
ar
X

iv
:1

10
7.

34
90

v1
  [

ph
ys

ic
s.

co
m

p-
ph

]  
18

 J
ul

 2
01

1

Massively parallelized replica-exchange simulations of polymers on GPUs

Jonathan Grossa, Wolfhard Jankeb, Michael Bachmanna

aSoft Matter Systems Research Group, Institut für Festkörperphysik (IFF-2) and Institute for Advanced Simulation (IAS-2),
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Abstract

We discuss the advantages of parallelization by multithreading on graphics processing units (GPUs) for parallel tempering Monte
Carlo computer simulations of an exemplified bead-spring model for homopolymers. Since the sampling of a large ensemble
of conformations is a prerequisite for the precise estimation of statistical quantities such as typical indicators forconformational
transitions like the peak structure of the specific heat, theadvantage of a strong increase in performance of Monte Carlosimulations
cannot be overestimated. Employing multithreading and utilizing the massive power of the large number of cores on GPUs,being
available in modern but standard graphics cards, we find a rapid increase in efficiency when porting parts of the code from the
central processing unit (CPU) to the GPU.
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1. Introduction

Computer simulations have become a fundamental pillar in
physics. In particular, computer simulations are frequently the
only choice to understand physical properties of complex and
cooperative behavior of systems which require a detailed mod-
eling. This is certainly apparent in structural biophysicsand
polymer physics, where effective many-body interactions and
disorder effects cannot be tackled by means of analytical ap-
proaches alone. Even for simplistic models, computation time
can become interminable if a large amount of data is needed as,
e.g., in statistical physics.

Despite large advances in the design of central processing
unit (CPU) architectures most of the above-mentioned needs
could not be met by simulations on single CPU systems. Sev-
eral approaches to speed up simulations have been employed,
e.g., parallel computing usingmessage passingon clusters or
multithreaded programmingon multicore CPUs.

Graphics processing units (GPUs) have become very power-
ful, in recent years, driven by the professional computer gam-
ing industry. GPUs possess a massively parallel architecture.
With the latest release of NVIDIA’s convenient programming
language CUDA, GPUs have become popular in scientific com-
puting. GPU computing finds its application in many fields,
such as astronomy [1, 2], medicine [3, 4], time series analy-
sis for financial markets [5], molecular dynamics simulations
[6, 7], Monte Carlo studies of spin systems [8, 9, 10], and Quan-
tum Monte Carlo applications [11]. We are interested in the
thermodynamical properties of polymer models, both on lattice
[12, 13] and off-lattice [14, 15]. Previous studies [15, 16, 17] of
an elastic polymer model revealed a complex, chain-length de-
pendent structural transition behavior. For relatively high tem-
peratures, the polymer chain has a wide spread coil-like struc-
ture. At theΘ-point – where monomer-monomer attraction and

repulsion by volume exclusion is just balanced – the polymer
collapses from the random coil to more globular structures.In
this globular “phase”, there is no internal structure. Thisis com-
parable to a liquid. At even lower temperatures, sort of a freez-
ing transition is observed.

The purpose of this paper is to show that GPU simulations
can also quite efficiently be performed for off-lattice polymer
models without any need of highly sophisticated tricks of im-
plementation. By employing a straightforward implementation,
of massive parallelization provided by GPUs, we investigate
the possible speed-up for replica-exchange Monte Carlo sim-
ulations of an off-lattice model for elastic polymers.

The paper is organized as follows. Section 2 describes de-
tails of the GPU architecture and CUDA. In Section 3 we give
a brief introduction of the investigated model and the simula-
tion technique used. The results of our studies are presented in
Section 4. A summary of our findings in given in Section 5.

2. General-Purpose Computation on Graphics Processing
Units

Since massively parallel general-purpose computation on
GPUs is not standard, despite the large number of applications
in the past few years, let us review the main features of multi-
threaded GPU architectures and the most frequently used spe-
cific language CUDA.

2.1. GPU Architecture

A GPU is composed of a number of streaming multiproces-
sors (SM) with on-chip shared memory only visible to that SM
and a large global memory, often with sizes in the range of
1 − 4GB, in today’s graphics card architectures. The kernel
– the main function of a GPU program – runs the same code
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Figure 1: Grids with thread blocks.

in parallel on a number of threads given by the grid and block
layout.

The grid of independent thread blocks (Fig. 1) can be or-
dered in one or two dimensions. It is possible to launch the
same kernel or others with a differing grid layout within the
same program successively, with the Fermi cards even con-
currently. Threads, i.e., individual processes, can be arranged
within these blocks in up to three dimensions with a maximum
size of 512× 512× 64 on NVIDIA’s GT200-based cards or
1024× 1024× 64 on Fermi-based cards. However, it is also
limited to 512 or 1024 threads per block, respectively. Each
thread can be identified by a unique id, which can be calcu-
lated from its coordinates within the grid. At execution time,
32 threads are grouped together in awarp. Those warps are
then assigned to a SM. For maximum performance, it is best
to start many more threads than cores exist on the device. The
same program can run on a wide range of CUDA-capable de-
vices with different number of cores, because the distribution
of warps to cores is done on the device. This feature is called
transparent scalability[18]. Also, if certain threads within a
warp are reading data from global memory, the device is able
to hide the memory latency by executing a warp of threads that
does not have to wait for another operation.

Graphics cards come with several types of memory (Fig. 2)
accessible to the program. The largest is theglobal memory,
which can be as large as 4GB in professional special purpose
cards like the Fermi series from NVIDIA. The global memory
can be read and written by specific functions from the CPU –
also calledhost–, and every thread on the GPU – also called
device– has read and write access to global memory. This large
memory is necessary since it is not possible for the device to

texture memory

shared

constant memory

global memory

shared

local local local local

Figure 2: Memory layout on a GPU device.

access the RAM of the host. This means all data that needs to
be processed by the GPU has to be copied to the device for cal-
culation and copied back to the host for evaluation. A downside
of the global memory is its high latency.

The constant memorysupports short latency read-only ac-
cess by the device if all threads read from the same location in
memory. For specific data types, thetexture memoryis avail-
able.Registersandshared memoryare fast on-chip memories.
Access to these types of memory is usually a lot faster than
global memory. Registers are assigned per thread and only ac-
cessible by that thread. Shared memory is allocated to a thread
block within a SM and all threads in this block can read and
write to that memory. The number of available registers is lim-
ited to 16384 on GT200-based chips and is twice as large on
new Fermi-based cards. The size of the shared memory was
increased from 16KB on GT200 to 48KB on Fermi cards [19].

2.2. Compute Unified Device Architecture: CUDA

With the release of NVIDIA’s set of programming tools
(CUDA) in 2007, the exploitation of the potential of GPUs has
become more feasible. The CUDA toolkit comes in two vari-
ants, a high-level C/C++ interface to GPU functions, the so-
called CUDA runtime API and a more low-level programming
layer, the CUDA driver API, which is closer to hardware. The
toolkit contains a set of extensions to the C programming lan-
guage to accomplish the most common tasks in GPU program-
ming, like memory management and operations, but also new
data types for mathematical calculations. For a detailed descrip-
tion of the CUDA programming language, see [20]. The draw-
back is that CUDA currently only runs on NVIDIA hardware.
However, there is a vendor-independent alternative in active
development, called OpenCL (Open Computing Language)1.
Its programming interface is comparable to the driver API of
NVIDIA’s CUDA.

1http://www.khronos.org/opencl/
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Figure 3: Sequence of a parallel GPU program.

Since at this time CUDA seems more mature than OpenCL
and programming the CUDA runtime API is much more con-
venient than low-level programming, this is what we chose for
our implementation.

A scheme of the sequence of a CUDA parallel program is
shown in Fig. 3. The program starts on the CPU like any
other program with the initialization of variables and data. With
CUDA one also has to allocate and initialize all memories that
are needed for the calculations on the GPU. When all data is
copied to the device, the kernel is started, and the program now
spreads into parallel threads running on the GPU. The execu-
tion of the kernel on the GPU is completely independent from
the calling program, which could proceed in its own execution.
For this reason a synchronization barrier has to be implemented
in the main program to wait for the calculations on the deviceto
finish. After the kernel finishes its execution, the results of the
computations are copied back to the host memory for further
processing.

2.3. Random Number Generation

Monte Carlo simulations require a multitude of random num-
bers. In our implementation, the required amount of random
numbers for a single kernel call is generated on the CPU and
copied to global memory before the actual execution of the ker-
nel. Each thread block then copies the needed numbers to its
shared memory during the execution. This is not the most opti-
mal solution, because the memory transactions between global
and shared memory slow down the overall execution time. It
would be more efficient to run an independent random num-
ber generator on each thread block that fits entirely into shared
memory. With the advancing size of the shared memory on the
device, this is an option for future implementations.

3. GPU Simulations of an Elastic Flexible Polymer Model

3.1. Polymer Model

As an example for a molecular system, we consider an elas-
tic, flexible bead-spring homopolymer chain. All monomers
interact via a shifted and truncated pairwise Lennard-Jones po-
tential:

Emod
LJ (r i j ) = ELJ(min(r i j , rc)) − ELJ(rc), (1)

ELJ(r i j ) = 4ǫ















(

σ

r i j

)12

−

(

σ

r i j

)6











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wherer i j is the distance between two monomersi and j. The
Lennard-Jones parameters areǫ = 1 andσ = 2−1/6r0, the min-
imum of the potential is atr0 = 0.7 and the cutoff radius is
rc = 2.5σ. To model the bonds between adjacent monomers,
we use the finitely extensible nonlinear elastic (FENE) anhar-
monic potential

EFENE(r ii+1) = −
K
2

R2 log

[

1−
( r ii+1 − r0

R

)2
]

, (3)

which has its minimum also atr0 and diverges forr → r0 ± R
with R= 0.3. The spring constantK for the FENE bonds equals
40 [15, 16].

The total energy of a conformationC = (r1, . . . , rN) is then
given by

E(C) =
1
2

N
∑

i, j=1
i, j

Emod
LJ (r i j ) +

N−1
∑

i

EFENE(r ii+1). (4)

The conformational behavior of elastic polymers in this model
has already been investigated in detail in Refs. [15, 16].

3.2. Monte Carlo Update

The local update used throughout the simulation is the fol-
lowing: A random monomer of the chain is picked and a shift
of its coordinates by a random vector is proposed. The com-
ponents of this displacement vector are uniformly distributed
random numbers within the interval [−0.01, 0.01].

For a given inverse thermal energyβ = 1/kBT at tempera-
ture T, this proposal is accepted or rejected according to the
standard Metropolis [21] criterion

p = min
(

1, exp
[

−β(Enew − Eold)
])

, (5)

whereEnew is the energy of the proposed new conformation and
Eold the energy of the original one.

3.3. Replica-exchange Method

In the replica-exchange parallel tempering [22, 23, 24]
method, a simulation ofnr copies, i.e., replicas of the same sys-
tem, is run at different temperatures. After a certain number of
Monte Carlo updates an attempt to exchange the conformations
of neighboring replicasi andi+1 is performed. The probability
to accept such an exchange is given by

p = min
(

1, exp
[

(Ei − Ei+1)(βi − βi+1)
])

. (6)

This heats up and cools down every copy of the system, which
helps to avoid barriers in the free-energy landscape and to re-
duce autocorrelation times. Thus in principle, the effective
statistics can be increased.

In this study we show that parallel tempering can quite effi-
ciently be run on massively parallelized architectures, such as
GPUs.
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3.4. CUDA Implementation

In this section, we will focus the attention on implementation
details. The following listings contain CUDA specific syntax
emphasizing the most relevant parts of a CUDA program. All
calculations are performed using single-precision floating-point
operations, because support for double-precision is not gener-
ally available. Double-precision performance is to be further
improved in future chip generations. Listing 1 shows how the
main function of a GPU program is invoked. First, one needs
to set up the dimensions for the grid of threads. In this case,the
dimension of the grid (dimGrid) is set to the number of replicas.
This means that every replica of the systems runs independently
in its own thread block. The size of such a thread blockdim-
Block is set to a constantBS which depends on the number of
beads in the polymer. Details will be discussed in Section 4.2.

dim3 dimGrid (NCONFS) ;
dim3 dimBlock (BS) ;
run<<<dimGrid , dimBlock>>>

( d confs , d rnds , d energ ies , d rees , d rgy rs ) ;
cudaThreadSynchronize ( ) ;

Listing 1: Specification of the thread layout and kernel callwithin the main
program.

After setting up the grid layout, the kernelrun is called with
the given layout embraced by triple chevrons and a list of argu-
ments. The same code is then executed by each thread.

Because a kernel function call returns immediately, it is nec-
essary to callcudaThreadSynchronize() as a synchronization
barrier. Thus the CPU waits for the GPU to finish the calcula-
tions before proceeding. In our implementation the exchange
of replicas is done on the CPU, while the GPU is used for the
Metropolis algorithm with the expensive energy calculation. A
pruned record of the insides of the kernel is shown in Listing2.

1 g l o b a l void run
( Polymer∗ d confs , f l o a t ∗ d rnds , f l o a t ∗ d energ ies ,

3 f l o a t ∗ d rees , f l o a t ∗ d rgy rs )
{

5 i n t i d = b lock Idx . x ;
s h a re d Polymer ps ;

7 / / . . i n i t i a l i z a t i o n o f some v a r i a b l e s
i f (TX == 0) {

9 ps = d confs [ i d ] ;
}

11 sync th reads ( ) ;

13 while ( n < NSWEEPS) {
oneSweep(&ps , rnds , n ) ;

15 ener = energy (&ps ) ;
i f (TX == 0) {

17 Ree = endToEndDistance(&ps ) ;
Rgyr = rad iusOfGy ra t ion(&ps ) ;

19 d energ ies [ n+ o f f s e t ] = ener ;
d rees [ n+ o f f s e t ] = Ree ;

21 d rgy rs [ n+ o f f s e t ] = Rgyr ;
n++;

23 }

sync th reads ( ) ;
25 }

i f (TX == 0) {
27 d confs [ i d ] = ps ;

}

29 sync th reads ( ) ;
}

Listing 2: The kernel function – showing the usage of shared memory and the
main work loop.TX is the unique id for each thread.

In line 5 of Listing 2, the index of the current thread block isas-
signed to an integer variable and is used to link this thread block

to a specific replica. The shared memory for a local copy of the
replica is allocated in line 6. This means that all threads within
this block, and only those, have fast access to the copy. The
actual copy process is shown in lines 6 – 11, where only one
thread is assigned to copy the polymer from global to shared
memory. The barrier in line 11 lets all other threads of the block
wait for the copying to finish, before proceeding with the actual
calculation. In line 15, the energy calculation is invoked.The
details of the parallel implementation and CUDA specifics are
explained in Listings 3 and 4. Again, only one thread is used in
lines 16 – 23 to collect statistics. The local copy of the polymer
is copied back to global memory in line 27 for further evalua-
tion on the CPU.

Due to the fact that every thread executes the same code, it
is possible to insert conditions based on the id of the threadto
alter what each thread actually calculates.

Since in this model there are only pairwise interactions be-
tween monomers, it is possible to parallelize the calculation of
the energy. For the FENE part of the potential this is particu-
larly straightforward, because only next neighbors are involved,
see Listing 3.

i f (TX < N−1) {
2 r = d is tance ( p , TX, TX+1) ;

energy [TX]+=−0.5∗K∗R∗R∗ l o g f (1 − ( ( r−r0 ) /R) ∗ ( ( r−r0 ) /R) ) ;
4 }

sync th reads ( ) ;

Listing 3: Calculation of pairwise FENE interactions.

For the Lennard-Jones part of the potential, it is not that trivial
to get the indices of all possible neighbors. The calculation of
the relevant indices is included in Listing 4.

1 for ( i n t i =0; i <N/ 2 ; i ++) {
i f (TX < N) {

3 i f (TX > i ) {
index1 = i ;

5 index2 = TX;
}

7 else {
index1 = N−2− i ;

9 index2 = index1+1+TX;
}

11 r = d is tance ( p , index1 , index2 ) ;
i f ( r<rc && ( i != N−2− i ) ) {

13 f l o a t rs6 = powf ( sigma / r , 6 .0 f ) ;
energy [TX ] += 4∗ eps i lon ∗ ( ( rs6 ∗ ( rs6 −1))− E l j r c ) ;

15 }

. . .
17 sync th reads ( ) ;

Listing 4: Calculation of pairwise Lennard-Jones potential.

For both parts of the potential,one pair of monomers is as-
signed toone threadto perform the actual calculation of the
energy. The results of those calculations are stored in the array
energy. When all threads are finished with their part aparallel
reductionis performed on this array to obtain the total energy.
Instead of using a single thread and a loop for the summation,
multiple threads calculate different parts of the sum. See [25]
for details.

4. Results

4.1. Thermodynamics
Before discussing details of the efficiency of the GPU simu-

lations, let us first briefly review the thermodynamical proper-
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Table 1: Specifications of the used hardware.

reference CPU GPU1 GPU2 GPU3

name Xeon E5620 Tesla C1060 GTX285 GTX480
# processors 1 30 30 15
# cores per processor 4 (only 1 used) 8 8 32
RAM 16384MB 4096MB 1024MB 1536MB
clock speed 2.4GHz 1.3GHz 1.48GHz 1.4GHz
max. threads per block - 512 512 1024
shared memory size - 16kB 16KB 48kB
registers per block - 16384 16384 32768

ties of elastic polymers with 13 and 55 monomers, which non-
trivially freeze into icosahedral structures at low temperatures.

Figure 4 shows the specific heat of the polymers, given by

CV

N
=

1
N
∂〈E〉
∂T
=
β2

N
(〈E2〉 − 〈E〉2). (7)

There is a change in the monotonic behavior of the curve at
approximatelyT = 1.0 for the 13mer and approximatelyT =
1.5 for the 55mer. This is an indicator for a structural change
within the polymer chain, in this case theΘ-collapse, which
describes the finite-system analog of the phase transition from
random-coil conformations to globular shapes.

The very distinct peak at low temperatures,T ≈ 0.33 for the
13mer andT ≈ 0.32 for the 55mer, is a sign for the freezing
transition. Below this temperature, the crystalline polymer has
an icosahedral structure. These results conform with previous
studies [15, 16].

Figure 5 shows the fluctuation of the squared radius of gyra-
tion, given by

r2
gyr =

1
N

N
∑

k=1

(~rk − ~rmean)
2, (8)

where~rmean is the center of mass of the polymer. The radius of
gyration describes the mean distance of every monomer to the
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Figure 4: Specific heat of an elastic polymer chain with lengths 13 and 55. The
inset shows the icosahedral structure of the 55mer.

center of the polymer. From its fluctuations, structural transi-
tions can be identified. The peaks for the freezing transition ap-
proximately coincide with the peaks in the specific heat. Much
more distinct are the peaks that indicate theΘ-collapse at higher
temperatures, compared to the corresponding weak signals in
the specific heat.

4.2. Performance comparison

To compare the performance of each implementation, we de-
fine a speed-up factor as follows,

Sp =
tCPU

tGPU
, (9)

wheretCPU is the execution time on a single CPU core andtGPU

is the runtime on the GPU. All runtimes were measured with
cutil-timers, which are wrapper functions to the standard C li-
brary callgettimeofday. This ensures a consistent time mea-
surement on a variety of systems, and to measure CPU and
GPU time alike. On the CPU side, only the time taken by the
actual calculation was measured. No initialization of variables
or any file operations were included in the time measurement.
To consider the extra overhead which comes with GPU com-
puting, the time taken to copy data hence and forth the device
has been included along with the time taken for the sweeps.
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For the speed comparison, only short runs of 4000 sweeps per
replica were performed. Every 1000 sweeps the replicas were
copied back to the host to propose a swap of temperatures be-
tween neighboring copies according to Eq. (6). The simulated
system was of sizeN = 55. The specifications of the three
tested GPUs are listed in Table 1. First, naive portings of CPU
to GPU codes already show maximum speed-ups around 6–7
for the GT200-based cards GPU1 and GPU2 compared to the
reference implementation on the CPU. With GPU3, based on
the Fermi architecture, the maximum speed-up is about 9. Fig-
ure 6 shows the dependency of the speed-ups on the number of
replicas for different GPUs. In the naive approach, each replica
of the system was assigned to one thread block containing only
one thread. Because of the embarrassingly parallel nature of
the parallel tempering algorithm, it is possible to outperform a
single CPU when more than 36 replicas of a system are simu-
lated on GPU1, 32 replicas or 13 replicas for GPU2 or GPU3
respectively. This is possible due to the large number of cores
available on GPUs, even though their clock speeds are lower
than that of modern CPUs.

As mentioned in Section 2, the size of thread blocks is lim-
ited and threads on the GPU are bundled to groups called warps.
The maximum number of simultaneously active threads in a
multiprocessor is 1024 (or 32 warps) for GT200-based cards
(GPU1 and GPU2) and 1536 threads (or 48 warps) for Fermi-
based GPU3. These warps do not necessarily have to belong
to the same thread block. Thus also 16 warps from 2 different
thread blocks can be active simultaneously in a single SM, or
3 blocks of 10 warps, or 4 blocks of 8 warps, and so on, up to
8 blocks of 4 warps. This grouping of warps from up to 8 dif-
ferent thread blocks is a current limitation of the GPU architec-
ture. The SM is not able to gather as many warps from different
thread blocks until its warp or thread limit is reached; explain-
ing the peaks in Figure 6. Since there are 30 multiprocessors
on GPU1 and GPU2, the maximum number of active warps of
the device is reached for 240 thread blocks of 1 thread. Each
SM calculates the single threads of 8 different thread blocks.
GPU3 however has 15 multiprocessors, thus it is only capable
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Figure 7: Average GPU time〈tGPU〉 in seconds vs. number of replicasnr for
the naive GPU version.

of executing 120 blocks at a time with 1 thread per block. The
maximum speed-up for this thread layout is to be expected at
multiples of 240 for GPU1 and GPU2, and multiples of 120 for
GPU1. Essentially thread blocks with threads other than multi-
ples of 32 – the warp size – are not recommended at all. Another
interesting finding is that the total runtime of the kernel isthe
same, whether only one multiprocessor is busy and the others
are idling, or all multiprocessors are equally busy. This leads to
a step-like graph, see Fig. 7, when plotting the kernel runtime
versus the number of replica, i.e., the number of thread blocks.

With this in mind, an improved version was implemented
with a parallel calculation of the energy function, as shownin
Listings 3 and 4. The thread block size in this version was set
to 64 – a multiple of the warp size, for better scheduling – each
block holding one replica. This improved version also exploits
low-latency memory access by using shared memory for stor-
ing the coordinates of the monomers. Thus all threads within
a block have fast access to them when needed for the calcula-
tion of their portion of the energy. Performance is also gained
by substituting calls to standard C math library with optimized
CUDA versions [20], see Listing 3 line 3 and Listing 4 line 13.
Those usually have a lower precision than their counter-parts,
but are executed faster. As shown in Fig. 8, this implementa-
tion is much faster than the CPU version, when more than 2
replica are simulated. The maximum speed-up factor for GPU1
is 68, for GPU2 it is 78 and for GPU3 even 130. Again, for
the two GT200-based cards, multiples of 240 threads blocks
are a limit for the maximum speed-up. With 240 active thread
blocks of 64 threads each, there are 15360 threads running on
the GPU. The total number of threads divided by the number
of SMs in these cards equals 512. These 512 threads are a col-
lection of 2 warps from 8 different thread blocks. So, with this
parametrization, the occupancy of the multiprocessors is only
at 50%, since 1024 active threads per SM are possible with
GT200-cards. For GPU3, the first maximum is at 120 thread
blocks, which complies with a total number of 7680 threads.
Even though GPU3 is capable of running 1536 threads in each
of its 15 multiprocessors at a time, only 512 threads are active,
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due to the 8 thread block limitation (this equals an occupancy of
33%). These occupancy values come from the fact that only 64
threads per replica are used for the energy calculation. A differ-
ent implementation with more threads or bigger systems sizes,
which require more threads, could increase the occupancy of
the multiprocessors and thus increase the efficiency. The step-
like shape of the curve in Fig. 9 every 30 replica for GPU1 and
GPU2 coincides with the number of SMs, meaning that with ev-
ery additional thread block the overall speed-up drops until each
of the 30 multiprocessors again is equally busy. Also noticeable
is that for GPU1 and GPU2 the first maximum of the speed-up
factor is reached for 120 thread blocks. That means all cores
are equally busy, but apparently there seems to be plenty of la-
tency in memory operations. Thus, the overall speed-up is not
affected by adding the same amount of work to each multipro-
cessor, up to 240 thread blocks in total. For GPU3 the increase
in kernel runtime occurs every 15 thread blocks, corresponding
to the number of SMs in the given card. Consequently, to max-
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Figure 9: Average GPU time〈tGPU〉 in seconds vs. number of replicasnr for
the improved GPU version.

Table 2: Overview of maximum achieved speed-ups – max
(

Sp(nr )
)

– for the
two different GPU implementations, compared to the single-core CPUimple-
mentation.

naive improved

GPU1 6.1× 68×
GPU2 7.2× 78×
GPU3 9× 130×

imize the benefit from GPU implementations it is necessary to
keep all multiprocessors on the GPU equally busy.

Table 2 is a summary of the maximum speed-up factors
achieved in our simulations, employing the two different im-
plementations. The ratio of speed-ups from GPU1 and GPU2
is nearly the same as the ratio of their clock speeds. Whereas
GPU3 with a similar clock speed shows significant speed-ups,
which originate from the difference in the chip design of the
two GPU generations.

5. Summary

In this paper, we have shown that replica-exchange Monte
Carlo simulations of off-lattice polymer models can be per-
formed quite efficiently on GPUs. Even for off-lattice poly-
mer models this is a suitable approach. Already with a very
simple naive porting of CPU code to the GPU, we find con-
siderable performance gains of factors about 6–9 compared to
a single CPU implementation. Utilizing the unique architec-
ture of GPUs, with its different memory layers and the abil-
ity to schedule a massive amount of threads, we improved the
GPU program to attain speed-up factors of around 70 for main-
stream GPUs like the GTX285, and even factors up to 130
with NVIDIA’s new generation Fermi-based GTX480 card. It
should be noted that our implementations represent a ratherba-
sic level of utilizing the advantages of GPU architectures.

Furthermore it is possible to access multiple cards in a sin-
gle workstation from one and the same program with no ex-
tra effort. Also nodes of established cluster computers can be
equipped with GPUs, a combination of the traditional message
passing interface (MPI) and CUDA is used in such a scenario.
Thus GPUs promise great gains in productivity and might help
building the next-generation supercomputers.
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