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Abstract: The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The
new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the
course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model
respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic
equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the
structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on
different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored
thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions
such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show
that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency
motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the
problem of especial singularities when the pitch angle = +90° but also clears up the difficulties of computation and display of the
coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV
equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design.
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shaft, which makes the vectored thruster AUV fulfill
1 Introduction multi-moving states in amphibian conditions, shown in Fig.
1. In order to improve the efficiency of course control, four
vector thrusters are used to control the course in the
low-speed navigation and rudders are used to control the
course in high-speed navigation. So the vectored thruster
AUV has more flexible mobility with its complex form of
movements compared with the control-configured
underwater vehicles. The AUV’s mathematical model of
space motion is the basic premise and important basis for
some research such as overall performance, control systems,
guidance law and so on. In order to facilitate calculation
and analysis, domestic and foreign scholars usually
separated the six-DOF space motion of underwater vehicles
into vertical and horizontal plane motions to research
respectively, this simplification is still able to meet the
underwater vehicles of less demanding mobility and little
cross-linked effect on motion'*®. With the development of
underwater vehicles, the simplified motion models used in
the past can not meet the higher demands of mobility,
control quality and guidance precision, so a complete
* Corresponding author. E-mail: gaofudong2005@]163.com spatial motion model of underwater vehicles needs to be
This project is supported by National Hitech Research and  egtaplished. At present, the six-DOF motion equations of

Development Program of China(863 Program, Grant No. 2006AA09Z235), .
and Hunan Provincial Innovation Foundation For Postgraduate of underwater vehicles are eXtremely complex and Strongly
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AUVs are promising vehicles for navy because they can
fulfill many missions such as underwater work and accurate
underwater attack. Therefore, it is required to have high
mobility and maneuverability. Nowadays, how to enhance
the maneuverability of AUVs is an important issue in the
domain of international navigation in that most AUVs just
have a single function of underwater navigation or
submarine movement. The university of Tianjin has
designed an AUV with capabilities of landing and
sitting-bottom, which got ahead!. The vectored thruster
AUV in this paper makes use of the flexible transmission
shaft based on spherical gear as the kinetic source
equipment, on the end of that a new wheel propeller is
installed™ *. The whole equipment can achieve four
functions such as wheels, legs, thrusters and course control
based on the characteristics of spatial deflexion and
continual circumgyratetion of the flexible transmission
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coupled”™, when they are calculated in the simulink

toolbox of Matlab software, not only the computational
speed is decreased due to the coupling of the motion
parameters, but also the calculation will be failed duo to the
algebraic loop problems. The motion of underwater
vehicles in complex sea conditions is complicated, which is
separated into two parts including low frequency motion
and high frequency motion. The low-frequency motion is
caused by ocean current, second-order wave force and
propulsion, while high-frequency motion is caused by the
first-order wave force”. The high-frequency motion will
not change the average position of underwater vehicles

because it only represented periodical oscillating movement.

In order to avoid that the energy is waste and the propellers
are wore down, the high-frequency motion signal should be
filtered from the integrated motion signal so that the
low-frequency motion signal is controlled and the
high-frequency motion signal is uncontrolled.

(c) Transverse turning

_E
(f) Pivot steering
(Vertical ascending) (crawling on sea-bottom)

(d) Wheeléd moving (e) Landing sea-bottom

(Transverse pushing)

Fig. 1. Typical motions of the vectored thruster AUV

In this paper, according to the structural and kinetic
characteristics of the vectored thruster AUV, the vector
modeling method based on random wave theory is applied
to establish six-DOF nonlinear kinematic and dynamic
models in complex sea conditions through unifying the

movement parameters to reduce the coupling between them.

Then the Runge-Kutta arithmetic is used to solve the
nonlinear kinematic and dynamic equations so that the
mobility of the vectored thruster AUV in interference-free
environment is analyzed and its integrated signals including
low-frequency motion signal and high-frequency motion
signal in environmental disturbance are obtained.

2 Six-DOF Nonlinear Kinematic Model

2.1 Euler angles for kinematics modeling

In order to describe the movement of the vectored
thruster AUV, the inertial coordinate system E-éy{ and
body-fixed coordinate system B-xyz are used, shown in Fig.
2. The origin B of body-fixed coordinate system is 0.003 m
after the center of buoyancy. The vectored thruster AUV
has two planes of symmetry and the body’s symmetry axes
coincide with the principal axes of inertia, so the inertia
tensor of the body-fixed coordinate system is diagonal. The
kinematic parameters include # that denotes the position

and attitude vector with coordinates in the inertial
coordinate system, v that denotes the linear and angular
velocity vector with coordinates in the body-fixed
coordinate system and f that describes the forces and
moments acting on the vehicle in the body-fixed coordinate
system, the specific forms can be written as follows:
T \7 T T
n=(n"n") . n=(n¢). n,=(4.0.0)"
T o1\" T T
v=(vl v, ) s v =(wv,w) v, =(p.g.r) ;
T

=8 f=(xr.2), f=(KMN)".

Inertial

Fig. 2. Inertial and body-fixed coordinate systems

The inertial coordinate system can coincide with the
body-fixed coordinate system through three times rotations
about ¢ axis, 7 axis and ¢ axis respectively according to the
definition of Euler angles, shown in Fig. 3. Firstly, let 7'
be the coordinate system obtained by translating the inertial
coordinate system ¢x¢ parallel to itself until its origin
coincides with the origin of the body-fixed coordinate
system. Then the coordinate system &'%'C is rotated a pitch
angle 6 about the #' axis, this yields the coordinate system
xn'¢". Finally, the coordinate system x#z'(" is rotated a roll
angle ¢ about the x axis, this yields the coordinate system
xyz. So the transformation matrix that transforms the
coordinates (x, y, z) of body-fixed coordinate system into
that of inertial coordinate system is written as follows:

J,(n,) =
cycl cysOsp—swcgd cysOchd+syse
swcl swsOsp+cycgd swsOcd—cysg |, (1)
-sé clsg clco

where s-=sin(-) and c-=cos(*).

Fig. 3. Rotational sequence of the coordinate systems



CHINESE JOURNAL OF MECHANICAL ENGINEERING

These parameters as x, y, z, ', 1, & and ¢ are all unit
vectors. So the angular velocity in the inertial coordinate
system is expressed as

Q=gdx+6n +y¢. )

The inertial coordinate system rotates for the first time
can be written as

On' = —Osinyé + O cosy . (3)

Further, the following transformation relations can be
obtained:

¢ = p+qsingtan @+ rcos ¢ tan &
0 =qcos¢g—rsing , (4)

W = gsin ¢sec @+ rcos gsecd

Therefore, the transformation matrix that transforms the
coordinates (p, g, ) of body-fixed coordinate system into
that of inertial coordinate system is written as

1 singtan@ cosgtand
J2(772)= 0 cos ¢ —sing |. ®)
0 singsecd cosgsecd

In summary, the six-DOF kinematics equation of the
vectored thruster AUV can be written as

G ) e

2.2 Quaternion method for kinematics modeling

The Euler angles for kinematics modeling will bring
singular points in special circumstances when the pitch
angles get £90° in Eq. (5). In order to solve this problem,
the quaternion method can be used for kinematics
modeling.

In order to avoid the appearance of singular points, the
quaternion method use the plural form express the Euler
angles. Similarly, the coordinate transformation has the
following form:

W jU .
¢ 0., E (),

where a quaternion can be expressed as a vector e = (g, &,
&3, 84)T and it satisfies that

e 3.
2 2 2 2
g te, e +e =1. ®)

The transformation matrix E/(e) and E,(e) are composed
of the parameters ¢, &,, &3 and &4, the specific forms are

E, (e) =

1—2(522+g;) 2(ee, —¢¢,)
2(ee, +ee,) 1—2(512+532)

2(56,+¢8,)
2(5253—5154) , (9

2(ee, —ce) 2(ee +ee,) 1—2(‘912 +522)

&, —& &
1| & & -¢

E (e)=— v (10)
2|1 ¢, & g,
-5 —& —€

1 2 3

The computation of initial value #;(0) and e(0) is the key
issue in quaternion method, Shepherd proposed that the
quaternion can be computed by means of Euler angles in

1978"% Assume that the initial Euler angles 4, , 0,

andy are given, the transformation matrix Ji(#,) can be
obtained, then the trace of Ji(5,) is computed according to

3
J,, = trace(J)) =ZJ”, and let 1<i<4 be the index

j=1

w>JusJ,) - Define

p=(1171,1172,1173,1174)Tand|p,|=«/1+2JH—J44 , where the

sign ascribed to p, can be chosen either plus or minus, then

corresponding  to J, = max(J, ,J

compute the other three p-values from

pP,D :Jzz_Jzz’ p,p, :le_le’ p,p; :le_‘]lz’
p2p3:J32+J23’ p3pl :J13+J31’ p1p2:J21+J12'(11)

Finally, compute the initial quaternion by the following
formula, the final quaternion can be computed applying the
linear discrete-time algorithm:

ezgz(&&&&jT
2 \2727272)"

Moreover, the relationship between the Euler angles and
the quaternion can be established by requiring that the
Rotational matrices of the two kinematic representations
are equal:

(12)

J,(n,)=E,(e). (13)
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3 Nonlinear Dynamic Model of the Vectored
Thruster AUV in Complex Sea Conditions

3.1 Forces and moments on the vectored thruster AUV

There are many parameters need to be identified of the
vectored thruster AUV in the complex sea conditions,
because it is a complicated nonlinear dynamic system. The
vectored thruster AUV in this paper adopts NPS I AUV's
figure, whose accurate hydrodynamic coefficients have
been obtained from the experiment''!!. The influence of the
gravity, buoyancy, vectored thrust, rudder control forces,
ocean current forces and wave disturbances are considered
so as to establish a more integrated six-DOF dynamics
model.

The gravitational force and buoyant force on the
vectored thruster AUV are called restoring forces, so the
restoring forces and moments vector in the body-fixed
coordinate system can be expressed as follows:

f.(n)+ £, (n) j

R, x f, (m)+ R, % £, (n)
(B—G)SH
(G—B)c9s¢

_ (G—B)c9c¢ (4

(yGG—yBB)c9c¢—(zGG—zBB)c9s¢

—(zGG—zBB)sﬁ—(xGG—xBB)CHC(/ﬁ

(x,G-x,B)cOs¢+(y,G-y,B)sO

G(n)=(

where s-=sin(*) and c-=cos(-), fo(#) is the gravity vector in
the body-fixed coordinate system, fz(#) is the buoyancy
vector in the body-fixed coordinate system, Rg is the
position vector of the center of gravity in the body-fixed
coordinate system, Ry is the position vector of the center of
buoyancy in the body-fixed coordinate system, G is the
gravity scalar in the inertial coordinate system, B is the
buoyancy scalar in the inertial coordinate system. In order
to facilitate the deduction of formulae, define that g(x) =
~G(n).

The CFD method is used to simulate numerically the
open-water performance of the wheel propeller!'?), then the
least squares curve fitting approach is used to deal with the
computational data. So the expressions of thrust coefficient
K, and torque coefficient K, about the advance coefficient J
of the wheel propeller are obtained:

K =K, +KJ+KJ
- — (15)
K =K +KJ+KJ

where the parameters X , K , K, ]?U , ]?1 and ]?2 are all
constants.

In order to make the operating characteristics of the
wheel propeller closer to the real situation, the wake

coefficient and the thrust deduction factor are considered
because of the interaction between the wheel propellers
and the vectored thruster AUV, so the thrust 7, and torque
0, can be expressed as follows:

T =A4U" +BUn+Cn’
_ — o — (16)

2 2

O =AU +BUn+Cpn

where 4, = (1-1)(1- wP)2 pD’K,. B, =(1-1)(1-w,) pD’K, »
c,=(1-1)pD'K, - 4,=(1-w.) pD'K, . C, = pD’K, .
B, = (1 —w, ) pD'K,, nis the propeller rotational speed, U is

the speed of the vectored thruster AUV, ¢ is the thrust
deduction factor, w;, is the wake coefficient, D is the
propeller diameter.

The thrust T of a three-DOF vectored thruster is a vector
which can adjust the direction according to the course
control need of the vectored thruster AUV, as shown in Fig.
4. The expressions of a single vectored thrust 7 through
decomposing it can be written:

T =T cosod, coso,
T, =T, coso, sind, .
T =T sing,

Z[ ¢ §

T
ST
e

(17)

501_/
iz

=

Fig. 4. Thrust orientation of a vectored thruster

The total thrust and total torque of four vectored
thrusters can be written as follows:

. T +T, +T +T,
T T +T +T +T,

f;) — z — 1 2 3 4 (18)
Qx Qxl —"_Qx2 +Qx1 +Qx4
o1 10,+0,+0,+0,
Qz

0 +0 +0 +0,

The rudders of the vectored thruster AUV are used to
control the course in high-speed navigation, whose forces
and moments are
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M N
0 Yu‘u‘é}u|u|
f _ Zu\u\()'pu|u| 0 5p . (19)
! 0 Ku\u\a;”|“| S
Mu‘u‘é.pu|u| 0
0 N u|u|

ululo,

where 6 is the plane angle and J, is the rudder angle,

5 s

ululs,6, “'p

5.

M = Xqunuq +qu§nuw+u|u|X
N = XMrur+XMruv+u|u|X

u‘u‘b‘rb‘r

3.2 Vector equations based on Newton’s second law
The momentum and angular momentum according to
Newton’s mechanics can be expressed as

m[v, +v,xv +v xR, +v,x(v,xR. )] = f, (20)

J0132+v2><(J0v2)+mRG><(‘31+v2><v1):f2, 2n
where m is the quality of the vectored thruster AUV, J; is
the inertia tensor of the vectored thruster AUV in
body-fixed coordinate system.

Therefore, we can represent the dynamic equations in
vectorial form as

My+C (v)v=f, (22)

fo=fr it L, (23)

where My is the rigid-body inertia matrix, Cr(v) is the
rigid-body Coriolis and centripetal matrix, fr is the total
forces and moments, fy is the hydrodynamic forces and
moments, fr is the control forces and moments, fr= f,+ f,
fc is the ocean currents forces and moments, fi is the
waves forces and moments. The disturbance caused by the
waves is usually ignored when the AUVs navigate in deep
water. In this paper, the complicated state of the vectored
thruster AUV navigates near water surface is computed,
where the waves are considered.
Moreover,

) my, +mv, xR,
My = } s (24)
Jv,+mR_ xv

my, xv, +my, ><(v2 XR(;) ' 25)
v, x(J,v, )+ mRx (v, xv,)

C, (v)vz(

According to that @ X b = S(a) - b, the following

expressions are obtained:

—mS (Rg )] :

M = ml
* o\ mS(Ry) J,

03><3

3 —mS(vl)—mS(vz)S(RG) ,
CR_(—mS(m)+mS(RG)Sb5) ]

—S(Jovz)
where S(a)z a 0 —a

The hydrodynamic forces and moments on the vectored
thruster AUV can be expressed as

fo=-My-C (v)y-D(v)v-g(n), (6)

WhereMA:[M“ Muj:(ﬂ}), (i=1+++6, j=1+-6) is the
M2l M22 '

added mass matrix, C, (v)is the hydrodynamic Coriolis

and centripetal matrix, D (v) is the hydrodynamic damping
matrix.

The total hydrodynamic damping is mainly caused by
radiation-induced potential damping and viscous damping.
The viscous damping consists of friction damping, wave
drift damping and vortex shedding damping. The total
hydrodynamic damping D(v)v is usually divided into linear
part Dy (v)v and nonlinear part Dyi(v), whose corresponding
hydrodynamic parameters are all obtained through the
experiments. The linear damping parts of the total
hydrodynamic damping in the cruise mode and hover mode
are the same, but the nonlinear damping parts are different.
The viscous damping is the major part of the total damping
when the vectored thruster AUV is in cruise mode and the
linear part is larger, the non-linear part is mainly the second
damping caused by friction. The two parts can be expressed
as

D, (v)v=-diag(X,.Y.Z,.K,.M N, )v, (27)
D, (v)=
~diag (X, [ul. ¥y M. 2 [l K Lol M gl N ) v

(28)

The vertical and horizontal motion of the vectored
thruster AUV in hover mode works in the state of a large
angle of attack or angle of sideslip, the nonlinear part of the
fluid viscous damping plays a major role. The nonlinear
damping mainly represents transverse flow resistance. The
transverse flow velocity function of the any point in the
body-fixed coordinate system can be defined as''
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(29)

ey +(w-q) .

The corresponding damping forces can be ignored since
the axial motion and rolling around the longitudinal axis of
the vectored thruster AUV in hover mode is little. So the

total fluid damping forces based on strip theory can be
expressed as follows:

= ;27 () (v + Cub(x) (wxq)’ ]((;:(xxr)))dx
7, =2 1[0 ) +Cdzh(x)(w—xq)2]((;Vc:(zq)))dx |

M, =L “[Coh()(vxr) +Cub(x)(w-xq)' | ((zV/V:(th)))de
N =‘E [Cdvh( )(v+xr) +Cyb(x)(w—xq)’ } ((;:(xxr)))m
(30)

where Cy, is the drag coefficient along lateral axis, Cy, is
the drag coefficient along vertical axis.

Therefore, the nonlinear part of the total damping in
hover mode can be written as

( ):_(0’ h’ h’Nh)T' (31)

The added mass can be considered as a constant which is
independent of wave frequency as for the vectored thruster
AUV. Therefore, the added mass matrix M, and the
hydrodynamic Coriolis and centripetal matrix Ca(v) can be
deduced through the fluid kinetic energy. The fluid kinetic
energy of the added mass is written as

1
T =—v'M,v. (32)
2

Applying the Kirchhoff’s equations of fluid mechanics

yields:
d(or, oT, ,
— +v, % = fl N (33)
de\ ov, ov,
d|( oT, oT, oT, ,
— +v, x + v, x =f, (34)
ov, ov, ov,

where f"and f are the forces and moments respectively

suffered from the vectored thruster AUV.
Defining,

oT,
= Mllvl + M12v2
ov 8v

1 2

=M,v +M,v

22727

oT oT
V2 X — 03x3 7S (avj

vzxa—TJrlea—T ,s al s aT
avz avl avl av

which yields:

0, fS(M v +M7v7)
C ( ) x3 11 12°2 . (35)
-S(My +My,) -S(M,y +M,v)

(vlja

From Eq. (22) with Eq. (23) and Eq. (26), the six-DOF
dynamic equations of motion can be expressed as

MI}+C(v)v+D(v)v+g(q):fT+fC+fW, (36)

where M=M +M _, C(v)=C (v)+C (v).

The derivative of the kinematic Eq. (6) can be written as

i=J(n)v+J(n)v. (37)

Hence,
v=J"(n)n. (38)
v=J" (n)i-Jd(n)J" (n)7]. (39)

From Eq. (33) and Eq. (34) together with Eq. (38) and
Eq. (39), the six-DOF dynamic equations of motion in the
inertial coordinate system can be expressed as

M, (n)ij+C, (v.n) 7+ D, (v.n) 7+, (1) = fr, + fo + frs (40)

where € (v.n)=J"(n)[C(v)-MI" (7)J (n)]T" (n)
M, (n)=J" (m)MJ"(n) . D (v.n)=J"(n)D(v)J"(n) -
g,(n)=7"(n)g(n). £, (m)=T"(n) 1.

L= s, f,(m=7"(n)1,.

3.3 Vector equations based on Lagrangian method

In order to further validate the accuracy of dynamic
model, the Lagrangian method is used to deduce the
six-DOF nonlinear dynamic model of the vectored thruster
AUV.

Application of Lagrangian principle yields the following
expression, that is

i(@_Lj L ap
dt\ on an on

where P, is the power function, the fluid dissipative force is

=fot (41)

Jor * Lo
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P
expressed as—*

=D, (v.n)n, the Lagrangian is written

asL=T +T, -V, T, isthe vectored thruster AUV kinetic

energy, T, is the fluid kinetic energy, V is the potential
T 4
energy defined implicit by— =g, (77) .
on

Hence, The total kinetic energy can be expressed as

1.]' .
T=T +T,=—7'M (n)n. (42)
2
Furthermore, we can compute:
d( oL . .
—(—_j=Mn(n)n+Mn(n)n, (43)
dt\ on
oL oT ov 1 oM (n)
—=———=—7 ——5-g.(n). (“4%
on on on 2 on
From
. . OM, ()
M, (n)=n"———=
on

and the Coriolis and centripetal matrix

C, () =1, (n)

together with Egs. (41), (43), (44), the six-DOF dynamic
equations of motion in the inertial coordinate system can be
expressed as

Mn (ﬂ)ﬁ-'—cn(v’ﬂ)fﬁ—Dn(v’ﬂ)fﬁ—gn (ﬂ) :an +an +an' (435)

The six-DOF nonlinear dynamic equations of the
vectored thruster AUV deduced based on the Newton
second law and Lagrangian approach are completely same,
which shows that the dynamic model of the vectored
thruster AUV is accurate and it can be used to study the
motion and control system of the vectored thruster AUV.

3.4 Mathematical model of low-frequency motion

The low-frequency motion of the vectored thruster AUV
is mainly caused by ocean current, second-order wave force
and propulsion. The ocean current can be regarded as the
circulation system in the horizontal and vertical direction
which caused by gravity, wind friction and changes in
water density. It is a low-frequency slow process of change.
The speed of ocean current is usually defined in the
n-coordinate system and described by flow axis, so the
ocean current vector can be written as (V,, 0, 0)". The

o] e

three-dimensional ocean current speed in inertia coordinate
system can be determined through two times rotations, that
is

u; cosa, 0 —sing, \(cosf, -—sinf, 0\ V.
vil=l 0 1 0 sinfi, cosf, 0| 0] (46)
WS sina, 0 cose, 0 0 1)L 0

where o, is the flow axis’s angle of attack, f. is the
flow axis’s angle of sideslip.

The flow velocity v.°in the inertial coordinate system
is transformed into the flow velocity v in the
body-fixed coordinate system using the Euler angles
transformation matrix:

b e
Mc Mc

vi=( V= () | v (7)
w’ w

The velocity components ¥V, of ocean current can be
represented by a Gauss - Markov random process''*:

V() + (1) = (). )

where y is a constant, define 1= 0 to simulate the random
process of the ocean current velocity in most cases, w(?) is a
zero mean Gaussian white noise process.

The current-induced forces and moments can be included
in the dynamic equations of motion based on the principle
of relative motion and the assumption that the fluid is
irrotational. The definition of relative velocity can be
written as

(49)

vo=(u—ul v ow—w! pag.r)
Hence, the hydrodynamic forces and moments fi; can be
expressed as
fu=—My =C (v)y -D(v)v,-g(n). 60
where the body-fixed current velocity is usually assumed to
be slowly varying such that it yieldsv_ =~ 0 .
The second-order wave drift force in the x, y and z

directions can be modeled by three slowly-varying
parameters:

d=(d.,d,d,0,0,0) . (51)

Hence,

d=w, (i=1,2,3)

(52)
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where w, is a zero mean Gaussian white noise process.

Finally, the mathematical model of low-frequency
motion can be expressed as

My+Cy (v)v+C, (v,)v,+D(v,)v, +g(n)= f, +d . (53)

3.5 Mathematical model of high-frequency motion

The high-frequency motion of the vectored thruster AUV
is mainly caused by the first-order wave force. The
six-DOF high-frequency motion (surge, sway, heave, roll,
pitch and yaw) caused by the first-order wave forces can be
seen as the harmonic oscillators that adding different
damping respectively. The second-order random wave
transfer function is used to estimate the wave spectrum-PM
spectrum!™®), which is expressed as

K s

h (s)z

— (54)
STH20ws+w

where K . =2{wo ,o is the wave intensity, ¢ is the

relative damping coefficient, w is the encounter frequency,
2

w ) .
——*Ucos g, y is the encounter angle,w, is the
g

peak frequency of PM spectrum, which is related with the
w, =0.40\/g/H_. The

wo=w,

significant wave height H_:

high-frequency motion caused by the first-order wave
forces can be expressed as

v (s)=h (s)w(s),

(35)

where w (s) is a zero mean Gaussian white noise process.
Finally, the standard linear state-space model of the
high-frequency motion can be expressed as

X, =Ax +Ew,, (56)

y,=C.x

H™H?

06><6 Iﬁxﬁ 06><6
where 4, = , E, = s
-Q -2AQ0 K

C :(06x6 Iﬁxﬁ)’ A:diag(éll’”"é’ﬁ)sxs’

2 =diag(w), -, w}) , K, =diag(K,..K,,)

(57)

6x6 6x6 7

T T\" T
X, = (xhl’th) s Xy = (xm’ xhy’xhz’xh¢’xh€’xhu/ ) ’

T .
xm:yH=(§H,77H,§H,¢H,8H,l//H) , w,is a vector of
zero mean Gaussian white noise processes.

4 Calculation and Analysis of the Position
and Attitude in Complex Sea Conditions

4.1 Performance analysis of the spatial motion in
interference-free environment

The dynamic model in interference-free environment is
established through ignoring the ocean currents and waves
disturbance based on the kinematic and dynamic equations
in complex sea conditions. Then the Runge-Kutta
arithmetic algorithm is used to solve the dynamic model.
The inputs are the propeller speed, the space angles of
vector propellers and rudder angles. The outputs is the
six-DOF motion parameters such as u, v, w, p, ¢ and r, at
the same time the position and attitude parameters are
obtained.

Fig. 5 shows the changes of the vectored thruster AUV’s
speeds at different propeller speeds. It can be seen that the
vectored thruster AUV’s speeds reach a steady value
quickly at different propeller speeds and keep the steady
increase with the increase of propeller speeds.
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Fig. 5. Navigation speeds at different propeller speeds

The rudders are hard to achieve the course control when
the vectored thruster AUV sails at low speed, while the
vectored thrusters can achieve the target quickly through
adjusting its space angles. Fig. 6 shows the ascending and
descending trajectories of the vectored thruster AUV when
the propeller speed is 5 r/s and the space angle dy of the
vector propeller is £90°. Since the nose of the vectored
thruster AUV is streamline, so there is a positive x-axis
propulsion making the vectored thruster AUV forward
when it ascends and descends. When the vectored thruster
AUV turns at low speed, the two bowed vector thrusters are
used to offer the required propulsion through adjusting its
space angle, while the two sternward vector thrusters are
not used in order to avoid the phenomenon of torque offset,
which reduces the steering efficiency. The right bowed
vector thruster's space angle is defined as d;=10° and the
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remaining three vector thrusters have on propeller speeds,
the turning trajectory of the vectored thruster AUV is
shown in Fig. 7. There is a slight dive in the turning process
because of the single propeller thrust together with the fluid
disturbance, which is consist with the phenomenon of Refs.

[1].
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Fig. 6. Trajectories of the ascending and descending processes
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Fig. 7. Motion trajectory of the turning process

The rudders have higher efficiency to achieve the course
control when the vectored thruster AUV sails at high speed
according to the hydrodynamic theory. Fig. 8 shows the
spiral ascending process of the vectored thruster AUV
when the propeller speed n = 20 /s, rudder angle J,=10°
and plane angle J,=45°. The trajectory computed accords
with the corresponding result of the input, which indicates
that the dynamic model and kinematic model based on the
Euler angles method are correct.

Normal axis £/m
0 |
o

Fig. 8. Motion trajectory of the spiral ascending process

In order to verify the applicability of the quaternion
method at different pitch angles, we set the initial attitude

angle (4, 19,1//)T =(0°,0°,0° )T , which accords with the

initial attitude of most AUVs. Give a constant drive orders,
but not rudders control orders, until the vectored thruster
AUV achieves to be in steady cruise state and then give the
planes a pulse command to keep it deflects until the 60 s.
The navigational trajectory of the vectored thruster AUV is
computed when the three pulse amplitudes of the plane
angles are 10°, 20° and 30° respectively. The input
functions are shown in Fig. 9. Fig. 10 shows the trajectories
for the three cases of the vectored thruster AUV when the
propeller speed is 10 1/s, we can see its motion is consistent
with the actual situation.
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Fig. 9. Input functions of the plane angles
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Fig. 10. Motion trajectories of the different plane angles

The navigational trajectory of the vectored thruster AUV
when the pulse amplitude of the plane angle is30° shows
the superiority of the quaternion method, shown in Fig. 11.
The curves of the axial velocity u and vertical velocity w
tend to be stable at the 20 s. Then a plane order is given, the
axial velocity u and vertical velocity w decline due to the
resistance change until canceling the order at the 60 s.
Finally, the axial velocity u gradually gets to be 3.59 m/s,
while the vertical velocity w gets to be 0 m/s. Fig. 12 shows
the curves of the pitch angle 8 and pitch angle velocity g.
The roll angle and the yaw angle are zero because the
rudder angle is The pitch angle decreases
continuously from zero until passing through the point
6 =-90" under the effect of the plane. The simulation
system runs accurately and the curve of the pitch angle is
smooth without singular point, which proves well the
feasibility of the quaternion method to solve the problem

Z€ro.
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that the simulation based on the Euler angles method can
not proceed at the points @ = +90° . The curves of the
quaternion are shown in Fig. 13. The roll angle ¢ and yaw
angley are zero because ¢, and &; are zero, while &, and &,

have a corresponding change with the pitch angle 6.
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4.2 Performance analysis of the spatial motion near
water surface in environmental disturbance

The low-frequency motion model and high-frequency
motion model of the vectored thruster AUV near water
surface are established based on the random wave theory,
which can simulate a variety of motions in the ocean
current and wave disturbance together with its kinematic
model. In order to design the control system of the vectored
thruster AUV in environmental disturbance, the analysis of
its kinetic characteristics is necessary.

The cruise state of the vectored thruster AUV in
environmental disturbance is simulated through solving the
kinetic and dynamic equations based on the nonlinear
model proposed in this paper. Define the parameters
include the propeller speed #=8 /s, ocean wave grade S=4,
significant wave height H; = 1.8m, flow axis’s angle of
attack a.=15° and flow axis’s angle of sideslip f=25°. The
low-frequency motion signal, high-frequency motion signal
and measured motion signal of the vectored thruster AUV
cruising near water surface are shown in Fig. 14. The
integrated motion signal is comprised of the low-frequency
motion signal and high-frequency motion signal, while the
measured motion signal includes the integrated motion
signal and measured noise. It shows that the control of
low-frequency motion signal can achieve to avoid energy
wasting and propellers wearing down, so it is necessary to
filter high-frequency motion signal and measured noise
during the control system design. Moreover, the ruleless
spiral motion appears after several seconds in complex sea
conditions because the motions are not controlled, which is
different with the phenomenon in interference-free
environment. Therefore, in order to keep the high mobility
and maneuverability of the vectored thruster AUV in
complex sea conditions, an advanced autopilot should be
designed.
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5 Conclusions

(1) Euler angles representation is applied to establish
six-DOF kinematic model according to the structural and
kinetic characteristics of the vectored thruster AUV. In
order to avoid especial singularities and achieve the
satisfactory performance with arbitrary angles, the
quaternion method is used to solve the problem that Euler
angles representation is meaningless when the pitch angles
are+90°.

(2) The Newton second law and Lagrangian approach are
used to deduce the vectored thruster AUV’s nonlinear
dynamic equations with six degrees of freedom in complex
sea conditions respectively, the dynamic models of the two
methods are same, which explains that the dynamic model
of the vectored thruster AUV is accurate.

(3) The Runge-Kutta arithmetic is used to solve the
dynamic equations of the vectored thruster AUV in
interference-free environment. The kinematic model and
dynamic model are proved to be valid through the
computation and analysis of its spatial motion’s
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performance in interference-free environment, which clears
up the difficulties of computation and display of the
coupled nonlinear motion equations in complex sea
conditions. Moreover, it shows that the maneuverability of
the vectored thruster AUV equipped with rudders and
vectored thrusters is enhanced.

(4) The low-frequency motion model and high-frequency
motion model of the vectored thruster AUV near water
surface are established based on the random wave theory,
which can simulate a variety of motions in the ocean
current and wave disturbance together with its kinematic
model. Then the position and attitude signals of the
vectored thruster AUV in environmental disturbance are
analyzed, which lays a foundation for the control system
design in complex sea conditions.
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