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1. Introduction

Integral equation methods for the solution of partial differential equations in engineering have seen a surge of
applicability following the development of the fast multipole based methods [1, 2] that reduced the computational
cost from O(N2) to O(N), where N is the number of degrees of freedom. The range of practical problems that can be
solved using integral equations has brought to the forefront an interesting array of challenges such as the development
of well conditioned formulations, rapidly convergent iterative schemes and accurate basis function representations.
There has been a slew of work in these directions in the electromagnetic community, including the development of
Calderon pre-conditioners [3], loop star basis function schemes [4] and higher order and singular basis functions
[5, 6]. Over the past years, the authors have worked on the design of a basis function framework for integral equations
called the generalized method of moments, that addresses some of these issues. This technique allowed for (i) the
easy inclusion of arbitrary functions in the basis space, (ii) the arbitrary mixing of different types and orders of basis
functions and (iii) non-conformal meshes within a Galerkin method of moments setting. However, in addition to
these, important, “solver-side” issues, significant challenges arise on the side of constructing geometric models that
represent the problems under analysis.

The surface integral equation schemes currently in use, almost always start from some parametric description of
the scatterer surface. Thus the first step to any analysis is the construction of a mesh. In cases where a smooth,
invertible, mapping can be found from the geometry to a canonical shape in a convenient coordinate system, this
process reduces to meshing the canonical shape. A classic example is when a geometry can be mapped on to a sphere.
Meshing a sphere is trivial, and once a spherical mesh is available, the mapping can be used to transform the nodes and
the faces (or edges) to the actual geometry. However, this is obviously not possible for any but the simplest possible
shapes. Thus for complex, realistic geometries, we are left with two options: (i) divide the geometry into smaller
pieces that can be mapped on to canonical geometries and then stitch the respective meshes together at interfaces, or
(ii) start from a point cloud description of the geometry and construct a mesh from this point cloud. The first method
comes with several disadvantages, the most prominent being that neither the subdivision nor the stitching process can
be automated. We will concentrate here, on the second procedure, namely the construction of a surface mesh from a
three dimensional point cloud.

While in two dimensions, the problem is well studied and solutions are available in O(NlogN) time or better, [7–
11], given an arbitrary point cloud in 3D, reconstructing a surface mesh is a highly under-determined, and therefore
much harder, problem. One of the more prominent algorithms in use is the ball pivoting algorithm (BPA) [12].
While the BPA is largely successful for uniformly dense meshes without noise, it has several known issues when the
geometry has very large or very small curvatures. This is particularly difficult when there are either (i) multiple holes
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in the geometry or (ii) when there are very thin features on the geometry; both of which is true of many realistic
structures.

Even after a mesh is created, most existing integral equation solvers “expect” a reasonably uniform, “clean” mesh.
In particular, most solution algorithms have no tolerance for non conformal meshes (where two triangles share just
a part of an edge) and return very badly conditioned numerical systems when applied to non-uniform meshes. It
is worth mention, here, that there exist a class of collocation based methods [13–16] which work directly on point
clouds, as opposed to a surface mesh. While these methods work well for smooth surfaces, certain challenges arise
from the singularity of the kernel that are not easily overcome. As a result, mesh based scheme, which allow for
surface integration, and therefore, reduction in one order of singularity in the integrand, are preferred. In this work we
will describe a unified framework that can (i) seamlessly incorporate point clouds and standard mesh primitives such
as triangles, quadrilaterals, etc., (ii) construct a locally smooth surface representation starting from these primitives
or point clouds, (iv) provide mechanisms to adaptively and automatically adjust the local order and size of this repre-
sentation (iii) develop arbitrary function spaces on these surface parametrizations (iv) discretize the integral operator
using basis functions from these function spaces and (iv) solve the resulting system using Galerkin testing. We will
use the problem of acoustic scattering from sound hard objects as a vehicle for describing and validating the technique
we present here.

The rest of this paper will proceed as follows: In the next section, we will state, formally, the scattering problem.
In section 3 we will describe the construction of the locally smooth surface parametrizations. In the following sec-
tion, we will detail the construction of the basis function scheme on these surface parametrizations. The specifics of
construction of the matrix elements will be elucidated in section 5. Section 6 will present several results that demon-
strate the surface reconstruction, validate the basis function framework and showcase several of the advantages of the
proposed technique. Finally, section 7 will provide some concluding remarks.

2. Problem Statement

Let D− denote a rigid scatterer in a homogeneous medium bounded by Ω with a unique, outward pointing normal
n̂(r)∀r ∈ Ω. Consider a velocity field incident on this scatterer denoted by vi(r). This generates a scattered velocity
field given by vs(r) and we define the total velocity as vt(r) .

= vi(r) + vs(r). These fields can be represented by an
equivalent potentials φζ(r), ζ ∈ {i, s, t}, where vζr) .

= ∇φζ(r). Further, the corresponding pressure fields are given by
pζ(r) .= − jωρ0φ

ζ(r) where ρ0 is the density of the ambient medium. The total potential φt(r) = φi(r) + φs(r) satisfies
the Helmholtz equation and boundary condition given by

∇2φt(r) + k2φt(r) = 0 ∀ r ∈ R3/D−

n̂(r) · ∇φt(r) = 0 ∀ r ∈ Ω.
(1)

The Kirchoff-Helmholtz integral theorem relates the scattered potential φs(r) to the total potential as

φs(r) =

∫
Ω

drφt(r′)n̂′(r′)∇′g(r, r′), (2)

where g(r, r′) .= exp(− jk|r− r′|)/4π|r− r′| and k is the wave number of the incident field. Imposing the condition that
the total pressure pt(r) .= pi(r) + ps(r) = 0 on the surface Ω provides an integral equation for the total potential, φt(r),
given by

φi(r) =
1
2
φt(r) −

∫
Ω

dr′φt(r′)n̂′(r′) · ∇′g(r, r′). (3)

Further, by imposing that the normal component of the velocity goes to zero on the surface of the scatterer, i.e.
n̂(r) · vt = 0, r ∈ Ω, we obtain the normal derivative of the above integral equation.

n̂(r) · ∇φi(r) =

∫
Ω

dr′φt(r′)n̂(r) · ∇n̂′(r′) · ∇′g(r, r′). (4)

For ease of representation in the rest of this paper, we will define two integral operators K and T as

K ◦ [φ(r)] .=
1
2
φ(r) −

∫
Ω

dr′φ(r′)n̂′(r′) · ∇′g(r, r′) (5a)
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and
T ◦ [φ(r)] .=

∫
Ω

dr′φ(r′)n̂(r) · ∇n̂′(r′) · ∇′g(r, r′) (5b)

The two integral equations in (3) and (4) can be combined using a parameter α as follows, in a formulation that
guarantees uniqueness in the solution φt(r) [17];

αφi(r) + (1 − α)n̂(r) · ∇φi(r) = αK ◦ [φt(r)] + (1 − α)T ◦ [φt(r)], (6)

where α ∈ (0, 1). Typical solution of equation (6) proceeds by representing the unknown potential φt(r) in a set of
spatial basis functions, i.e. φt(r) =

∑
n anφn(r), where an are unknown coefficients. Substituting this representation

into (6) and Galerkin testing using the same set of basis functions results in a matrix system of the form

Za = f, (7)

where
Z =

[
Zi, j

] .
=

∫
Ω∪Ωi

drφi(r)X ◦ [φ j(r)], (8)

and X .
= αK + (1 − α)T , a .

= [ai] and

f =
[
fi
] .

=

∫
Ω

drφi(r)φi(r). (9)

Typical method of moments solutions employ polynomial basis functions defined on a simplicial tessellation of
the geometry Ω. These basis spaces rely heavily on mapped polynomial functions defined on tessellations of the
geometry. However, in the case of complex structures, the construction of such a tessellation is often very difficult
and/or costly. Even when such a tessellation is constructed, it often results in a highly irregular mesh which, in turn,
results in a matrix system that is ill conditioned and therefore difficult to solve. In this paper, we will take a different
approach to the construction of local “patches” on the geometry and the design of basis functions on these patches.

The basis function framework used here was first introduced by the authors previously in [18–21] using piecewise
flat domains for the definition of the basis functions. In this work, we will demonstrate the construction of GMM basis
functions using a locally smooth approximation to the scatterer surface. Due to space constraints, we will present the
novel surface approximation in detail while we will restrict our presentation of the basis functions and the GMM
technique itself to a brief outline of the method and direct the reader to the authors’ previous works, [20, 21], for
further details. In the following section we detail the construction of these locally smooth surface approximations.

3. Construction of Locally Smooth Surface Parametrizations

To construct basis functions, we first need to construct a local parameterization of the surface. The domains of
support of these basis functions that we will describe are a set of overlapping patches that cover the surface of the
scatterer. A procedure to construct these locally smooth overlapping patches will be described in detail in the rest of
this section.

3.1. Construction of GMM domains
We begin by partitioning the domain Ω into patches Ωi that overlap and completely cover the domain. To this end,

assume that the domain Ω is described by a set of nodes NL = ∪L
i=1{Ni}, a connectivity map consisting of primitives

∆N = ∪N
n=1{∆n}, and finally a unique set of normals n̂i at these points. Each primitive is defined by a collection of

nodes ∆n
.
=

{
Nn, j

} j=mn

j=1
⊂ NL. In the case of a standard, flat, triangulation, this will reduce to mn = 3 ∀n, i.e. all the

primitives are triangles. To define locally smooth GMM patches, we first start from a collection of triangles that share
a node Ni. This collection will be denoted by Ωi.

Note, that these collections can also be equivalently described starting from a meshless point-cloud framework as
opposed to a triangulation. For the “first-generation” GMM scheme described in [20, 21], these piece-wise flat patches
are directly used as domains of support for the GMM basis functions. Such a piece-wise flat patch is illustrated in
Figure 1. To construct a locally smooth approximation to Ω starting from these patches, we first define a patch normal,
a projection plane and a notion of local convexity for each patch Ωi, as follows.

3



Figure 1: Piecewise flat GMM patches ({Ωi}) shown as shaded region. The patches are constructed as a set of triangles
joined at a node.

Figure 2: Construction of a projection plane (Γi) from a GMM patch comprising of standard triangulations.

Definition 1. Local Convexity
Given a patch Ωi, centered around a point Ni

.
= ri and a parameter ε, the average normal for the patch Ωi is

defined as

n̂i,ε =
1

mn

mn∑
k=1

n̂(rk), (10)

where rk are points chosen on each of the member primitives such that rk ⊂ Ωi ∩ ∆k and ‖rk − ri‖2 ≤ ε.
Further, a projection plane for patch Ωi is defined as the plane passing through ri and normal to n̂i,ε. Let Γi be the

projection of Ωi on this plane. We denote the projection of a point r ∈ Ωi to the plane Γi by r′. Given the above, we
define the patch Ωi to be locally convex if we can find some ε such that, ∀r ∈ Ωi and for r , ri, (r − ri) · n̂i,ε ≥ 0.

In other words, a locally convex patch is one for which we can find a projection plane such that the entire patch
lies on one side of the plane. Figure 2 shows the construction of the patch normal and projection plane for a locally
convex patch. For a locally convex patch, we can define a local coordinate system containing the projection plane and
the patch normal, as follows

4



n̂

û
v̂

Figure 3: Construction of a local coordinate system.

Figure 4: Construction of a locally smooth parameterization.

Definition 2. Patch coordinate system
For a locally convex patch Ωi, we choose a point r′m such that |r′m − r′i | > 0, on Γi and define the following

local co-ordinate system {û, v̂, ŵ}i and corresponding projections u(r), v(r),w(r) for any point r ∈ Ωi as ŵ .
= n̂i,

û .
=

(
r′m − r′i

)
/|r′m − r′i |, v̂ .

= (n̂ × û)/|n̂ × û|, u(r) = r′ · û, v(r) = r′ · v̂ and w(r) = r′ · ŵ.

Finally, we can use the above definitions to generate a polynomial map whose domain is the projection Γi, described
by the local coordinates (u, v) and whose range is a smooth surface. This mapping will become the “generator” for
the locally smooth surface and is called the GMM surface map.

Definition 3. GMM surface map
Given a locally convex patch Ωi and a corresponding coordinate system {û, v̂, ŵ}, we can define a polynomial

P
g
i (u, v) in two variables (u,v) complete to order g, by its coefficient vector Cg

i
.
=

[
c0, . . . c(g+1)(g+2)/2

]
. The polynomial

Pi (and corresponding Cg
i ), that minimizes the norm min

r∈Ωi

∥∥∥Pg
i (u(r), v(r)) − w(r)

∥∥∥
2 can be used to define a transforma-

tion Lg
i from Ωi to Λi, given by

L
g
i (r) : Ωi → Λi

.
= uû + vv̂ + P

g
i (u, v)ŵ. (11)

Λi forms an order-p smooth, least-squares approximation to Ωi. This transformation is called the GMM surface
map. The patch Λi is called a GMM patch of order g.

Figure 4 demonstrates the construction of a locally smooth approximation of the piecewise flat patch described earlier.

3.2. Properties of the GMM Surface Map
Here we list some of the properties of the GMM surface maps that make it uniquely suited to the definition of

scalar and vector GMM basis functions.

3.2.1. Smoothness and error convergence
The GMM surface map defined above, provides a continuous surface normal defined by m̂i(r) .= ∂uL

g
i (r)×∂vL

g
i (r)

for all r ∈ Λi. The construction of the locally smooth GMM patches is illustrated in Figure 5a. The figure demonstrates
the construction of two sample patches starting from the triangulation of various parts of a sphere. The figure shows
the smooth patches (Λi) along with the piece-wise smooth equivalents (Ωi). The use of the least squares minimization
procedure implies that the order of smoothness of the map (p) is automatically chosen depending on an error metric,
as opposed to being set (by a user) a-priori. This is illustrated in Figure 14b.

The figure shows the error in the norm ‖m̂(r) − n̂(r)‖2 as a function of the order p, for various surfaces, of the
form xp0 + yp0 + zp0 = c for a constant c and order parameter p0. In each case, the surface is first approximated using a

5



(a) Locally smooth overlapping patches constructed from piecewise
smooth patches

(b) Convergence of error in normal for surface approximation

Figure 5: Construction and convergence of locally smooth surfaces

standard piecewise flat triangulation and then GMM patches Ωi are constructed from these triangles. A locally smooth
patch Λi is then defined for a given order p and the error in the norm is computed. The error convergence in shown for
three surfaces, a flat surface (represented as p0 = 0, a piece of a spherical surface p0 = 2 and a surface with p0 = 4.
As can be seen from the figure, the error in each case drops to machine precision once the mapping order reaches a
critical value. This provides a naturally adaptive mechanism for the choice of surface order.

3.3. Error definitions and convergence metrics
For each locally smooth surface, constructed above, Λ

.
=

⋃
i Λi, we define an error metric, suited to the definition

of surface functions j(r) ∈ H1/2(Ω) as follows

Definition 4. Given a surface approximation Λ to a true surface Ωq, the surface approximation error is defined as

ε∇ =
1
N

∑
i

∥∥∥Πi(r)n̂Ωq (r) − n̂Λi (r)
∥∥∥

2
; ε1/2 =

1
N

∑
i

∥∥∥∥∥∥
∫

Ωq

dr Πi(r)t(r) −
∫

Λi

dr t(r)

∥∥∥∥∥∥
2

 + ε∇ (12)

where t(r) is any test function and n̂Ωq (r) and n̂Λi (r) are surface normals to Ωq and Λ at r ∈ Ωq and r ∈ Λi

respectively; Πi(r) is defined by

Πi(r) =

1 ∀r ∈ Ωq

∣∣∣
Ωqi

0 else
(13)

Figure 6 demonstrates the convergence of this error on the surface of a sphere of radius 1m. In order to study
convergence, a locally smooth parametrization is constructed starting from a two different point clouds. The first
ptri = 1, is a cloud of points corresponding to a first order triangulation of the sphere with average edge length 0.1m.
The second ptri = 2, is a second order triangulation, with the same average edge length. The errors ε∇ and ε1/2 are
examined as a function of the polynomial order of the patch. As is clear from the image, the error converges very
rapidly with the order of the local parametrization.

3.3.1. Local derivatives and continuity of functions
In order to estimate the smoothness of the surface description generated in the above scheme, we study the behavior

of surface gradient tensors of a scalar function φ(u, v) defined on the projection. As a first step towards this, given the
GMM surface map Lg

i (r), we denote its first metric tensor by

Gi
.
=

[
g11 g12
g21 g22

]
.
=

[
∂ur · ∂ur ∂ur · ∂vr
∂ur · ∂vr ∂vr · ∂vr

]
. (14)
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Figure 6: Convergence of surface error metrics with surface patch order

The corresponding surface differential element is denoted by

dS .
=
√

gidudv, (15)

where gi
.
= det(Gi), the determinant of the metric tensor. Each term in the tensor can be defined in terms of the

polynomial Pg
i (u, v) as

∂ur = û + ∂uP
g
i (u, v)ŵ,

∂ur = v̂ + ∂vP
g
i (u, v)ŵ.

(16)

Given a scalar function φ(u, v) defined on the projection plane Γi, the surface gradient of the function on Λi is
given by

∇sφ
.
= g11∂uφ ∂ur + g12∂uφ ∂vr + g21∂vφ ∂ur + g22∂vφ ∂vr. (17)

Higher order derivative tensors on the surface can be described in a similar manner.
From the definition of the surface gradient above, it is clear that any function φ(r) defined on a gmm patch Λi of

order g that supports p derivatives on (u, v) with p ≤ g will support at least p surface derivatives on the smooth patch
Λi. This result implies that, defining a function of order p on the smooth GMM patch Λi is equivalent to defining
a corresponding function on the projection plane Γi. This provides an important tool for the definition of the GMM
basis functions as described below.

4. Definition of GMM basis functions

The next step is the development of basis functions in each of the above patches. Consistent with the central
theme of the GMM framework, we would like to permit different orders of polynomials or even different functions to
be defined on adjacent patches. It has been shown, in the context of finite element methods, that this can be achieved
using a product of two functions; (i) a partition of unity (PU) function that provides continuity of the order of this
function across overlapping patches and (ii) a higher order function that determines the quality of approximation
within a patch [20, 21]. In what follows, we shall discuss each in turn.

4.1. Definition of partition of unity functions

The PU function is defined as a function that associated with a patch is that it decays to zero at its boundary. We
define one such function in each patch. Since a patch overlaps with other patches, at any point in the patch multiple
different PU functions will be non-zero. This leads to the next condition, viz., all PU functions that are non-zero in a

7



Figure 7: Definition of a GMM patch and partition of unity

Figure 8: Definition of a pyramid function for partition of unity – λi, j

patch add up to one. For illustration, Figure 7 shows two one-dimensional patches and a partition of unity defined on
these patches.

To define PU functions on the 3-D GMM patches, we construct a function λi, j(u, v) which is 1 at the patch center
and 0 at the edge of Γi. This is achieved using a pyramid function as shown in Figure 8. The partition of unity function
is then defined as

ψi(r) =
λi, j(r)∑
k λk, j(r)

, (18)

where the index k runs through all the patches Ωk that overlap with Ωi. It can be verified that this definition ensures
that the partition of unity goes to 0 at the ends of the patches and adds up to 1 everywhere on Γi. Correspondingly it
satisfies these properties on Λi.

4.2. Definition of continuous approximation functions

The next step is to define functions that provide higher order approximation of the unknown field in the patch.
As before, we start by defining the function on Γi. Any function f (u, v) can be now mapped directly to f (r) on Λi.
Note, the domain of the approximation function does not need to be identical to the projection of the patch, Γi. This
is possible as functions defined on these patches are eventually multiplied by a PU function that goes to zero at patch
boundaries.

One possible choice of approximation functions can be described using Legendre polynomials of the form νm
i (r) ∈

{Ppu (ũ)Ppv (ṽ)} where Pq denotes a Legendre polynomial of order q and pu + pv ≤ m and

˜u(r) .=
u(r)

maxr∈Λi u(r)
,

˜v(r) .=
v(r)

maxr∈Λi v(r)
. (19)
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Figure 9: Error convergence for surface functions defined on a sphere. Inset shows a surface plot of the error

Once approximation functions are thus defined, the GMM basis functions are simply products of the approximation
function with the partition of unity. That is,

φi(r) ∈ spanm
{
ψi(r)νm

i (r)
}

(20)

Figure 9 shows the convergence of the GMM approximation to a surface function defined on a spherical surface.
To test the efficacy of the GMM basis functions, we define a function of the form f (r) .= fθ(θ, φ)θ̂+ fφ(θ, φ)φ̂. We then
construct local surface parametrizations {Λi} of varying order g = 1, 2, 3 to approximate the surface of the sphere and
construct basis functions of various orders p = 1, 2, 3 on these surfaces. The functions are used to approximate f (r)
by setting up

˜f (r) =
∑

i

aiφi(r) (21a)

and solving the matrix system resulting from∫
Ω

drφ j(r)
∑

i

aiφi(r) ≈
∫

Ω

drφ j(r) f (r) (21b)

The coefficients ai are used to approximate f (r) the norm of the error on the surface is used as a parameter to test
convergence. Figure 9 shows the error for fθ = θ and fφ = φ as a function of p and g. As is clear from the figure, the
error converges uniformly and logarithmically with both g for each basis function order p. The inset shows a surface
plot of the error.

Once the basis functions are defined, the next step is the evaluation of the integrals to construct the matrix elements
in

[
Zi, j

]
. This will be detailed in the next section.

5. Evaluation of Matrix Elements

The evaluation of the matrix elements in
[
Zi, j

]
involves integrals of the following two forms.∫

Λi

drφi(r)
∫

Λ j

dr′φ j(r′)n̂′(r′) · ∇′g(r, r′) (22)∫
Λi

drφi(r)
∫

Λ j

dr′φ j(r′)n̂(r) · ∇n̂′(r′) · ∇′g(r, r′), . (23)

9



The integrals need to be evaluated on patches Λi and Λ j. Using the surface differential element defined in (15), we
can map the integral of a function Θ(r, r′) on a patch Λi to an integral of the function Θ(u, v,u′, v′) on the projections
Γ j and Γi as ∫

Λi

dr
∫

Λ j

dr′φ(r) =

∫
Γi

√
gidudv

∫
Γ j

√
g jdu′dv′ Θ(u, v,u′, v′). (24)

The evaluation of the integrals in (22) and (23) are easily performed using the transformation in (24) and Gaussian
quadrature when the patches are well separated from each other. It is observed the Gaussian quadrature rules converge
to sufficient accuracy when the centers of the patches are separated by d > 0.15λ, where λ is the wavelength of the
incident field. When the patches are closer to each other, the integrals need to be handled more carefully. We separate
the “near” evaluations into two cases.

1. Λi and Λ j are closer than 0.15λ but do not overlap: In this case, the integrals are near singular, but can be
evaluated using the techniques described in [20–22].

2. Λi and Λ j overlap : In this case, we split the projections Γi and Γ j into an overlapping section Γo and two non
overlapping sections Γi/Γ

o and Γ j/Γ
o. Any integral of the form (24) above can be then re-written as follows∫

Γi

dudv
∫

Γ j

du′dv′ =

∫
Γi/Γo

dudv
∫

Γ j/Γo
du′dv′ +

∫
Γi/Γo

dudv
∫

Γo
du′dv′

+

∫
Γ j/Γo

dudv
∫

Γo
du′dv′ +

∫
Γo

dudv
∫

Γo
du′dv′.

(25)

The preceding equation contains three double integrals that are near singular and one over Λo that is either
singular (for (22)) or hyper singular (for (23)). The near singular integrals are handled as in case 1 above. To
evaluate the singular integrals, we make the assumption that the overlapping portion is locally flat. This implies
that
√

g = 1. In this case, it can be shown that the integral in (22) reduces to 0. The integral of equation (23) on
flat patches can be performed by transforming the surface integral into a line integral as described in [17].

6. Results

In this section, we put together the locally smooth parametrization scheme and the GMM basis function for-
mulation to solve a variety of scattering problems. First we will demonstrate the ability of the technique devel-
oped in this work to construct locally smooth surface parametrizations. Consider the complex geometries intro-
duced in section 1. Figure 10a shows the surface rendering of a gyroid, mathematically described by the equation
cos(x) sin(y) + cos(y) sin(x) cos(z) sin(x) = 1. The surface is extremely complex, but, since it is analytically known,
obtaining a point cloud, and corresponding normals at each point is relatively simple.Figure 10b shows a point cloud
constructed from the gyroid surface description.

Figure 10c shows a standard meshing algorithm (ball reconstruction [23, 24] applied to this gyroid surface mesh.
As is clear from the inset (which shows a zoomed-in view of a portion of the mesh), the mesh returned by the standard
algorithm has several discrepancies. It is not possible to construct an integral equation solver on this mesh. Further,
even if extreme care were to be taken and this mesh cleaned up by hand, it would result in a very non-uniform surface
discretization, which in turn would lead to a highly ill-conditioned system of equations, and thereby, inaccuracies in
solution.

Finally figure 10d shows the surface parametrization algorithm described in this paper, applied to the gyroid
surface. As is clear from the figure, it is possible to obtain a locally smooth parametrization of the surface starting
from the simple point cloud, without any of the discrepancies that are caused by the standard algorithm.

Netx, to validate the accuracy and utility of the GMM technique implemented on the locally smooth surfaces,
we preform a series of numerical experiments. We begin by presenting results that validate the technique on some
canonical (or near-canonical) geometries. The data obtained using the GMM is compared against both analytical
data, other integral equation discretization frameworks and the GMM framework itself, evaluated using piecewise flat
tessellations of the geometry. Following this, we will present a variety of results that demonstrate (i) h−, p− and hp−
convergence of the GMM scheme, (ii) the ability of the GMM to mix different orders and classes of basis functions
and (iii) its ability to handle complex, multiply connected geometries. In all the cases here, we begin by discretizing
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(a) Surface rendering of a gyroid (b) Point cloud for a gyroid

(c) Point cloud for a gyroid (d) Point cloud for a gyroid

Figure 10: Construction of locally smooth surface representation for a gyroid

the object using a standard triangular meshing scheme with triangles of average edge length corresponding to 0.1λ,
where λ is the wavelength of the incident field. The smooth-surface approximations are constructed starting from the
point cloud provided by this discretization. In each case, the average diameter of the smallest circle containing the
projection of the GMM patch is used as a measure of the size of the patch. In each case, we will use the bistatic
scattering cross section (SCS) as a metric for comparison unless otherwise specified. For convenience of notation,
we will denote the technique presented in this paper as the GMM-SSA, which will be understood to stand for GMM
implemented on “Smooth Surface Approximations”, in contrast to the standard GMM scheme presented in [20, 21].
All the cases demonstrated below assume that the test objects are sound-hard and are immersed in a homogeneous
medium. Unless explicitly stated, the speed of sound in the ambient medium is assumed to be 343m/s.
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6.1. Validation

6.1.1. Validation against analytical results
First, in figure 12, we validate the locally smooth surface approximation using acoustic scattering from a variety

of sound hard obstacles. We first consider scattering from three sphere of radii 1.0λ, 0.2λ and 0.5λ, due to an incident
velocity field of frequency 343Hz. The incident field is a plane wave directed along −ẑ. The GMM discretizations,
result in NGMM = 300, 450, 500 unknowns for each of the spheres when using first order Legendre polynomials p.
In each case, the bistatic SCS evaluated at φ = 0 is shown in figure 11a and demonstrates excellent agreement with
analytical data, thus validating the SSA-GMM scheme.

Next, we consider the error in backscatter from a sphere of radius 1.0λ. The incident velocity field is a plane wave
of frequency 343Hz incident along −ẑ. We consider the convergence of the relative error in backscatter (φ = 0, θ = 0)
between the GMM scheme and an analytical solution with three different parameters (i) the size of the patches and
(ii) the polynomial order of the basis functions (iii) the order of local smoothness of the geometry.

6.1.2. p and g convergence
The first curve in figure 11b shows, for fixed h = 0.1λ and g = 2, the convergence of the relative error in backscatter

with the polynomial order of the basis function p. The corresponding number of unknowns is NGMM = 320, 640, 960.
Again, the error decreases exponentially with the basis function order, demonstrating the p− convergence of the GMM
scheme.

The second curve in figure 11b shows the convergence in relative backscatter error with the order of the geometry
(g). The initial patch size is maintained at h = 0.1λ and the polynomial order of the basis functions at p = 2, and
as a result the number of unknowns is constant at NGMM = 640. As is clear from the figure, the error decreases
exponentially with geometry order. The ability to automatically construct arbitrarily smooth local patches is a unique
advantage of the GMM-SSA scheme presented in this paper. The figure clearly demonstrates the utility of constructing
such a technique.

6.1.3. Validation against flat GMM
Next, we consider two non-canonical geometries - a NASA almond and a conesphere. Figure 12a shows the

bistatic SCS (evaluated at /phi = 0) due to scattering from a NASA almond, that fits in a box of size 3.0λ×1.0λ×0.1λ.
A 343Hz velocity field is incident along −ẑ and the almond is discretized using NGMM = 1700 unknowns. Figure 12b
shows the bistatic SCS (computed at θ = π/2) obtained due to a velocity field incident along x̂ on a conesphere with
cone-height 2.6λ and sphere radius 0.5λ. The number of unknowns used to discretize NG MM = 1078. The SCS
obtained by solution using the GMM-SSA is compared against that obtained using a standard GMM basis set defied
on flat patches. Again, the excellent agreement between the SCS validates the GMM-SSA scheme.

6.2. Mixtures of basis functions

The results presented thus far validate the GMM-SSA scheme demonstrate the convergence of the results with
the various parameters of the technique. In this section we will present results that demonstrate the ease with which
different orders and types of basis functions can be mixed together in the GMM scheme. In traditional basis function
schemes, the ability to mix orders of basis functions in neighboring patches is heavily limited by the need to maintain
continuity between patches. Typically basis functions have to be restricted to orders of polynomials in order to main-
tain continuity across patch boundaries. This restricts the classes of basis functions that can be used in the standard
h−, p− and hp− FEM scheme (and correspondingly for integral equations). However the ability to define arbitrary
patches and the construction of the partition of unity scheme enables the use of arbitrary functions in neighboring
patches. In this section we present some results that demonstrate this ability.

In the following example, we consider scattering from an ellipsoid of axes 1.0λ, 0.5λ and 0.25λ. The ellipsoid
is discretized using patches of average diameter 0.15λ, and the geometry order is maintained at g = 2 for all the
patches. Polynomial basis functions of order p = 1 are used in all patches except patches within 0.1λ of the two ends
of the ellipse. In the patches near the end, the basis functions are functions of the form f (u, v) = exp−ci(u2 + v2),
where u, v are the local coordinates on the projection plane, as described in 3. Figure 14b shows the SCS obtained
using this scheme with mixed basis functions compared against an SCS obtained using polynomial basis functions
everywhere, and one using radial basis functions everywhere. Two sets of SCS’s are obtained, one each due to a plane
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(a) SCS due to scattering from spheres of varying radii
(0.2m, 0.4m, 1.0m)

(b) Convergence of error in backscatter

Figure 11: Validation results for the GMM

(a) SCS due to scattering from a NASA almond (3.0λ×1.0λ×0.1λ) (b) SCS due to scattering from a cone-sphere (2.6λ × 0.5λ)

Figure 12: Validation results for the GMM - comparison against flat GMM: incident field along ẑ for almond, and x̂
for conesphere. The RCS evaluated at φ = 0 for almond and θ = 0 for cone-sphere.

wave incident along ẑ and along x̂ and are evaluated at φ = 0, and θ = π/2, respectively. The ability to easily mix
different classes of basis functions is a unique capability of the GMM scheme.

6.3. hp-adaptivity

Finally we utilize the flexibility of the GMM (and correspondingly GMM-SSA) scheme to study the hp− conver-
gence of the SCS due to scattering from an ogive of size 10m × 2m × 10m . In each of the cases that follows, the
SCS is obtained due to a plane wave incident along −ẑ, of frequency 343Hz. The bistatic SCS is evaluated at φ = 0.
To obtain a reference, the ogive is discretized at h = 0.05λ everywhere and the SCS is computed using GMM basis
functions of polynomial order p = 1 defined on this piece-wise flat tessellation resulting in NGMM = 8406 unknowns.
This is compared against the following different discretizations. To simplify the test, in each of the following cases,
the order of the geometry is maintained at g = 2 in the smooth areas, g = 4 near the ends of the ogive (within 0.25λ
of the end) and g = 7 for the two patches near the tips. First, theogive is discretized using patches of size 0.25λ in the
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(a) Initial starting mesh for ellipsoid (b) SCS comparison using multiple basis functions

Figure 13: SCS computed using mixed order basis functions on surface of an ellipsoid

(a) Initial point distribution on ogive (b) Surface currents and SCS comparison

Figure 14: Construction of locally smooth surfaces

smooth areas and 0.1 near the tips (patches within a sphere of 0.2λ near the tips). Basis functions of order p = 1 are
used in the smaller patches and p = 2 in the larger patches. This case is referred to in Figure 14a as hp − 1. In the
next test, the tip of almond is discretized at 0.1λ, the region near the smooth end of the almond (patches within 0.2λ
of the smooth end) is discretized at 0.15λ and the central, smooth portion is discretized at 0.25λ. Basis functions of
polynomial order p = 1, p = 2 and p = 3 are used in each of the areas respectively. This case is referred to as hp − 2.
The number of unknowns is NGMM = 1156, 1455 respectively. The agreement of the three SCS shown in Figure 14a
demonstrates the easy hp convergence of the GMM-SSA scheme.

7. Conclusion

In this paper we have presented an application of the Generalized method of moments to the discretization of
scalar integral equations. Most importantly a mechanism has been described for the construction of locally smooth
surface approximations to the scatterer surface. We have shown that these surface approximations can be automatically
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constructed from either a regular tessellation of the geometry or a point cloud. We have also shown that the error in
these surface approximations converge with surface order. We have implemented a scalar equivalent of the GMM
basis function framework on these smooth patches and have presented results on acoustic scattering from sound-hard
objects. Several results demonstrating the ability of the GMM scheme to mix basis functions, mix different classes of
discretizations and solve for scattering from complex, hitherto untenable geometries have been presented.
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