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Abstract

> ‘We discuss the advantages of parallelization by multittirepon graphics processing units (GPUSs) for parallel teingeMonte
Carlo computer simulations of an exemplified bead-springlehdor homopolymers. Since the sampling of a large ensemble
00 ‘of conformations is a prerequisite for the precise estiomatif statistical quantities such as typical indicatorsdonformational
1 transitions like the peak structure of the specific heatath@ntage of a strong increase in performance of Monte Gamlolations
cannot be overestimated. Employing multithreading anizing the massive power of the large number of cores on GBeisg
_C— available in modern but standard graphics cards, we find id raprease in giciency when porting parts of the code from the
¢ _central processing unit (CPU) to the GPU.
1
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O 1. Introduction repulsion by volume exclusion is just balanced — the polymer

. . . __collapses from the random coil to more globular structures.
() . Computer simulations have become a fundamental pillar iRhjg globular “phase”, there is no internal structure. Thisom-

.= physics. In particular, computer simulations are freqlyehe  paraple to a liquid. At even lower temperatures, sort of ere
(/) only choice to understand physical properties of complek anjng transition is observed.
cooperative behavior of systems which require a detailed-mo  The purpose of this paper is to show that GPU simulations
Qellng. This is certainly apparent in structural biophysitel  can also quite féiciently be performed for fi-lattice polymer
—polymer physics, wherefiective many-body interactions and models without any need of highly sophisticated tricks of im
disorder éects cannot be tackled by means of analytical applementation. By employing a straightforward implemeiotat
<1 proaches alone. Even for simplistic models, computatioeti of massive parallelization provided by GPUs, we investigat
can become interminable if a large amount of data is needed ag,e possible speed-up for replica-exchange Monte Carle sim
e.g., in statistical physics. ulations of an @-lattice model for elastic polymers.

" I_Z)espite Iarge.advances in the design of centrql processing The paper is organized as follows. Sectidn 2 describes de-
on unit (CPU) architectures most of the above-mentioned needgils of the GPU architecture and CUDA. In Sectidn 3 we give
- could not be met by simulations on single CPU systems. Sevy prief introduction of the investigated model and the sanul

[~ eral approaches to speed up simulations have been employgghn technique used. The results of our studies are preséemte

e.g., parallel computing usingessage passingn clusters or  gectiorf#1. A summary of our findings in given in Sec{idn 5.
multithreaded programmingn multicore CPUSs.

. Graphics processing units (GPUs) have become very power-

= ful, in recent years, driven by the professional computenga 2. General-Purpose Computation on Graphics Processing

- ing industry. GPUs possess a massively parallel architectu ~ Units

« ‘With the latest release of NVIDIA's convenient programming ) ) )

(O language CUDA, GPUs have become popular in scientific com- Slnc_e massively parallel _ general-purpose computat_lon_ on
puting. GPU computing finds its application in many fields,_GPUS Is not standard, despite the large nu.mber of app|l’t51tl0.
such as astronomEl[[l 2, medicirEf 4], time series analy'-n the past few years, let us review the main features of multi
sis for financial marketﬂ][S], molecular dvnamics simulasio threaded GPU architectures and the most frequently used spe
[Iaﬂ], Monte Carlo studies of spin systerElsﬁ , 10], andrua cific language CUDA.
tum Monte Carlo applications [11]. We are interested in the i
thermodynamical properties of polymer models, both ofickatt  2-1- GPU Architecture
[Iﬁ,] and d-lattice ]. Previous studidﬂiﬂ i) 17]of A GPU is composed of a number of streaming multiproces-
an elastic polymer model revealed a complex, chain-length d sors (SM) with on-chip shared memory only visible to that SM
pendent structural transition behavior. For relativelygthiem-  and a large global memory, often with sizes in the range of
peratures, the polymer chain has a wide spread coil-likeestr 1 — 4GB, in today’s graphics card architectures. The kernel
ture. At the®-point —where monomer-monomer attraction and— the main function of a GPU program — runs the same code
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access the RAM of the host. This means all data that needs to
be processed by the GPU has to be copied to the device for cal-
Figure 1: Grids with thread blocks. culation and copied back to the host for evaluation. A dodesi
of the global memory is its high latency.
The constant memorgupports short latency read-only ac-
in parallel on a number of threads given by the grid and blockess by the device if all threads read from the same location i
layout. memory. For specific data types, ttexture memorys avail-

The grid of independent thread blocks (Fig. 1) can be orable. Registersandshared memorwpre fast on-chip memories.
dered in one or two dimensions. It is possible to launch théAccess to these types of memory is usually a lot faster than
same kernel or others with affiring grid layout within the global memory. Registers are assigned per thread and only ac
same program successively, with the Fermi cards even corgessible by that thread. Shared memory is allocated to adhre
currently. Threads, i.e., individual processes, can banged block within a SM and all threads in this block can read and
within these blocks in up to three dimensions with a maximunvrite to that memory. The number of available registersis |i
size of 512x 512 x 64 on NVIDIAs GT200-based cards or ited to 16384 on GT200-based chips and is twice as large on
1024x 1024x 64 on Fermi-based cards. However, it is alsonew Fermi-based cards. The size of the shared memory was
limited to 512 or 1024 threads per block, respectively. Eactincreased from 16KB on GT200 to 48KB on Fermi cafds [19].
thread can be identified by a unique id, which can be calcu-
lated from its coordinates within the grid. At executionéim 2.2. Compute Unified Device Architecture: CUDA
32 threads are grouped together invarp. Those warps are With the release of NVIDIAS set of programming tools
then assigned to a SM. For maximum performance, it is beCUDA) in 2007, the exploitation of the potential of GPUs has
to start many more threads than cores exist on the device. THecome more feasible. The CUDA toolkit comes in two vari-
same program can run on a wide range of CUDA-capable deants, a high-level {C++ interface to GPU functions, the so-
vices with diferent number of cores, because the distributiorcalled CUDA runtime API and a more low-level programming
of warps to cores is done on the device. This feature is calletiyer, the CUDA driver API, which is closer to hardware. The
transparent scalabilityf1g]. Also, if certain threads within a toolkit contains a set of extensions to the C programming lan
warp are reading data from global memory, the device is ablguage to accomplish the most common tasks in GPU program-
to hide the memory latency by executing a warp of threads thaning, like memory management and operations, but also new
does not have to wait for another operation. data types for mathematical calculations. For a detailedrije

Graphics cards come with several types of memory (Big. 2§ion of the CUDA programming language, seel[20]. The draw-
accessible to the program. The largest is ghebal memory ~ back is that CUDA currently only runs on NVIDIA hardware.
which can be as large as 4GB in professional special purpodaowever, there is a vendor-independent alternative invecti
cards like the Fermi series from NVIDIA. The global memory development, called OpenCL (Open Computing Langiige)
can be read and written by specific functions from the CPU -lts programming interface is comparable to the driver API of
also callechost—, and every thread on the GPU — also calledNVIDIAs CUDA.
device- has read and write access to global memory. This large
memory is necessary since it is not possible for the device to *httpy/www.khronos.orgppencl
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CPU section g EU(rij) = 4e [(E) - (E) }’ (2)

wherer;; is the distance between two monomeend j. The
start kernel J

Lennard-Jones parameters are 1 ando = 2-6r(, the min-
GPU section gggggg%g gggggggggg g%ggggg gggg%% imum of the potential is ato = 0.7 and the cutf radius is
% o re = 2.50. To model the bonds between adjacent monomers,

(Ll

synchronization we use the finitely extensible nonlinear elastic (FENE) anha
barrier monic potential
CPU section K r ran2
i+1 = lo
EFENE(rii+1) = _ERZ lOg 1- (HT) s (3)

Figure 3: Sequence of a parallel GPU program. which has its minimum also ap and diverges for — ro + R

with R = 0.3. The spring constait for the FENE bonds equals

Since at this time CUDA seems more mature than OpenCIf10 ‘E’Et]' ) )
and programming the CUDA runtime API is much more con- 1€ total energy of a conformatian = (r,...,rn) is then
venient than low-level programming, this is what we chose fo 91Ven by
our implementation.

N N-1
A schem(_e of the sequence of a CUDA parallel program is E(QC) = 1 Z Ere(rij) + Z Erene(Tiis1)- (4)
shown in Fig[B. The program starts on the CPU like any 2“:1 i
other program with the initialization of variables and datéth i#]

CUDA one also has to allocate and initialize all memorie$ tha.The conformational behavior of elastic polymers in this miod

are needed for the calculations on the GPU. When all data i : : : .
copied to the device, the kernel is started, and the progmam n Ras already been investigated in detail in Réfs. lﬁb 16]

spreads into parallel threads running on the GPU. The eXeC 5 Monte Carlo Update
tion of the kernel on the GPU is completely independent from™" . o

the calling program, which could proceed in its own exesutio ~ The local update used throughout the simulation is the fol-
For this reason a synchronization barrier has to be implésden 10wing: A random monomer of the chain is picked and a shift

in the main program to wait for the calculations on the detace ©f its coordinates by a random vector is proposed. The com-
finish. After the kernel finishes its execution, the resuftthe ~ Ponents of this displacement vector are uniformly distedu

computations are copied back to the host memory for furthef@ndom n{me?fS within the intervat(.01, 0.01].
processing. For a given inverse thermal energy= 1/kgT at tempera-

ture T, this proposal is accepted or rejected according to the

23 Random Number Generation standard Metropoli@l] criterion

Monte Carlo simulations require a multitude of random num- p = min (L, exp[-B(E ey — Eud)]) » (5)
bers. In our implementation, the required amount of random
numbers for a single kernel call is generated on the CPU andhereE,, is the energy of the proposed new conformation and
copied to global memory before the actual execution of thie ke E,, the energy of the original one.
nel. Each thread block then copies the needed numbers to its
shared memory during the execution. This is not the most opti3.3. Replica-exchange Method

mal solution, because the memory transactions betweemlglob | the replica-exchange parallel temperifg|[22] 23, 24]
and shared memory slow down the overall execution time. linethod, a simulation af, copies, i.e., replicas of the same sys-

would be more ficient to run an independent random num-tem is run at dierent temperatures. After a certain number of
ber generator on each thread block that fits entirely intoesha \jonte Carlo updates an attempt to exchange the conforngation

memory. With the advancing size of the shared memory on thgf neighboring replicasandi + 1 is performed. The probability
device, this is an option for future implementations. to accept such an exchange is given by

p = min(1, exp[(Ei — Ei+1)(Bi — Bi+1)]) - (6)

This heats up and cools down every copy of the system, which

3.1. Polymer Model helps to avoid barriers in the free-energy landscape and-to r
As an example for a molecular system, we consider an elastuce autocorrelation times. Thus in principle, theetive

tic, flexible bead-spring homopolymer chain. All monomersstatistics can be increased.

3. GPU Simulations of an Elastic Flexible Polymer M odel

interact via a shifted and truncated pairwise Lennard-Spoe In this study we show that parallel tempering can quite e
tential: ciently be run on massively parallelized architectureshsas
Er(ri;) = Eu(min(rij, re)) — Eu(re). (1) GPUs.
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3.4. CUDA Implementation

In this section, we will focus the attention on implemerdati
details. The following listings contain CUDA specific syxta

to a specific replica. The shared memory for a local copy of the
replica is allocated in line 6. This means that all threadbiwi
this block, and only those, have fast access to the copy. The

emphasizing the most relevant parts of a CUDA program. Allactual copy process is shown in lines 6 — 11, where only one

calculations are performed using single-precision flagpnint
operations, because support for double-precision is no¢rge
ally available. Double-precision performance is to beHart

thread is assigned to copy the polymer from global to shared
memory. The barrierin line 11 lets all other threads of tleekhl
wait for the copying to finish, before proceeding with theuatt

improved in future chip generations. Listiiiy 1 shows how thecalculation. In line 15, the energy calculation is invokdthe
main function of a GPU program is invoked. First, one needsletails of the parallel implementation and CUDA specifies ar

to set up the dimensions for the grid of threads. In this dhse,
dimension of the griddimGrid) is set to the number of replicas.

explained in ListingEI3 arld 4. Again, only one thread is used i
lines 16 — 23 to collect statistics. The local copy of the pudy

This means that every replica of the systems runs indepéigden s copied back to global memory in line 27 for further evalua-

in its own thread block. The size of such a thread bldick-
Block is set to a constam8S which depends on the number of
beads in the polymer. Details will be discussed in Se¢fiéh 4.

dim3 dimGrid (NCONFS) ;

dim3 dimBlock(BS) ;

run<<<dimGrid , dimBlock>>>
(d-confs, d.rnds, d_-energies,

cudaThreadSynchronize () ;

d_-rees, d-rgyrs);

Listing 1: Specification of the thread layout and kernel g@thin the main
program.

After setting up the grid layout, the kerneln is called with ,
the given layout embraced by triple chevrons and a list afi-arg
ments. The same code is then executed by each thread.

Because a kernel function call returns immediately, it is-ne
essary to caltudaThreadSynchronize() as a synchronization

tion on the CPU.

Due to the fact that every thread executes the same code, it
is possible to insert conditions based on the id of the thtead
alter what each thread actually calculates.

Since in this model there are only pairwise interactions be-
tween monomers, it is possible to parallelize the calonedif
the energy. For the FENE part of the potential this is particu
larly straightforward, because only next neighbors arelired,
see Listind B.

y!
_.syncthreads() ;

if (TX < N-1) {
r = distance(p, TX, TX+1);
energy [TX]+=-0.5+K«R«R« __logf (1 —((r—r0) /R) «((r-r0)/R));

Listing 3: Calculation of pairwise FENE interactions.

barrier. Thus the CPU waits for the GPU to finish the calculaFor the Lennard-Jones part of the potential, it is not theialr
tions before proceeding. In our implementation the exckangt0 get the indices of all possible neighbors. The calcutatib
of replicas is done on the CPU, while the GPU is used for thdhe relevantindices is included in Listing 4.

Metropolis algorithm with the expensive energy calculatié. .
pruned record of the insides of the kernelis shown in Lidling .

__global_- void run
(Polymerx d_confs, float d_rnds,
float« d.rees, float= d.rgyrs) .
{
int id = blockldx.x;
_.shared_._ Polymer ps;
// .. initialization of some variables
if (TX == 0) {

ps = d_confs[id];
| 13

float« d-energies,

_.syncthreads() ; "
while (n < NSWEEPS) {
oneSweep(&ps, rnds, n);
ener = energy(&ps);
if (TX == 0) {
Ree = endToEndDistance(&ps) ;
Rgyr = radiusOfGyration(&ps);
d_energies[n+offset] = ener;
d_.rees[n+offset] = Ree;
d_rgyrs[n+offset] = Rgyr;

17

n++;
}
__syncthreads() ;

}

if (TX == 0) {

d-confs[id] = ps;
}
__syncthreads() ;

}

Listing 2: The kernel function — showing the usage of sharednory and the
main work loop.TX is the unique id for each thread.

In line 5 of Listing2, the index of the current thread bloclags
signed to an integer variable and is used to link this thréackb

4

for (int i=0; i<N/2; i++) {
if (TX < N) {
if (TX> i) {
index1l = i;
index2 = TX;
}
else {
indexl = N-2-i;
index2 = index1+1+TX;
}
r = distance(p, indexl, index2);

if (r<rc && (i !'= N-2-i)) {

float rs6 = __powf(sigmal/r, 6.0f);

energy [TX] += 4=epsilon=((rs6x*(rs6—-1))—E_lj_rc);
}

_.syncthreads();

Listing 4: Calculation of pairwise Lennard-Jones poténtia

For both parts of the potentiahne pair of monomers is as-
signed toone threadto perform the actual calculation of the
energy. The results of those calculations are stored inrtlag a
energy. When all threads are finished with their pagarallel
reductionis performed on this array to obtain the total energy.
Instead of using a single thread and a loop for the summation,
multiple threads calculate fiiérent parts of the sum. S@[ZS]
for details.

4. Reaults

4.1. Thermodynamics
Before discussing details of théieiency of the GPU simu-
lations, let us first briefly review the thermodynamical ppp



Table 1: Specifications of the used hardware.

reference CPU GPU1 GPU2 GPU3
name Xeon E5620 Tesla C1060 GTX285 GTX480
# processors 1 30 30 15
# cores per processor 4 (only 1 used) 8 8 32
RAM 16384MB 4096MB  1024MB  1536MB
clock speed 2.4GHz 1.3GHz 1.48GHz 1.4GHz
max. threads per block - 512 512 1024
shared memory size - 16kB 16KB 48kB
registers per block - 16384 16384 32768

ties of elastic polymers with 13 and 55 monomers, which noneenter of the polymer. From its fluctuations, structurahsia
trivially freeze into icosahedral structures at low tengteres.  tions can be identified. The peaks for the freezing trans#io-

Figure[d shows the specific heat of the polymers, given by proximately coincide with the peaks in the specific heat. Muc
more distinct are the peaks that indicate@seollapse at higher
temperatures, compared to the corresponding weak sigmals i
the specific heat.

Cv _ 1&E)

B2 2
N =Nt - NCED (B )
There is a change in the monotonic behavior of the curve af 2. performance comparison
approximatelyT = 1.0 for the 13mer and approximately =
1.5 for the 55mer. This is an indicator for a structural changefin
within the polymer chain, in this case ti@&collapse, which
describes the finite-system analog of the phase transitoon f
random-coil conformations to globular shapes.

The very distinct peak at low temperatur&sy 0.33 for the . o )
13mer andT ~ 0.32 for the 55mer, is a sign for the freezing Wheretceu is the execution time on a single CPU core égd,
transition. Below this temperature, the crystalline podyrhas IS the runtime on the GPU. All runtimes were measured with
an icosahedral structure. These results conform with pusvi cutil-timers, which are wrapper functions to the standard C li-
studies|[15, 16]. brary callgettimeofday. This ensures a consistent time mea-

Figure[® shows the fluctuation of the squared radius of gyraSurément on a variety of systems, and to measure CPU and
tion, given by GPU time allk(_a. On the CPU side, on]y_t_he_ tlme taken py the

N actual calculation was measured. No initialization of ahles
12, = %Z(ﬁk — Fmea) (8)  orany file operations were included in the time measurement.
= To consider the extra overhead which comes with GPU com-
puting, the time taken to copy data hence and forth the device

wherefmeanis the center of mass of the polymer. The radius ofya5 peen included along with the time taken for the sweeps.
gyration describes the mean distance of every monomer to the

To compare the performance of each implementation, we de-
e a speed-up factor as follows,

Sp = Y (©)
tepu

14— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.6 — ‘ ‘
N=13 ——
N =55 e
12+ 05 f
10 +
8 o4}
=
8t 2
Z o™
= Z 03¢
S} 6 L =
Ci&jb
52

02 04 06 08 1 1.2 14 16 18 2

Figure 4: Specific heat of an elastic polymer chain with laadt3 and 55. The  Figure 5: Fluctuation of the squared radius of gyration fain lengths 13 and
inset shows the icosahedral structure of the 55mer. 55.
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Figure 6: Speed-up factd@, vs. number of replicas; for naive porting of Figure 7: Average GPU timégpy) in seconds vs. number of replicas for
CPU code to the GPU. Lines are only guides to the eye. the naive GPU version.

For the speed comparison, only short runs of 4000 sweeps pef executing 120 blocks at a time with 1 thread per block. The
replica were performed. Every 1000 sweeps the replicas wen@aximum speed-up for this thread layout is to be expected at
copied back to the host to propose a swap of temperatures bsultiples of 240 for GPU1 and GPU2, and multiples of 120 for
tween neighboring copies according to Hd. (6). The simdlate GPUL. Essentially thread blocks with threads other thartimul
system was of siz& = 55. The specifications of the three ples of 32 —the warp size —are not recommended at all. Another
tested GPUs are listed in Taljle 1. First, naive portings df CP interesting finding is that the total runtime of the kernettis
to GPU codes already show maximum speed-ups around 6-same, whether only one multiprocessor is busy and the others
for the GT200-based cards GPU1 and GPU2 compared to thare idling, or all multiprocessors are equally busy. Thileto
reference implementation on the CPU. With GPU3, based on step-like graph, see Figl 7, when plotting the kernel mati
the Fermi architecture, the maximum speed-up is about 9. Figversus the number of replica, i.e., the number of threaddsloc
urel@ shows the dependency of the speed-ups on the number ofWwith this in mind, an improved version was implemented
replicas for dfferent GPUs. In the naive approach, each replicawith a parallel calculation of the energy function, as shawn
of the system was assigned to one thread block containinyg onListings[3 and¥. The thread block size in this version was set
one thread. Because of the embarrassingly parallel nafure ¢to 64 — a multiple of the warp size, for better scheduling -heac
the parallel tempering algorithm, it is possible to outparia  block holding one replica. This improved version also eiplo
single CPU when more than 36 replicas of a system are simuew-latency memory access by using shared memory for stor-
lated on GPU1, 32 replicas or 13 replicas for GPU2 or GPU3ng the coordinates of the monomers. Thus all threads within
respectively. This is possible due to the large number cdsor a block have fast access to them when needed for the calcula-
available on GPUs, even though their clock speeds are loweion of their portion of the energy. Performance is also gdin
than that of modern CPUs. by substituting calls to standard C math library with optied

As mentioned in Sectidnl 2, the size of thread blocks is lim-CUDA versions|L_2b], see Listing 3 line 3 and Listip 4 line 13.
ited and threads on the GPU are bundled to groups called warpShose usually have a lower precision than their countetspar
The maximum number of simultaneously active threads in dut are executed faster. As shown in Hij. 8, this implementa-
multiprocessor is 1024 (or 32 warps) for GT200-based cardson is much faster than the CPU version, when more than 2
(GPU1 and GPU2) and 1536 threads (or 48 warps) for Fermireplica are simulated. The maximum speed-up factor for GPU1
based GPU3. These warps do not necessarily have to beloig68, for GPU2 it is 78 and for GPU3 even 130. Again, for
to the same thread block. Thus also 16 warps fromfizgint  the two GT200-based cards, multiples of 240 threads blocks
thread blocks can be active simultaneously in a single SM, oare a limit for the maximum speed-up. With 240 active thread
3 blocks of 10 warps, or 4 blocks of 8 warps, and so on, up tdlocks of 64 threads each, there are 15360 threads running on
8 blocks of 4 warps. This grouping of warps from up to 8 dif- the GPU. The total number of threads divided by the number
ferent thread blocks is a current limitation of the GPU aetyi  of SMs in these cards equals 512. These 512 threads are a col-
ture. The SM is not able to gather as many warps frofiecknt  lection of 2 warps from 8 dierent thread blocks. So, with this
thread blocks until its warp or thread limit is reached; ekpl ~ parametrization, the occupancy of the multiprocessorsig o
ing the peaks in Figurlel 6. Since there are 30 multiprocessor® 50%, since 1024 active threads per SM are possible with
on GPU1 and GPU2, the maximum number of active warps of5T200-cards. For GPU3, the first maximum is at 120 thread
the device is reached for 240 thread blocks of 1 thread. Eachlocks, which complies with a total number of 7680 threads.
SM calculates the single threads of 8fdient thread blocks. Even though GPUS3 is capable of running 1536 threads in each
GPU3 however has 15 multiprocessors, thus it is only capablef its 15 multiprocessors at a time, only 512 threads areecti
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20 | K. x7 1 imize the benefit from GPU implementations it is necessary to
keep all multiprocessors on the GPU equally busy.
0 0 20 40 60 80 100 120 140 160 180 200 220 240 Table[2 is a summary of the maximum speed-up factors
" achieved in our simulations, employing the twdteient im-

plementations. The ratio of speed-ups from GPU1 and GPU2
Figure 8: Speed-up fact@, vs. number of replicas, for the GPU version IS nearly the same as the ratio of their clock speeds. Whereas
with parallelized energy calculation. Drawn lines are ogiydes to the eye. GPU3 with a similar clock speed shows significant speed-ups,
which originate from the dierence in the chip design of the
two GPU generations.
due to the 8 thread block limitation (this equals an occupaic
33%). These occupancy values come from the fact that only 64
threads per replica are used for the energy calculationffardi 5 gymmary
ent implementation with more threads or bigger systemssize
which require more threads, could increase the occupancy of _ )
the multiprocessors and thus increase thiieiency. The step- [N this paper, we have shown that replica-exchange Monte
like shape of the curve in Fiff] 9 every 30 replica for GPU1 and-arlo simulations of fi-lattice polymer models can be per-
GPU2 coincides with the number of SMs, meaning that with evformed quite éiciently on GPUs. Even for flattice poly-
ery additional thread block the overall speed-up dropgeath ~ mer models this is a suitable approach. Already with a very
of the 30 multiprocessors again is equally busy. Also natipe ~ SImple naive porting of CPU code to the GPU, we find con-
is that for GPU1 and GPU?2 the first maximum of the speed-ujFiderable performance gains of factors about 6-9 compared t
factor is reached for 120 thread blocks. That means all cored Single CPU implementation. Utilizing the unique architec
are equally busy, but apparently there seems to be plengy of | lUre of GPUs, with its dferent memory layers and the abil-
tency in memory operations. Thus, the overall speed-uptis nd t0 schedule a massive amount of threads, we improved the
affected by adding the same amount of work to each multiproSPU program to attain speed-up factors of around 70 for main-
cessor, up to 240 thread blocks in total. For GPU3 the inereasStréam GPUs like the GTX285, and even factors up to 130
in kernel runtime occurs every 15 thread blocks, correspand With NVIDIAS new generation Fermi-based GTX480 card. It
to the number of SMs in the given card. Consequently, to maxshould be noted that our implementations represent a ragher
sic level of utilizing the advantages of GPU architectures.
Furthermore it is possible to access multiple cards in a sin-
gle workstation from one and the same program with no ex-
tra dfort. Also nodes of established cluster computers can be
equipped with GPUs, a combination of the traditional messag
passing interface (MPI) and CUDA is used in such a scenario.
Thus GPUs promise great gains in productivity and might help
building the next-generation supercomputers.

(tapu)ls]
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