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Abstract: Improvements in hybrid electric vehicle (HEV) fuel economy and emissions heavily depend on an efficient energy
management strategy (EMS). However, the uncertainty of future driving conditions generally cannot be easily tackled in EMS design.
Most existing EMSs act upon fixed parameters and cannot adapt to varying driving conditions. Therefore, they usually fail to fully
explore the potential of these advanced vehicles. In this paper, a novel EMS design procedure based on neural dynamic programming
(NDP) is proposed. The NDP is a generic online learning algorithm, which combines stochastic dynamic programming (SDP) and the
temporal difference (TD) method. Instead of computing the utility function and optimal control actions through Bellman equations, the
NDP algorithm uses two neural networks to approximate them. The weights of these neural networks are updated online by the TD
method. It avoids the high computational cost that SDP suffers from and is suitable for real-time implementation. The main advantages
of NDP EMS is that it does not rely on prior information related to future driving conditions, and can self-tune with a wide variance in
operating conditions. The NDP EMS has been applied to “Qianghua-I”, a prototype of a parallel HEV, using a revolving drum test
bench for verification. Experiment results illustrate the potential of the proposed EMS in terms of fuel economy and in keeping state of
charge (SOC) deviations at a low level. The proposed research ensures the optimality of NDP EMS, as well as real-time applicability.
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strategies formalized as fuzzy rules”™. Though these

rule-based strategies are effective and can be easily
implemented, their optimality and flexibility are critically
limited by working conditions. Therefore, an EMS that
performs well under certain conditions may be not

1 Introduction

Hybrid electric vehicles (HEVs) have been widely
studied in recent years because of their potential to
significantly improve fuel economy and reduce emissions. satisfactory under other conditions.

Tlhey have b.eiln reg;rfied 1as hjdl commler01§lly 1\11.1a1b16 According to the literature, to optimize the operation of
alternative to either traditional vehicles or electric vehicles. the HEV powertrain, some model-based global

HEV design combines aﬁ engine and a mpt(;)r togdetheir with optimization methods have been employed in EMS design,
an energy storage that can act independently or such as dynamic programming (DP)[‘H], sequential

cooperatn./ely. Consequegtly, it can 51g.mﬁcantly reducF: fuel quadratic programming (SQP)'®), genetic algorithms (GA)”,
consumption by operating the engine at an optimum and so on. Usually, these algorithms can manage to
efficiency range. Additionally, hybridization advantages, determine the optimal power split between the engine and
such as energy recovery during breaking, further improve the motor for a particular driving cycle. But the optimal
fuel .economy. However, due to t.he complexity Ot,‘ .the power-split solutions obtained are only optimal with
hybrid structures and the uncertainty of future driving respect to that specific drive cycle and, in general, it is

conditions, it is non-trivial to design an efficient real-time neither optimal nor charge-sustaining for other cycles.

energy management strategy (EMS). Unless future driving conditions can be predicted during

Many existing EMSs are rule-based, such as the . . . .
- ) he P Foll dth real-time operation, there is no way to implement these
ermostatic strategy, the Fower Follow strategy, and the control laws directly. More critically, these methods suffer

. . . 1]
Parallel Hybrid Electric Assist strategy'!. These EMSs from the “cursc of dimensionality” problem, which

have been developed based on the results of extensive . . . .
: : i prevents their wide adoption in real-time applications. In
experimental trials and human expertise. Some other EMSs . . L
summary, EMS designs built upon global optimization

employ heuristic control techniques, with the resultant techniques can serve to evaluate the potential fuel economy

of a given powertrain configuration, as well as the
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optimality of realizable control strategies.
How to gather the necessary information about future
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driving conditions remains an open question. In the
literature, statistical approaches are often employed to
address this problem. For example, LIN, et al™® !, presented
an EMS design procedure based on stochastic dynamic
programming (SDP). In their approach, a Markov process
that represents future uncertainty under diverse driving
conditions is applied to model the driver’s power demand.
The transition probability matrix of the power demand from
the driver can be obtained from the driving cycles or the
collected history data of driving operation. By doing so, the
SDP EMS is optimized over a family of driving cycles that
follow the same transition probability matrix in an average
sense. The SDP problem can in principle be solved by the
value iteration algorithm or the policy iteration algorithm!'".
The resultant EMS takes the form of a stationary full-state
feedback control law that maps the current state to actions.
However, the relevant techniques for the SDP problem are
also time-consuming and highly computational. Moreover,
they rely on the exact knowledge of the transition
probability matrix, which may be difficult, if not
impossible, to obtain. Therefore, the SDP algorithms cannot
be readily applied in real-time applications.

A real-time EMS should adapt itself to varying driving
conditions in order to get good performance. Hence, a
learning control approach based on neural dynamic
programming (NDP) is presented here. The NDP is a
generic online learning algorithm which hybridizes the SDP
and temporal difference (TD) reinforcement learning!'''*\
Instead of computing the utility function and optimal
control actions through solving Bellman equations, the
NDP algorithm uses two neural networks to approximate
them. This approximation approach generally produces a
suboptimal solution with a substantially reduced
computational cost. Basically, the developed NDP EMS
controls the system by learning its characteristics and
updating the neural network weights simultaneously in real
time. Consequently, the NDP EMS can tune itself
adaptively to widely changing operating conditions. The
RBF neural network is utilized here to implement the NDP
algorithm due to its fast convergence. Furthermore, the
NDP approach does not need an explicit environmental
model, such as the transition probability matrix of the
power demand in the SDP approach. This feature
extensively enlarges its application scope.

The problem formulation and the HEV model used for
evaluating the EMS are described in section 2. Section 3
presents a comprehensive description of the NDP
mechanism. Section 4 provides the details of the NDP
design procedure as well as experiment results. Finally,
conclusions are given in section 5.

2 Problem Formulation
The baseline vehicle studied is a single axis parallel HEV,

Qianghua-I, whose powertrain structure is shown in Fig. 1.
The powertrain integrates an engine, an electric traction
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motor/generator, Ni-Hi batteries, an automatic clutch, and
an automatic/manual transmission system. The motor is
directly linked between the output of the auto clutch and
the input to the transmission. This architecture provides the
regenerative braking during deceleration and allows an
efficient motor assist operation. To provide pure electrical
propulsion, the engine can be disconnected from the
drivetrain by the automatic clutch. Important parameters of
this vehicle are given in Table 1.

Battery

Ax

Inverter/Controls

Hybrid Drivetrain

Auto
Clutch

Motor/
Generator

Engine Transmission

v v v

i Vehicle _
N Control Unit =~

Fig. 1. Schematic diagram of the parallel hybrid electric
vehicle drivetrain
Table 1. Summary of the HEV parameters
Spark Tgnition Displacement: 1.0 L

Maximum power: 50 kW/5 700 r/min
Maximum power: 8§9.5 N » m/5 600 r/min
Maximum Power:10 kW

Maximum Torque:46.5 N * m

Capacity: 6.5 Ah

(SI) engine

Permanent
magnet motor

Ad d Ni-Hi
vanced Ni-Hi Nominal cell voltage: 1.2 V

tt
battery Total cells: 120
Aut ted

utomate 5 speed
manual

.. GR:2.2791/2.7606/3.5310/5.6175/11.1066

transmission
Vehicle Curb weight: 1 000 kg

The system model has been developed according to the
well-known quasi-static approach. Accordingly, the
dynamics of the system are inverted and the torque required
at the wheels T, and the angular velocity of the front axle
w,, can be calculated as

v

o, = s 1
T (1)
T, =r(v) %Afcdv2 + f.(v)mg cos a +mg sin B |+
2
Jtot ﬂ ( )
r,(v)de’

for a given vehicle speed v and a known road slope a. The
vehicle parameters are the frontal area Ay the drag
coefficient ¢4, the rolling resistance coefficient f;, the
vehicle mass m, the wheel radius r, and the total vehicle
inertia J;.. The angular velocity @, and the torque request
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T, at the gearbox input are then given

0, = 0,R(). ©
L 41 (@, 8) T, +T,, >0
R , W loss —
I, = T _|_(f)fz(g) ) ?
a,,
mn(g), T, +1,, <0.
R(g)

Where T, denominates additional losses caused by
friction, R(g) the total transmission ratio, and #(g) the total
transmission efficiency from the gearbox input to the front
wheels. The corresponding gear g can be calculated by
using the specified shift schedules of the automatic gearbox
as follows:

5, g(k)+q(k)>5,
glk+h =11, g(k)+q(k) <1, ®)
g(k)+q(k), otherwise.

The control to transmission g(k) is constrained to take
the discrete values of 1, 0, and —1. These values represent
the downshift, the keep unchanged, and the up-shift,
respectively.

The torque request 7;, has to be satisfied by the engine
and the motor yielding:

an :7;+Tm' (6)

The fuel consumption rate and emissions are assumed to
be static functions of the engine speed and the engine
torque, and can be obtained by referencing the engine map.

The motor efficiency is modeled as a function of the
motor torque and the speed, i.e., 7m=fTm, @). The final
motor torque output is limited by the battery capacity and
motor power limit.

The battery is modeled as a voltage source with an open
circuit voltage V,. and an inner resistance R;,, both
depending on the state of charge (SOC) of the battery, .
The evolution equation of the SOC is represented as

I/oc B I/020 B 4(Rim + Rt )Tm wm U;Sg"(Tm)
stk+1)=¢g(k)— J ;
2(Ry + RO
()

where Onyx is the maximum charge capacity of the battery;
R, is the terminal resistance.

Finally, the state vector of the HEV system includes four
state variables, i.e., X(k)=(Tuem(k), ar(k), g(k), &k))". The
control vector is U(k)=(Tu(k), g(k))". The motor output
torque command 7,,(k) can then be obtained through Eg.
(6). As can be seen from the above description, the energy
management strategy includes two sub-strategies: 1) the
gear shifting strategy, which selects the gear from a discrete
set to optimize the operation of the engine, and 2) the

3.

torque-split strategy, which defines the best torque split
between the engine and the motor.

Formally, the energy management of the HEV is to find
the optimal control strategy, 7, that maps the observed
states X(k) to the control action U(k) so as to minimize
vehicle fuel consumption and emissions along a transport
mission. In the meantime, the vehicle drivability and
charge-sustaining of the battery have to be satisfied.
Mathematically, the energy management of HEV can be
formulated as an infinite horizon dynamic optimization
problem as follows:

J(X) = gykmk), ®)

where R(k) is the immediate cost function incurred by U(k)
at time k; »<(0, 1) is a discount factor that assures the
infinite sum of cost function convergence. A key benefit of
the infinite horizon problem is that the generated control
strategy is time-invariant, and thus can be -easily
implemented.

The cost function R(k) consists of the sum of the
weighted fuel consumption, emissions, and some other
additional cost functions, as shown in Eq. (9):

R(k) = R (k) +a,R,, (k) + a,R (k) +a;R, (k). (9)

The constraint on the charge-sustaining operation is
incorporated in the cost function so that the SOC depletion
can also be minimized:

Rsoc = (é(k) - §ref )2’ (10)
where &.ris the desired SOC at the final time (which is
usually equal to the initial SOC in simulation), and a, is a
positive weight factor.

The gear-shifting schedule is crucial to the fuel economy
of the HEV. If no constraint is imposed on gear-shifting
frequency, the optimal gear trajectory will result in frequent
shifting, and thereby influence comfort and drivability. This
additional cost is represented as Rg:

R, =|a(h). (1)

Finally, the optimization problem is subject to the

following system constraints:

.

e_min

Snin = S(K) <G
T (@ (K) ST (K)<T, ., (@, (K)),

T,y i (@0, (K), (k) S T, (k) < T, 0, (@0, (K), S (K)).

<o/(k)<o

e_max ’

(12)

3 NDP Mechanism

For an infinite horizon optimal control problem, the
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utility function J gives the expected accumulated future
cost for each state X. The optimal control action U is the
control value that yields the minimum utility function J".
According to the Bellman equation, there is a direct
relationship between the optimal utility function of a state
and its neighbors, as shown in Eq. (13):

J (X (k)= muin{yJ*(X(k+1))+R(k)}. (13)
For the sake of simplification, J(X(k)) are rewritten as J(k)
in the following.

The NDP approach uses two neural networks, the critic
network and the action network to approximate each state’s
utility function J(X) and the corresponding optimal control
action U(X), respectively. The whole training process is
operated along with the system operation. The states’ utility
function is updated online by the TD method. Then the
experienced system state X(k) and their updated value J(X)
are used as a sample to adapt the weights of the critic
network and the action network. So, the essence of NDP is
to utilize the generalization ability of neural networks to
approximate all states’ J(X) and U(X) in the whole state
space. Although this approximation may cause little
degradation in optimality, it can greatly reduce
computational cost. The structure of the NDP configuration
is shown in Fig. 2. The solid lines represent the signal flow,
while the dashed lines are the paths for parameter tuning.
TDL denotes a tapped delay line.

P e R T
x v Jk) o+
wion |y 3 S Y
network

(| “

x(k)

yJ(k+1)+R(k)

x(er 1)

> system

v

Fig. 2. Schematic diagram of the NDP

To reduce training time, a three-layer RBF neural
network is adopted here for both critic and action networks.
As shown in Fig. 3, the input values are each assigned to a
node in the input layer and passed directly to the hidden
layer without weights. The RBF units in the hidden layer
take the Gaussian density function as the activation
function, which are specified by a parameter vector C;
(called center), and a scalar S (called width). The overall
input—output mapping equation of the RBF network is as
follows:

_"S_Ci"Z], (14)
ﬂZ

i

h h
y; =b, —|—§wﬁPi =b, —|—§wﬁexp

where S is the input vector, /4 is the number of RBF units in
the hidden layer, b; and w; are the bias terms and the weight
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between the hidden and output layers respectively, and P;is
the corresponding output of the ith RBF unit in the hidden
layer; y; is the jth output. Once the centers of the RBF units
are established, the width of the centers in the hidden layer
can be calculated by Eq. (15):

dmax
ﬂ1 _ﬂz _”'_ﬂh _Ea

(15)
where dp,.x represents the maximum Euclidean distance
between centers. In the following, the critic and action
networks are described in detail.

Input layer with  Hidden fayer with

output layer
n+m inputs h neuro nodes P 4

(a) Critic network

Input layer with

Hidden layer with

n inputs p neuro nodes output layer
(b) Action network
Fig. 3. Three layer RBF neural networks

3.1 Ciritic network

The critic network has 4 hidden layer nodes. The input
vector to critic network S(k) is composed of n-dimensional
state vectors X(k) along with m-dimensional action network
outputs U(k). The output of the critic network is an
approximation of the utility function J(k).

According to the TD method, the prediction error of the
critic network can be defined as

e (k)= }/J(k)—[J(k—l)—R(k)]. (16)

The critic network is trained to approximate the “utility

function” J(k) by minimizing the objective function:

E(0) = el k) (17)

The weights of the critic network are then updated
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according to the following gradient-descent algorithm:

W, (k+1) = W.(k)+ AW, (k). (18)
_OE(
AW, ()= =55, (19)

where 7. is the learning rate of the critic network, and W, is
the weight vector of hidden to output layer in the critic
network. By applying chain rules to Eq. (19), the adaptation
of the critic network can be represented as

OF (k) _ OFE (k) Oe (k) O0J(k) _
Ow, (k) e, (k) 0J(k) Ow, (k)

e. (P, (k). (20)

where w,; represents the ith value in W, P,(k) is the
corresponding output of the ith RBF unit. To reduce the
computational complexity during the training process, the
locations of the RBF centers are determined offline using
the k-means clustering algorithm. Thereafter, the
gradient-descent algorithm is calculated to update the
output linear weights online.

3.2 Action network
The action network generates the desired control actions
based on the measurements of the system states and
operates as the actual controller of the system. The action
network has p nodes in the hidden layer, as shown in
Fig. 3(b). The input to action network is an n-dimensional
system state vector X(k) and the output is the
approximation of an m-dimensional action vector U(k).
According to the Bellman equation, the objective of the
action network adaptation is to find the optimal control
actions U*(k) to minimize the utility function J(k) over
time:
U'(k)=arg ijn[J(k)]. (21)
This is achieved by training the action network with an
error vector e,(k):

_9J(k)

= T® 22)

e, (k)

The error vector can be obtained by back propagating
constant “1” through the critic network!'". Therefore, the
action network should be trained simultaneously with the
critic network training process. By applying chain rules, the
mathematical closed form of the error signal is given in Eq.
(23):

Wci (k)Pu (k) >

oJ(k) —Zuj (k) 23)

2i ci,n+j
3uj (k) = B

where u(k) is the jth value in action vector U(k); c; ,+; is the

(n+j)th value in C;.
The training of the action network is to minimize the
following error function over time:

E,() = el (Be, (b (24)

The weights of the action network can be updated
similarly to the critic network training according to:

W, (k+1) =W, (k)+ AW, (k), (25)
_OE(b)
AW, () ==, s (26)
OE, (k) w|aJ(k)y B (0J(k)
ow,, (k) h (k)g: du, (k) du, (k) [81@ (k)]’ @7

Where 7, is a positive learning rate of the action network,
which can be different from 7.; P,(k) is the corresponding
output of the ith hidden layer RBF unit in the action
network, and j=1, 2,---, m, i=1,2,---, p.

3.3 Overall training procedure

The online training procedure for the critic and action
networks consists of two stages. The critic network is
trained first, following the training of the action network. In
the first stage, the critic network’s weights are initialized
with small positive random values, and in its training cycle,
the incremental optimization is carried out according to Eqs.
(16)—(19). The optimization terminates when either the
error has been sufficiently reduced (e.(k)<FEqn) or the
internal update cycles of the weights have been reached
(Ne>Nemax)- In the second stage, the critic network’s
weights are fixed, and the training of the action network is
carried out by using Egs. (24)—(26) until convergence. The
convergence of the action network training means that the
training procedure has found weights that yield optimal
control actions for the plant under consideration.

The action network’s weights will remain fixed until the
plant operating condition has changed. The training of the
critic network will start again to adapt to the changes. In
this way, the training alternates between the critic and
action networks, while changes the plant operating points
from time to time. The flowchart for the complete training
process is given in Fig. 4.

Normalization is performed in both action and critic
networks to confine the values of weights into some
appropriate range by

W (kD)= W (k) + AW, (k) , 28)
. (k) + AW, (k)|
W (k+1)= W, (k) + AW, (k) 29)

[, (k) +aw, k)|,
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4 Implementation and Experiment Results

The NDP algorithm described in section 3 was then
applied to an HEV energy management problem. It has
been successfully implemented and tested using the
Qianghua-I HEV. The details of the implementation and
results will be given in the following subsections.

In this problem, the inputs to the critic network are the
6-dimensional vector S(k)=(Tyem(k), ww(k), g(k), &k), T(k),
g(k))". The output of the critic network is the utility
function J(k). The inputs to the action network are the
4-dimensional system states X(k)=(Tgem(k), @w(k), g(k),
&k))" and the outputs are the optimal control actions
U(k) = (Te(k), q(k))".

4.1 NDP EMS test in simulation experiments

The NDP EMS had been predesigned using simulation
before actual testing on vehicles to test stability and
performance. It is also essential to predesign the EMS
under a great variety of driving cycles to gain a level of
insight which would normally take an impractical amount
of time and effort using actual experiments. The simulation
model for the Qianghua-I HEV is built in electric vehicle
simulation software, ADVISOR.

For this particular HEV system, the parameters used in
the simulations are summarized in Table 2 with the proper
notations defined in it.

The reason for the selection of a;=0 is simply because
that the emission maps are not provided for this engine. So
the resultant EMS is a fuel-economy only strategy.
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Table 2. Summary of the NDP algorithm parameters
Parameter Value

Learning rate of the critic network 7. 0.8
Learning rate of the action network 7, 0.8
Internal cycle of the critic network Nemax 30
Internal cycle of the action network Nymax 20
Internal training error threshold for the critic 0.01
network Eqr

Internal training error threshold for the action 0.01
network Eqmnr

Number of hidden nodes in critic network 4 20
Number of hidden nodes in action network p 25
Emission cost weight a; 0
SOC deviation cost weight a, 20
Gear shifting cost weight value a; 0.4
Initial SOC value & 0.7
Reference SOC value &r 0.7
Discount factor y 0.8

The developed NDP algorithm was written in Matlab
version 6.5. By trial and error, 25 neurons for the critic
network and 20 neurons for the action network in the
hidden layer were optimally chosen for this case. Initially,
the learning EMS had no prior knowledge about the plant
as both the weights of the action network and the critic
network were randomly initialized. Along with the training
procedure over time, the developed EMS can learn from the
history to set the weights more intelligently and more
efficiently.

This integrated model is simulated under standard
driving cycle EPA Urban Dynamometer Driving Schedule
(UDDS). To illustrate the resultant NDP EMS more clearly,
a convenient method is applied to represent it in an intuitive
manner. A torque-split-ratio(TSR) 7=T,/ Tgen, is defined to
quantify the positive power flows in the powertrain'*. Four
positive power operation modes are defined, including
motor-only (7z=0), engine-only (7=1), power-assist
(0<z<1), and charging mode (z>1). Fig. 5 shows the
torque-split-ratio map of the resultant NDP strategy under
standard driving cycle UDDS at a certain speed. The
torque-split-ratio map gives us an intuitive impression of
the EMS. From these maps one can easily partition
different operation mode zones according to the values of 7.

k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

J T, -

\\\\\\\\m\\\\\m

R
R

w\‘\r\i\\\\\\\\\\\\\\\\\\\\\\&&ww

‘\\\\\\\‘\\\\\\\\\\\\\\\\\\“\‘&\

Torque Split Ratio T

0.9

Torque Request T/N-m 500 1 soc &

Fig. 5. TSR maps for NDP EMS at @, =86 rad/s

It can be seen from Fig. 5 that when the SOC value is
high (£>0.7), the NDP EMS uses the motor-only mode in
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the low Tyer, region (T4en<<130 N ¢ m), and the power-assist
mode in the high Ty, region (Tye=>130 N » m). When the
SOC is low (£<0.5) the engine will charge the battery
(7>1). In general, the 7 increases as the SOC decreases at
the same Ty, in order to ensure charge sustainability. Note
that negative torque requests can be handled with a
relatively simple strategy: the motor recovers the maximum
possible regeneration energy within the constraints imposed
by the motor and the battery. The brakes will supply
whatever is left.

4.2 NDP EMS implementation on VCU hardware

The proposed NDP EMS was then finally implemented
on a vehicle control unit (VCU) hardware and tested on the
Qianghua-I HEV by running it on a revolving drum test
bench. The VCU and experiment details are shown in
Fig. 6 and Fig. 7, respectively.

Fig. 7. Experiments on revolving drum test bench

Texas Instruments digital signal processor (DSP)
TMS320F2812 was selected as the main chip of the VCU.
It is a 32-bit fixed-point digital signal processor, and can
operate at a maximum frequency of 150 MHz, providing
adequate computational performance. The VCU uses a
CAN communication interface. This allows for rapid
communication with subsystem controllers to transfer
orders and data. The fuel consumption and SOC values are
provided by the engine control unit (ECU) and the battery
management system (BMS), respectively. The VCU was
also equipped with a storage cell FM25640, a 64 KB
FRAM memory chip with an SPI interface, to save
important parameters, such as network weights, when

power is removed.

The system control cycle is 20 ms. Unlike other control
tasks, the energy management of an HEV is an
optimization problem, which does not require high
real-time accuracy. Therefore, the update cycle for critic
and action network weights was set at 1 s. The average of
parameter changes in this period was taken to train the
neural network. To calculate the neuron output, a look-up
table approach was applied to determine exponential
function. Due to the fact that the input vector to the neuron
and the center are both normalized, most of the input values
for the exponential function are located at [—1, 0]. Thus,
the exponential function is decomposed according to
Eq. (30). ny, is the nearest integer to n towards 0. A fine
discretization is used for values between —1 and 0:

exp(n) = exp(n— ) » exp(n,). (30)

All the calculations are done using fixed-point math to
reduce the MIPS requirement for a real-time application.
The clock cycle takes about 10ns when the TMS320F2812
is operated at its maximum clock speed of 150 MHz on our
system. To facilitate convergence speed, the action network
was pretrained offline based on the simulation data. After
testing, according to the parameters given in Table 2, the
whole training process took 39 558 743 cycles, that is, 400
ms, which can meet the real-time requirements of an HEV
system. The whole training time includes the time taken to
perform two while loops, as well as various other
operations not directly related to the neural network.

4.3 Experiment results

To evaluate the performance and effectiveness of the
NDP approach, the experiment results are compared with a
heuristic rule-based EMS known as “Parallel Electric Assist
Control Strategy™'’;

The experiment results for the UDDS driving cycles are
listed in Table 3. It can be seen that the NDP strategy
achieves very good results. Both the fuel consumption and
component efficiency are improved significantly compared
to the rule-based control strategy. Here, the fuel economy
results have undergone SOC correction to compensate for
the error caused by the SOC change before and after the
experiment.

Table 3. Experiment results of the UDDS driving cycle

EMS Rule-based NDP
Fuel economy  Rp,q/(miles + gal ™) 53.9 81.6
Engine efficiency #. 24.6 34.6
Motoring efficiency  #m 87.2 91.6
Generating efficiency  #m 79.9 92.7

The experiment results shown in Fig. 8 indicate that the
NDP EMS tends to keep the battery SOC within the range
of 55%—70%. This leaves enough capacity to handle an
extended period of battery discharge, and enough capacity
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to absorb a long period of charging. Additionally, the
battery SOC is maintained near a balance point to ensure
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the charge sustainability of the system.
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Fig. 8. NDP EMS experiment results under UDDS cycle

Fig. 9 and Fig. 10 report the distribution of engine and
motor operating points under NDP EMS respectively. As
shown by Fig. 9, the NDP EMS forces the engine operate at
mid-range speed and load conditions (50-65 N * m) most
of the time. The engine operating points under NDP EMS
are mostly concentrated in the high efficiency region of
35.6%-38.6%, which will no doubt greatly improve the
fuel economy. The motor is used under high torque request
or regenerative braking. Its operating points are scattered in
its whole working area as shown in Fig. 10. That means the
motor participates more fully in propulsion of the vehicle.
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Fig. 10. Motor operation points distribution
under NDP EMS

Fig. 11 shows the torque distribution trajectories. The
figure clearly explains how the fuel economy is improved
by using the NDP EMS. For illustration purposes, only the
160-300 s period of the torque distribution trajectory is
shown. It can be seen that the engine provides the bulk of
the torque demand, while the motor helps with the transient.
The figure also shows a relatively smooth profile of the
output torque of the engine compared with the driver torque
demand and the motor output torque. The smoother engine
torque output from the NDP EMS indicates that it helps
improve fuel economy and alleviate emission problems.
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5 Conclusions

(1) The NDP technique provides an effective method to
construct a suboptimal EMS with significantly reduced
computational costs. A prototype HEV vehicle was used to
evaluate the performance and effectiveness of this method.
Experiment results indicate that this approach has good
control performance and can significantly improve the
average efficiency of the powertrain when compared with a
traditional rule-based strategy.

(2) The resulted NDP control strategy takes the form of
system state feedback. The requirement of a priori
knowledge of driving conditions (necessary to implement
the backward algorithm in the DP method) is unnecessary
for the NDP EMS, allowing for its implementation in an
actual vehicle.

(3) Emphasis also has been placed on the real-time
capability analysis of the operation strategies. It verified
that NDP EMS is very suitable to develop a fully digital
controller and a complicated intelligent control algorithm
for HEV control. Future work will concentrate on the
determination of neural network size and detailed
suboptimality analysis.
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