2}

c̃B3u

i,αlm r−1Bα(r)Y
−
lm (86)

where

Y
+
l0 = Y

−
l0 = Y 0

l (θ, φ) , (87)

Y
±
lm = Y m

l (θ, φ)± Y −m
l (θ, φ) (m 6= 0) (88)

is introduced for compactness and a summation index
l = i, {2} means l = i, i+ 2, . . . Moreover, for the coeffi-
cients c̃ the superscripts rel. are omitted for better read-
ability. Clearly, the consideration of symmetry-adapted
basis functions for the c.m. motion leads to a completely
analogous modification of Eq. (55).
Since the D2h point group contains only non-

degenerate irreducible representations, its product ta-
ble (showing the result of a direct tensor product be-
tween a pair of irreducible representations and given in

TABLE III: Product table of the D2h point group

⊗ Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u

B1g B1g Ag B3g B2g B1u Au B3u B2u

B2g B2g B3g Ag B1g B2u B3u Au B1u

B3g B3g B2g B1g Ag B3u B2u B1u Au

Au Au B1u B2u B3u Ag B1g B2g B3g

B1u B1u Au B3u B2u B1g Ag B3g B2g

B2u B2u B3u Au B1u B2g B3g Ag B1g

B3u B3u B2u B1u Au B3g B2g B1g Ag

Tab. III) is straightforwardly obtained and every prod-
uct corresponds uniquely to one irreducible representa-

tion. For example, a configuration Φκ = ϕ
B3g

iκ
ψ
B2g

jκ
trans-

forms as B1g. Clearly, symmetry-adapted configurations
are straightforwardly constructed from the symmetry-
adapted rel. and c.m. orbitals.
In the case of indistinguishable atoms, the quantum

statistics has to be considered. For Fermionic atoms, the
total wavefunction must change sign under particle ex-
change, while it must remain the same for Bosons. Parti-
cle exchange does not influence the c.m. coordinate (i. e.,
~R → ~R or, equivalently, Φ → Φ, Θ → Θ), but the rel.
coordinate (i. e., ~r → −~r or φ→ π+φ, θ → π−θ). Since
particle exchange corresponds to the symmetry operation
of inversion (i) for the coordinate, all gerade basis func-
tions (ϕAg

, ϕB1g
, ϕB2g

, and ϕB3g
) are allowed for identi-

cal Bosons, the ungerade functions (ϕAu
, ϕB1u

, ϕB2u
, and

ϕB3u
) for identical Fermions. The quantum statistics for

indistinguishable atoms is thus easily taken into account
and reduces the number of possible orbital combinations
by factor 2. The straightforward (almost automatic) im-
plementation of the quantum statistics that leads even
to a direct reduction of the computational demands is a
further advantage of the present approach.

V. COMPUTATIONAL DETAILS

The theoretical approach presented in this work pro-
vides an efficient way to treat two interacting atoms in
an orthorhombic optical lattice. The use of c.m. and rel.
coordinates and the expansion of the basis functions in B
splines for the radial part and spherical harmonics for the
angular parts is especially useful for considering realistic
interatomic (molecular) interaction potentials. Further-
more, the Bosonic or Fermionic nature of the atoms is
easily accounted for. However, in the case of strongly
anisotropic lattice potentials the advantage of the use
of spherical harmonics that all involved integrals can be
efficiently and analytically calculated is partly compen-
sated by their slow convergence. Similarly, the adopted
exact diagonalization approach for incorporating the cou-
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pling of c.m. and rel. motion has the advantage of being
exact, if converged, but is known to be slowly conver-
gent. For many experimentally relevant parameters the
calculations are, therefore, still very demanding and thus
an efficient implementation of all involved computational
steps was mandatory. The adequate choice of the basis-
set parameters adapted to the considered problem can
improve the efficiency drastically. Thus it is worthwhile
to at least briefly discuss some technical aspects of both
the implementation and the choice of basis sets.

A. Interatomic interaction potential

In the present approach the interatomic interaction en-
ters the calculation only in the determination of the rel.
orbitals. In the so far considered case of isotropic inter-
action potentials the potential influences only the calcu-
lation of the radial integral (68). Clearly, an extension to
orientation-dependent interaction potentials (like dipole-
dipole interaction) is possible by expanding the angular
part of the interaction potential in spherical harmonics.
Then the resulting angular integrals can still be solved
analytically. Since the radial integral (68) is calculated
using quadrature, even a usually only numerically given
Born-Oppenheimer potential curve can be used in order
to achieve a realistic description of the interatomic inter-
action. Clearly, any type of potential can be easily used.
Only the implementation of the δ-function pseudopoten-
tial required some care due to its numerically ill-behaved
nature.
In the ultracold regime the scattering process is ex-

tremely sensitive to all details of the complete inter-
atomic potential curve. In fact, for most experimentally
relevant alkali atoms, it is impossible to calculate the
potential curves with sufficient precision. In the zero-
energy limit the scattering process is fully described by
the scattering length asc [10]. Depending on the consid-
ered atoms, their isotopes, and electronic states asc can
have very different values for different systems, ranging
from asc ≫ 0 (strongly repulsive) via asc ≈ 0 (almost
non-interacting) to asc ≪ 0 (strongly attractive). An
important aspect of ultracold atomic gases is the fact
that many atom pairs possess magnetic Feshbach reso-
nances, i. e., with a magnetic field the colliding atoms
can be brought into resonance with a molecular bound
state. As a consequence, the scattering length becomes
experimentally tunable [11, 47]. This method was also
successfully used to tune the interatomic interaction be-
tween atoms in the optical lattices, see, e. g., [5, 24, 48].
However, the correct theoretical treatment of a mag-

netic Feshbach resonance requires the solution of a mul-
tichannel problem that is numerically demanding due to
the different length scales involved. Within an optical lat-
tice the influence of the confining potential on the multi-
channel problem has also to be properly considered (see
[49] and references therein). To perform such a study
within the present algorithm appears prohibitively dif-

ficult, at least with the computer resources at our dis-
posal. On the other hand, the variation of the interac-
tion strength (characterized in the trap-free situation and
at the zero-energy limit by asc) can be mimicked within
single-channel models. In this case, some parameter in
the rel. motion Hamiltonian is varied in such a fashion
that resonant behavior occurs. Whenever the manipula-
tion leads to a shift of a very weakly bound state into the
dissociation continuum, resonant behavior (divergence of
asc) is observed. Examples for such artificially obtained
single-channel resonances include the variation of van der
Waals coefficients [50], the reduced mass [23], the inner-
wall of the molecular interaction potential [26], or the
local modification of the Born-Oppenheimer curve at in-
termediate distances [51]. A comparison of these different
procedures and the full multi-channel treatment is pro-
vided in [51]. As is shown in [28] a better and in fact
almost perfect model for a multi-channel Feshbach reso-
nance can be obtained with a two-channel model which
appears more realistic with respect to a possible im-
plementation within the present approach than the full
multi-channel Hamiltonian.

B. Basis-set considerations

Due to the choice of spherical c.m. and rel. coordi-
nates all integrals could be reduced to products of one-
dimensional integrals that can be solved very accurately
and efficiently. In fact, the angular integrations are per-
formed analytically. Moreover, the Gaussian quadra-
ture provides exact results for all radial integrals except
the ones of the interatomic interaction. However, even
the latter ones can be calculated to high precision using
Gaussian quadrature. The compactness of the B splines
leads to sparseness of the Hamiltonian matrices, since
only few integrals involve two non-zero B splines. The
compactness and thus the resulting band structure of the
one-particle Hamiltonian matrices (of c.m. and rel. mo-
tion) is controlled by the order krel. and kc.m. of the B
splines. A higher order leads to a broader band struc-
ture, but it offers also a higher flexibility of the basis
functions, since it corresponds to a polynomial of higher
order. Thus less B splines are needed for a comparable
result, if a higher order is adopted. Usually, the orders
of krel. (kc.m.) of 8 or 9 turn out to be the best compro-
mise with respect to basis-set size and sparseness, but
also with respect to numerical stability in view of the fi-
nite precision in which floating-point numbers are stored
in the computer.
The two other parameters defining the radial B-spline

basis are the number of B splines and their knot se-
quence. Clearly, the computational efforts (number of
integrals that have to be calculated and size of the matri-
ces that have to be diagonalized) depend crucially on the
number of B splines. Since more B splines are required
for describing highly oscillatory wavefunctions, it is most
efficient to use non-uniform knot sequences in which the
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B-spline density is higher in the highly oscillatory regions
of (radial) space.
In the context of ultracold collisions the energetically

low-lying c.m. orbitals ψ(~R ) are the ones that usually
are of main interest. Since they possess only a small
number of nodes (none in the lowest state), the demands
on the B-spline basis are not too high. For the simplest
case of a single-well lattice potential NR = 50 to NR =
100 B splines (or even less) were found to be sufficient
to obtain convergence for the ground and lowest-lying
excited states of the c.m. motion [26]. Also the lowest-
lying states in a more structured trap potential like the
triple-well potential considered in [28] were satisfactorily
treated with 70 B splines. A linear knot sequence is
usually adequate in this case.
The description of the rel. orbitals ϕ(~r ) is more de-

manding, since one is usually not interested in the
lowest-lying, deeply bound molecular states, but in the
most weakly bound states or the low-lying dissociative
ones. The Born-Oppenheimer potentials of alkali-metal
atom dimers support often a large number of bound
states [23]. The very long-ranged, weakly bound states
consist, therefore, of a highly oscillatory inner part (cov-
ering the molecular regime and providing the orthogonal-
ity to all lower lying bound states) and a rather smooth
long-range part. Hence, it is advantageous to distribute
a majority of B splines in the molecular range of the po-
tential while they are a sparser distributed in the outer
part. The distribution of the B splines is given by the
knot sequence {ri}, i = 1, 2, . . . specifying a continuous
chain of segments on which the B-spline functions are de-
fined. The choice of a combined linear and geometrical
knot sequence [52] for describing the short and long-range
parts, respectively, has proven to be very efficient also in
the present context [26]. The linear distribution of the
knot sequence is given by

ri+krel.
= ρmin. + i s, i = 1, 2, ..., N lin.

r − krel. (89)

where N lin.
r and ρmin. are the number of B splines in

the linear interval and the origin of the linear interval,
respectively. Furthermore, s is the linear step size, i.e.,
the distance between neighboring knots given as

s =
ρlin. − ρmin.

N lin.
r − krel. + 1

. (90)

Owing to the steep inner-wall of the molecular poten-
tial the wave function ϕi(r) vanishes well before r = 0.
Therefore, ρmin. is usually taken non-zero in order to save
on the number of B splines. The exact value of ρmin. de-
pends on the potential of the considered electronic state.
Note, kr points must be placed at both ends of the box in
accordance with the definition of B splines on the knot
sequence (e.g., r1 = r2 = ... = rkrel.

= ρmin.). The linear
step s is taken as the scale factor for the geometric pro-
gression to ensure the smooth distribution of B splines at
the border of the linear and geometric zones. In the geo-
metrical knot sequence the separation of the knot points

increases (according to a geometric series) with increas-
ing distance. It is given by

ri+N lin.
r

= ρlin. + s qi−1, i = 1, ..., Ngeo.
r (91)

where Ngeo.
r is the number of B splines in the geomet-

ric interval and q is the common ratio for the geometric
progression defined as

q =

(
ρbox. − ρlin.

s

)
1

Ngeo.
r − 1

. (92)

The last parameter is the maximum value of angular
momentum lmax used and thus the number of angular
basis functions. Clearly, a more spherical-like lattice po-
tential needs less angular momenta for representing the
orbitals. The worst case is a highly anisotropic lattice
geometry, since the spherical-harmonic basis converges
extremely slowly in such a case. While a small value
of lmax of 1 or 2 was sufficient to obtain converged or-
bitals for an isotropic (cubic) single-well potential in [26]
in which among others also the experiment in [24] was
successfully modeled and thus realistic parameters were
adopted. On the other hand, the much more anisotropic
triple-well potential considered in [28] required lmax = 32
for converged orbitals.

C. Example of a very anisotropic trap

Since a highly anisotropic lattice geometry provides
a great challenge to our approach, it is important to
demonstrate that even such a problem can be handled
satisfactorily. Another motivation is the present interest
in ultracold atomic systems of reduced dimensionality.
Using strong confinement along one or two orthogonal
directions, quasi one- or two-dimensional structures can
nowadays be produced in the lab. Such systems show re-
markable quantum properties not encountered in three
dimensions. A major experimental breakthrough was
the realization of Tonk-Girardeau gases of Bosons with
strongly repulsive interaction [53, 54]. Being placed in 1D
and repelling each other Bosons are hindered from occu-
pying the same position in space. This mimics the Pauli
exclusion principle for Fermions, causing the Bosonic par-
ticles to exhibit Fermionic properties. Another peculiar
property of reduced dimensionality systems is the occur-
rence of confinement-induced resonances that were re-
cently experimentally observed [55, 56]. Confinement-
induced 1D Feshbach resonances reachable by tuning
the 1D coupling constant via 3D Feshbach scattering
resonances occur for both Bose gases [57] and spin-
aligned Fermi gases [58]. Near a confinement-induced
resonances, the effective 1D interaction is very strong,
leading to strong short-range correlations, breakdown of
effective field theories, and emergence of a highly corre-
lated ground state. Although confinement-induced reso-
nances were originally predicted to occur already when
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only the rel. motion is considered [57, 59, 60], it was
recently shown and furthermore verified using the here
presented numerical approach that the ones observed in
[55] are in fact caused by the coupling of the c.m. and
rel. degrees of freedom [61].

A typical system to study effects of low dimension-
ality is two atoms confined in a quasi 1D cigar-shaped
harmonic trap. We adopt this two-body setup to probe
the quality of the present computational method in an
extreme case of the strong anisotropic confinement. As
was already mentioned, if the interparticle interaction
between atoms is modeled by the δ-function pseudopo-
tential the problem can be solved analytically. Therefore,
the numerical results can be compared with the predic-
tions of the pseudopotential model. One-dimensional ex-
ternal confinement is prepared by setting a strong har-
monic frequency in either of two spatial directions, e. g.,
ωx = ωy ≫ ωz where ωi stands for the harmonic oscilla-
tor frequency along the spatial direction i. It is worth-
while to note that the analytical solution is only known
for this special case of the single anisotropy [62]. This
emphasizes the need for numerical approaches to cal-
culate spectra in totally anisotropic confinement where
ωx 6= ωy ≫ ωz.

The Hamiltonian of two identical particles in our har-
monic trap separates in rel. and c.m. motion. The c.m.
spectrum reduces to the one of a simple harmonic oscil-
lator. This simplifies the problem to calculate the rel.
spectrum. Hence, it is sufficient to solve numerically
Eq. (50) only. In the following two Bosonic 7Li atoms
are considered that are placed in the prolate trap with
ωx = ωy = 10ωz and interacting via the potential of the
a3Σ+

g electronic triplet state. This electronic state has
the advantage of supporting a small number of bound
states. Therefore, a smaller number of B splines is re-
quired to reproduce the ϕi(~r) functions. The numeri-
cal data for the Born-Oppenheimer potential curve are
adopted from [23]. In order to achieve converged results
for the first few states lmax = 30, a box size of approx-
imately ρbox ≈ 5 × 104a0, where a0 is the Bohr radius,
and Nr = 100 B splines of the order krel. = 8 were used.
Half of the B splines (N lin.

r = 50) are distributed lin-
early according to Eq. (89) over the small interatomic
distance of ρlin. = 15 a0 to reproduce the highly oscilla-
tory structure of ϕi(r) in this region. Furthermore, for
our calculations we can safely choose ρmin. = 2 a0. The
remaining B splines (Ngeo.

r = 50) are distributed in an
ascending geometric progression according to Eq. (91)
over the residual interval. Finally, different values of the
interaction strength are obtained using a single-channel
approach by a smooth variation of the inner wall of the
molecular interaction potential [51]. Figure 4 shows the
calculated spectrum of the rel. Hamiltonian together with
the analytical prediction of the pseudopotential approx-
imation. The spectral curves are plotted as functions of
dx/asc, where dx =

√

~/(µωx) is the harmonic oscillator
length in transversal direction. As is evident from Fig. 4,
the first four trap states and the bound state match per-
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FIG. 4: Energy spectrum of two Bosonic atoms confined in a
harmonic trap of anisotropy ωx/ωz = 10. The numerical cal-
culation (blue dots) is compared to the analytical prediction
of the pseudopotential approximation (red lines).

fectly with the analytical prediction of the pseudopoten-
tial model. However, high lying states show deviations.
In order to explain the increasing mismatch found for

higher lying states and to give an impression of the con-
vergence behavior of the present approach, energy spec-
tra for different values of the angular momentum are
calculated. For the calculations dx/asc = 1.46 is cho-
sen. Close to this value a confinement-induced resonance
should occur [57] motivating this choice. The results of
the calculations are shown in Fig. 5. As is seen from this
figure, at lmax = 30 the slopes of the energy curves are ap-
proximately zero, especially for the first four trap states.
This indicates that convergence is achieved with respect
to lmax. Figure 5 clearly demonstrates that the high ly-
ing states require larger values of the angular momentum
for convergence. This can now as well be concluded from
Fig. 4.

While convergence can be extended to higher energies
or higher anisotropies by increasing lmax, the compu-
tational efforts increase adding new angular momenta.
However, as the precision is only limited by hardware ca-
pacities, this example demonstrates the applicability of
the approach even for extreme setups.

D. Exact diagonalization (configuration
interaction)

The demands of the exact diagonalization also known
as configuration interaction (CI) depend evidently again
on the physical system under consideration. While the
atom-atom interaction is very efficiently handled even
for strongly interacting atoms and basically contained in
the rel. orbitals, the CI takes care of the c.m. and rel.
coupling. Thus its convergence depends on the strength
of this coupling. Correspondingly, convergence is much
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FIG. 5: The energy of the first five trap states for different
values of lmax in the strongly repulsive regime for dx/asc =
1.46. The deeper lying bound state is not shown here, because
it is already converged for lmax = 5. (To guide the eye, the
discrete points of the numerical calculation are connected by
continuous lines.)

faster for weakly coupled systems. If all configurations
that can be built with the c.m. and rel. orbitals are in-
cluded, full CI is achieved. While being well defined, full
CI scales very inconveniently with the number of orbitals.
Therefore, it is in practice in most cases more advanta-
geous to include only a limited number of the possible
configurations. For example, the inclusion of the orbitals
of very high energy does usually not lead to a notice-
able improvement of the low lying states. Therefore, an
energy cut-off may be introduced in the orbital selec-
tion. If the interest is mainly on those states that are
weakly bound or dissociative, but close to the dissocia-
tion threshold, the deeply bound molecular states can be
omitted from the CI configurations [26]. Note, however,
that a good representation of those states in the calcu-
lation of the rel. orbitals is nevertheless important, since
otherwise the rel. orbitals of the weakly bound states are
not well described and this can in practice not be com-
pensated by the CI calculation. In the worst case the
calculation of the rel. orbitals provides too few bound
states and then the nodal structure of the weakly bound
states is evidently wrong.

Although the coupled Hamiltonian matrices are usu-
ally much larger than the uncoupled ones and are there-
fore harder to diagonalize, there are two points easing
the treatment of the coupled ones. First, the eigenvalue
problem to be solved in the CI step is a standard one
(meaning that the the basis is orthonormal), while gen-
eralized ones occur in the orbital calculations. Second,
in many cases only a relatively small number of CI states
is required. Therefore, it is possible to use Lanzcos or
Davidson type diagonalization routines that (iteratively)
provide a small number of eigenstates within a specific
energy interval. Here we adopted the Davidson-based di-
agonalization routine JADAMILU [63] that is especially

designed for the efficient diagonalization of large sparse
matrices.
Finally, it should be noted that the choice of expressing

all wavefunctions in rel. and c.m. coordinates is advanta-
geous for computational reasons, but often not very help-
ful in the interpretation of the results. Especially in the
case of multi-well potentials the obtained wavefunctions
and densities are often very complicated. Therefore, a
further code was implemented that allows the application
of the inverse coordinate transform from c.m.-rel. coordi-
nates to the absolute ones according to ~r1 = ~R+µ2~r and

~r2 = ~R− µ1~r to the wavefunctions, especially to Ψ(~R,~r)
which allowed a much easier physical interpretation, e. g.,
in [26].

VI. SUMMARY AND OUTLOOK

An approach that allows the full numerical description
of two ultracold atoms in a finite orthorhombic 3D opti-
cal lattice is presented. The coupling between center-of-
mass and relative motion coordinates is incorporated in
a configuration-interaction manner and hence the full 6D
problem is solved. An important feature is the use of real-
istic interatomic interaction potentials adopting, e. g., nu-
merically provided Born-Oppenheimer curves. The use
of spherical harmonics together with B splines as basis
functions and the expansion of the trap in terms of spher-
ical harmonics leads to an analytical form of the matrix
elements, except those of the interparticle interaction,
if the interaction potential is defined only numerically.
The sparseness of the Hamiltonian matrices due to the
use of the compact radial B-spline basis is considered
explicitly. This makes the method computationally effi-
cient. Additionally, the lattice symmetry and a possible
indistinguishability of the atoms (Bosonic or Fermionic
statistics) is considered explicitly. This simplifies the cal-
culations and helps to interpret the solutions.
The here presented approach has already proven its

applicability by considering the influence of the anhar-
monicity in a single site of an optical lattice in [26] where
a corresponding experiment [24] could be reproduced
and analyzed. The validity range of the Bose-Hubbard
model together with an improved determination of the
Bose-Hubbard parameters was investigated considering
a triple-well potential in [28].
The implemented approach was formulated in a rather

general way in order to allow extensions in various di-
rections. Since the optical-lattice potential is (via the
Taylor expansion) expressed as a superposition of poly-
nomials, it is rather straightforward to consider other
than pure sin2 or cos2 potentials, as long as they can be
represented with (a reasonable number of) polynomials.
This includes tilted lattices and superlattices. Care has,
however, to be taken that the orthorhombic symmetry
is either preserved, or new symmetry rules have to be
implemented.
Substitution of the numerical interatomic potential by,
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e. g., the Coulomb potential allows to describe either
two electrons or an exciton in quantum-dot atoms or
molecules. It is furthermore planned to implement non-
isotropic interatomic potentials like dipole-dipole interac-
tions as they are of interest for Cr or Rydberg atoms and
for heteronuclear diatomic molecules. Finally, an exten-
sion of the approach in the direction of time-dependent
problems (with time dependent lattice or interatomic in-
teraction potentials) is currently under way.
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T. Esslinger, Phys.Rev. Lett. 96, 030401 (2006).

[49] P.-I. Schneider, Y. V. Vanne, and A. Saenz, Phys.Rev.A
83, 030701 (2011).

[50] E. Ribeiro, A. Zanelatto, and R. Napolitano,
Chem.Phys. Lett. 390, 89 (2004).

[51] S. Grishkevich, P.-I. Schneider, Y. V. Vanne, and
A. Saenz, Phys.Rev.A 81, 022719 (2010).

[52] Y. V. Vanne and A. Saenz, J. Phys.B 37, 4101 (2004).
[53] M. Girardeau, J.Math. Phys. 1, 516 (1960).
[54] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling,
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