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Abstract

This is a concise review, addressed to undergraduate students, of S. Chandrasekhar’s oeuvre in

astrophysics, ranging from his early studies on white dwarfs using relativistic quantum statistics

to topics as diverse as dynamical friction, negative hydrogen ion, fluid dynamical instabilities,

black holes and gravitational waves. The exposition is based on simple physical explanations in

the context of observational astronomy. Black holes and their role as central engines of active,

compact, high energy sources have been discussed.
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I INTRODUCTION

The impactful research journey of Subrahmanyan Chandrasekhar began on July 31, 1930,

from Bombay port on a ship. The 19 year old Chandra was on his way to England for higher

studies. Armed with his understanding of Fowler′s work on white dwarfs 1, Chandra was

immersed in the mathematical equations describing these dense objects, during that voyage.

He had realized that Fowler’s theory needed modification, since for sufficiently massive white

dwarfs, particle number densities could be so high that a large fraction of electrons would

be occupying very high energy levels, moving with relativistic velocities.

At this point, a quick summary of stellar evolution theory is in store. In main sequence

stars (like Sun), nuclear fusion of hydrogen to helium supplies the required thermal energy to

stall gravitational contraction of a star, enabling it to attain a quasi-hydrostatic equilibrium.

As the star advances in age, a further sequence of nuclear fusion reactions gets activated in its

core - helium burning to carbon and oxygen, carbon burning to sodium and magnesium and

so on, if the star is massive enough, till the formation of iron-rich core. Iron nucleus being

the most stable one, subsequent nuclear burning cease to take place. As the core cools,

it collapses under its own weight, till the electron density becomes so high that electron

degeneracy pressure prevents further contraction.

Degeneracy pressure is a consequence of quantum statistics in extremely dense matter.

Pauli exclusion principle (PEP) states that no two identical fermions can have the same

state. Electrons, protons, neutrons, neutrinos, etc., being spin half particles, are fermions.

According to PEP, in a gravitationally bound system like the iron-rich core of an evolved star,

all the electrons cannot occupy the lowest energy level (unlike, what happens to identical

bosons in Bose-Einstein condensates, e.g. He-4 superfluid). So, the energy levels are filled

up with two electrons (one with spin up state and the other with spin down) per orbital, as

demanded by the PEP. Hence, more the density of electrons, higher is the energy level that

gets to be occupied.

Gravitational shrinking of such a dense core leads to an increase in electron density,

thereby facing a resistance since the contraction implies putting electrons at higher energy

levels. Therefore, in such a degenerate system, gravitational collapse instead of lowering

the energy of the star tends to increase it. The resulting pressure against shrinking, arising

out of PEP in such electron-rich dense matter is called electron degeneracy pressure (EDP).
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A white dwarf is a star that is in hydrostatic equilibrium not because of thermal pressure

but due to the EDP that counteracts gravitational contraction. Fowler had assumed that

electrons are moving non-relativistically inside the core and had shown that the EDP of a

white dwarf is proportional to ρ5/3, where ρ is the density of the core1.

II CHANDRASEKHAR LIMIT AND COMPACT OBJECTS

In his investigations, Chandra incorporated special relativity in the analysis of white

dwarfs, and found that the EDP is proportional to ρ4/3 instead, demonstrating that the

relativistic degeneracy pressure does not increase as rapidly as in Fowler’s case. Performing

an accurate study of the relativistic problem of a dense star ruled by a polytropic equation of

state, in which gravity is countered by the EDP, he arrived at the celebrated Chandrasekhar

mass limit 2,

MCh =
0.2

(mpµe)2

(

h̄c

G

)3/2

, (1)

where h̄, G, c, mp and µe are the reduced Planck′s constant, Newton′s gravitational constant,

speed of light, mass of a proton and mean molecular weight per electron, respectively. It is

remarkable that such a significant result concerning stars should be expressible in terms of

fundamental quantities (except for µe). In white dwarfs, the value of µe is about 2, so that

from eq.(1) one finds the limit to be MCh ≈ 1.4 M⊙, where M⊙ = 2 × 1030 kg is the Sun′s

mass.

Chandra was unaware initially that Anderson in 1929 and Stoner in 1930 had indepen-

dently applied special relativity to obtain mass limits for a degenerate, dense star of uniform

density without taking into account the condition of hydrostatic equilibrium 3,4,7. Fowler

pointed this out to him when Chandra reached Cambridge, and he added these references

to his papers on relativistic degeneracy in white dwarf stars 5. Landau too had arrived at a

mass limit independently in 1931, which appeared in print one year later 6.

The Chandrasekhar mass limit implies that no white dwarf with mass greater than this

limit can hold out against gravitational collapse. So far, all the white dwarfs discovered

(e.g. Sirius B, the companion star to Sirius) in the cosmos, have mass less than MCh. For

masses beyond this limit, two prescient ideas were put forward independently, that played

important roles later - one of Landau 6, before the discovery of neutrons by Chadwick in

1932 and the other by Baade and Zwicky 8,9, after the discovery. Landau had speculated
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that for stellar cores whose mass exceeded MCh, the density would become so large due to

shrinking that the atomic nuclei in the core would come in contact with each other - the

whole core turning into a giant nucleus 6. Baade and Zwicky, while attributing the origin of

cosmic rays to stellar explosions called supernovae, correctly identified the energy liberated

due to sudden decrease in the gravitational potential energy (as the core collapses rapidly

to form a neutron star of radius ∼ 10 km) as the one that powers supernova explosion 8,9.

A core with mass Mc, shrinking from a large size to a radius Rc, has to give up an energy,

Eexp ∼
GM2

c

Rc
, (2)

since its gravitational potential energy decreases to ∼ −Eexp. For a 1.4M⊙ core collapsing

to form a neutron star of radius Rc ≈ 10 km, the energy Eexp available for explosion is as

high as ∼ 1053 ergs.

Why does the core become neutron-rich? As the core shrinks, its density rises till it

reaches nucleonic values ∼ 1012 - 1014 gm/cm3, when protons in the core transform into

neutrons by capturing electrons and emitting neutrinos 10. Neutrinos, being weakly inter-

acting particles, escape from the core. While in the neutron-rich core, the neutron degen-

eracy pressure (arising from PEP, as neutrons too are spin half particles) prevents further

gravitational contraction, resulting in the formation of a neutron star.

With the detection of periodic emission of radio-pulses from a source by Jocelyn Bell and

Anthony Hewish in 1967, existence of neutron stars as pulsars was established. Pulsars are

rapidly spinning neutron stars with rotation period ranging from about few milli-seconds

to few seconds. The observed pulses are due to electromagnetic radiation from accelerated

charge particles moving along strong magnetic field lines inclined with respect to the rotation

axis (The polar magnetic field strengths vary from ∼ 1010 to ∼ 1014 gauss). Recently,

a milli-second pulsar was found to have a mass of ≈ 2 M⊙, determined using a general

relativistic effect called Shapiro delay in which radiation grazing past a compact, massive

object, arrives at the observer with a time lag because of the strongly curved space-time

geometry it encounters near the massive star 11.

As long as the core is lighter than about 2 − 3 M⊙, it can survive as a neutron star

(The mass limit in this case is uncertain as it depends crucially on the equation of state

for nuclear matter which, for such huge densities existing inside neutron stars, is unknown

11,12). The released neutrinos, after travelling long distances, eventually lose their energy to
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the stellar envelope, causing the latter to be blown apart, giving rise to a Type II supernova.

Measurements concerning detected neutrinos from the supernova SN 1987A indicate that

these ultra-light, weakly interacting particles carry away 99% of the gravitational binding

energy released from the collapsing core, lending credence to the neutrino driven explosion

models 10.

The observed masses for neutron stars do not appear to exceed ∼ 3 M⊙
11,12, suggesting

that a massive star whose core is heaver than this limit, would certainly collapse to form

a black hole. The long duration gamma ray burst sources that exhibit prompt gamma

emissions with photons having energy predominantly in 0.1 - 1 MeV range, and lasting for

about 2 - 1000 s are likely to be collapsing massive cores 13. Eddington had found the idea

of a star shrinking gravitationally to a point absurd 14. Three decades later, Penrose and

Hawking, employing Raychaudhuri equation, proved the remarkable singularity theorems,

according to which gravitational collapse of normal matter generically lead to formation of

point singularities, namely, the black holes 15−17.

III DYNAMICAL FRICTION

Chandra played a significant role in the research area of stellar dynamics from 1939 to

1944 that culminated in the publication of his celebrated papers on dynamical friction18,19.

Cosmos is filled with gravitationally bound systems of massive objects like globular clus-

ters, galaxies, clusters of galaxies, etc. Objects that make up these bound systems, apart

from moving in gravitational potential wells, also suffer two-body gravitational encounters,

resulting in exchange of energy and momentum. It was Chandra who showed for the first

time that a massive body in motion, surrounded by a swarm of other less massive objects,

suffers deceleration that is proportional to its mass 18.

Dynamical friction arises out of cumulative gravitational encounters that the massive

body experiences due to the presence of other objects in the background. The physical

origin of dynamical friction can be intuitively understood by going to the reference frame in

which the body is at rest. In this frame, the swarm of background objects while moving past

the massive body get gravitationally focused behind the body, forming a wake of higher mass

density. Now, switching back to the frame in which the massive body is moving, we find that

the mass density of the wake behind is greater than the density ahead. Consequently, because
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of a greater gravitational pull from behind, the massive body suffers a gravitational drag

force whose magnitude is proportional to the square of its mass and inversely proportional

to the square of its speed 20,21.

Observational consequences of dynamical friction include sinking of globular clusters to-

wards the central regions of galaxies and galactic cannibalism in which the orbit of a satellite

galaxy decays, leading eventually to its merger with the bigger galaxy 21,22.

IV NEGATIVE HYDROGEN ION

Around the same time, Chandra was also involved with the quantum theory of negative

hydrogen ion. Can a proton capture two electrons to form a charged bound state? How is it

relevant to astrophysics? The first issue had been settled by Bethe in 1929 who showed that

quantum mechanics indeed predicts formation of H− ions 23. As to the second question,

it has been found over the years that H− is a weakly bound system with a binding energy

of ≈ 0.75 eV. Since it takes only about 0.75 eV to knock off the extra electron from H−,

its life-time under terrestrial conditions is small but in thin and tenuous plasma where the

collision frequency is low, one expects negative hydrogen ions to survive for longer duration.

Early on, Wildt had foreseen that because of the presence of hydrogen atoms and elec-

trons, in large numbers, in the upper atmosphere of Sun, H− would form. He had also

realized that photo-detachment of H− would contribute greatly to solar opacity, since radi-

ation from Sun would be attenuated as they photo-ionize H− ions on their way out24−26.

At this juncture, Chandra and his collaborators played an important role in calculating

H− photo-absorption matrix element, so crucial for estimating the quantum probability

(and, therefore, the cross-section) of photo-ionization of H− 27−33. The opacity or the optical

depth is proportional to the photo-absorption cross-section σ as well as n, the number density

of H−. This is because, the number of photo-ionizations per photon per unit time is c n σ,

so that the mean free path length for photons is simply,

l =
1

n σ
.

The optical depth essentially is the ratio of the geometrical path length traversed by the

radiation to mean free path length l (i.e., it is the number of absorptions suffered by the

photons on an average).
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The negative hydrogen ion has only the ground state as a bound state, with no singly

excited states. As a result, photons with energy above 0.75 eV, executing random walks out

of Sun due to multiple scatterings, would be absorbed by H− ions after detaching their extra

electrons to the continuum. This is the dominant cause for solar opacity in the infra-red to

visible range of the electromagnetic spectrum.

In 1943, Chandrasekhar and Krogdahl drew attention to the fact that dominant contri-

bution to this matrix element comes from the wavefunction at large distances (several times

the Bohr radius), and therefore an accurate knowledge of electronic wavefunction of H− was

required 27.

Chandra and his collaborators made seminal contributions towards calculating the contin-

uous absorption coefficient κλ of H− as a function of the photon wavelength λ, incorporating

dipole-length and dipole-velocity formulae, that provided a solid theoretical foundation for

the characteristic κλ - λ plot which exhibits a rise in the range 4000 to 9000 angstroms and

then drops to a minimum at 16000 angstroms, with a subsequent rise 34.

The charged hydrogen ion has also played an important role in cyclotrons and particle

accelerators 35. The advantages in making use of H− arise out of the possibility of acceler-

ating them by applying electric fields and obtaining hot neutral beams in Tokamaks (like in

ITER)36. This is because of the relative ease in detaching its extra electron when H− ion is

present in the gas cells.

V MAGNETOHYDRODYNAMICS

Astrophysical entities are usually permeated with magnetic fields, be it planets like earth,

Jupiter, etc., Sun, sunspots, stars, flares, spiral arms of Milky Way, galaxies, and so on.

Magnetic field in a conducting medium like metal or plasma decays due to Ohmic dissipation.

So, how does terrestrial magnetic field, generated by the electric currents flowing in the

molten, conducting and rotating core of Earth, prevent itself from Ohmic decay?

Dynamo theories involving differential rotation and convection in conducting fluids are

invoked to solve this conundrum. However, Cowling had proved that magnetohydrodynami-

cal flows with axisymmetric geometry will always entail a decaying magnetic field 37. About

two decades later, Backus and Chandra generalized Cowling′s theorem 38. In this context,

Chandra studied the possibility of lengthening the decay duration so that an axisymmetric
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dynamo provides a feasible explanation for geomagnetism 39. It was immediately followed

by a paper in which Backus showed that the increase was not large enough to be of geo-

physical interest 40. Chandra studied several fluid dynamical stability problems employing

variational methods that have interesting consequences 41,42.

An evolved binary system, consisting of a Roche lobe20 filling star, spewing out gaseous

matter, and a massive compact object (MCO) like a neutron star or a black hole (BH), both

going around the common centre of mass, very often acts as a luminous source of high energy

photons. In such a binary system, gas leaking out from the bloated star cannot radially fall

on the MCO as it has angular momentum. Instead, it spirals inwards, forming an accretion

disc around the MCO so that each tiny gaseous volume element of the disc moves along a

circular Keplerian orbit 43.

For a thin disc with a total mass much less than the mass M of the MCO, the Keplerian

speed v(r) of a fluid element at a distance r is given by,

v(r) =

√

GM

r
, (3)

Eq.(3) implies that the fluid elements of the accretion disc rotate differentially. Farther the

element from the MCO, lower is its circular speed. Differential rotation leads to viscous

rubbing of neighbouring fluid elements at varying distances, causing the accretion disc to

heat up. If the disc is sufficiently hot, it emits copious amount of electromagnetic radiation

with a spectrum ranging from visible wavelengths to UV photons and X-rays.

There are strong observational evidences that the rapidly time varying, intense X-ray

sources, like Cygnus X-1, are accreting black holes (see section VII). Essentially, the gravi-

tational potential energy of the gas spiralling in, gets converted into radiative energy at the

rate corresponding to a luminosity of,

L = ǫ
GMṁ

rmin
, (4)

where ṁ, rmin and ǫ are the rate of mass accretion, minimum distance reached by the

infalling gas and an efficiency factor for the conversion of gravitational energy to radiation,

respectively. The importance of accretion on to compact objects is evident from eq.(4), since

source luminosity is larger for smaller values of rmin. Similarly, a luminous source requires

larger rates of accretion and higher conversion efficiency.

For the efficiency factor ǫ to be large, the accretion disc is required to have a high viscosity.

The physics of the mechanism responsible for large viscosities in the disc is an active area of
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research. Interestingly, as shown by Balbus and Hawley in 1991, the Chandrasekhar insta-

bility might be the key to the origin of accretion disc viscosity 44. Chandra had pointed out

that a differentially rotating, conducting and magnetized incompressible fluid in a cylindrical

configuration, is unstable with respect to oscillating axisymmetric perturbations 41.

While investigating Rayleigh-Benard convection in conducting and viscous fluids threaded

with magnetic field, Chandra studied the onset of convection and its dependence on a di-

mensionless number Q, representing the square of the ratio of magnetic force to viscous force

41. Today, this number Q is referred to as Chandrasekhar number (or, also as the square

of Hartmann number). Chandra made several other contributions in the field of plasma

physics and magnetohydrodynamics that had far reaching consequences 45.

VI CHANDRASEKHAR-FRIEDMAN-SCHUTZ INSTABILITY

While studying self-gravitating and rotating fluid configurations, Chandra showed that

a uniformly dense and uniformly rotating incompressible spheroid is unstable because of

non-radial perturbations, causing emission of gravitational radiation 46. According to Ein-

stein’s general relativity, the curvature of space-time geometry manifests as gravitational

force. Gravitational radiations are wave-like perturbations in the space-time geometry that

propagate with speed of light, general relativity being a relativistic theory of gravitation.

Gravitional waves are radiated whenever the quadrupole moment of the mass distribution

in a source changes with time. Friedman and Schutz extended Chandra’s findings in 1978,

and demonstrated the existence of gravitational wave driven instability in the general case

of rotating and self-gravitating stars made of perfect fluid 47.

A physically intuitive way to understand this Chandrasekhar-Friedman-Schutz (CFS)

instability is to look at a perturbation mode in a rotating star that is retrograde, i.e. moving

in the backward sense relative to the fluid element going around. According to general

relativity, the space-time geometry around a rotating body is such that inertial frames are

dragged along the direction of rotation (This has been recently verified by the Gravity Probe

B satellite-borne experiment 48). The frame dragging, therefore, would make the retrograde

mode appear prograde to an inertial observer far away from the star. Gravitational waves

emitted by this mode will carry positive angular momentum (i.e. having the same sense as

the angular momentum of the fluid element) as measured in the distant inertial frame. Since,
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the total angular momentum is conserved, gravitational radiation carrying away positive

angular momentum from the mode, would make the retrograde mode go around more rapidly

in the opposite direction, leading to an instability.

Andersson in 1998 showed that a class of toroidal perturbations (the so called r-modes)

in a rotating star are generically unstable because of the gravitational wave driven CFS

instability 49. Close on heels, it was demonstrated that the r-mode instability would put

brakes on the rotation of a newly born and rapidly spinning neutron star 50,51. Consequently,

as the neutron star spins down, a substantial amount of its rotational energy is radiated

away as gravitational waves, making it a likely candidate for future detection by the laser

interferometric gravitational wave detectors, namely, the LIGOs 52,53. The CFS instability

may soon be put to experimental tests.

VII BLACK HOLES AND GRAVITATIONAL WAVES

In his book on black holes (BHs), Chandra called the astrophysical BHs the most perfect

macroscopic objects 54. Things macroscopic - like chairs, books, computers, etc. around

us, require an astronomically large number of characteristics each for their description. For

instance, just to specify a suger cube would need not only its mass, density, temperature, but

also amount and nature of trace compounds present, the manner in which sugar molecules

are stacked, porosity, surface granularities, etc . On the other hand, a BH is characterized

by just three physical quantities - its mass, charge and angular momentum.

Schwarzschild BHs do not possess charge or angular momentum, while Kerr BHs rotate

but have no charge. On the other hand, Reissner-Nordstrom BHs have charge but do not

rotate. Kerr-Newman BHs are theoretically the most general ones, as they possess non-zero

mass, charge and angular momentum. Astrophysical black holes are all likely to be Kerr BHs

since charge of a BH would get neutralized by the capture of oppositely charged particles

present in the cosmic rays and other ambient matter, and since most cosmic objects possess

angular momentum. Chandra was particularly fascinated by the stationary, axisymmetric

vacuum solutions of Einstein equations that described the Kerr BHs.

BHs are characterized by a fictitious spherical surface called the event horizon centred

around the point singularity created by the collapse of matter. Nothing can escape from

regions enclosed within the event horizon. For a Schwarzschild BH of mass M , the radius
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of the event horizon is given by the Schwarzschild radius,

Rs =
2GM

c2
= 3× 106

(

M

106 M⊙

)

km . (5)

But do BHs exist? Classical BHs by themselves do not radiate. Hawking radiation, which

is of quantum mechanical origin, from astrophysical BHs, is too miniscule in amount to be

of any observational significance 55. So, how does one find BHs in nature? In conventional

astronomy, their detection relies on the presence of gas or stars in their vicinity and the

ensuing stellar or dissipative gas dynamics around an accreting MCO. As discussed in section

V, if the MCO has an accretion disc around it like in galactic X-ray sources, quasars, blazars

or radio-galaxies, the swirling and inward spiralling gas gets heated up, emitting radio,

optical, UV and X-ray photons, often accompanied by large scale jets 56.

If gas can spiral down to a distance rmin = α Rs from the central BH, then according to

eqs. (4) and (5) the radiation luminosity is given by,

L =
0.5ǫ

α
ṁc2 . (6)

The real parameter α quantifies the proximity to the central BH. Eq.(6) tells us that accretion

taking place close to the event-horizon can convert an appreciable fraction of rest energy

mc2 of the inflowing gas. Higher the accretion rate ṁ, larger is the luminosity L. (Provided

that fluid viscosities in the disc are large enough, as discussed in section V.)

The central engine for a quasar or a blazar is, in all likelihood, an accreting supermassive

BH withM lying in the range 107- 109 M⊙
56. Invoking eq.(6) with sufficiently large accretion

rates for blazars, one can theoretically explain high luminosities (at times, exceeding 1048

erg/s) observed in these sources.

Quasars and blazars also exhibit fluctuating X-ray luminosities on time scales of only

few hours. One can derive an upper limit for the size of the central engine from causality

arguments. If the observed time scale over which the luminosity varies accreciably is ∆t,

the size of the source participating in emission of photons cannot be larger than c∆t. This

is because, firstly, every part of the entire region must be causally connected to each other

and, secondly, special relativity tells us that parts of the region can physically communicate

with each other (to remain in causal touch) only with speeds ≤ c. X-ray variability on time

scales of an hour corresponds to a causal size ≤ 109 km. Now, from eq.(5), a BH of mass

3×108 M⊙ has a Schwarzschild radius of about 109 km. Short time fluctuations and central

engines involving gas dynamics close to the event horizon of BHs, fit together neatly.

11



Observational evidence for accreting super-massive BHs comes not only from short time

variability of X-ray fluxes but also from the details of the continuum spectra (e.g. presence

of the big blue bump in quasar spectra) observed in these active sources. Hence, quasars,

blazars and powerful radio-galaxies are most probably distant galaxies housing acccreting

supermassive BHs with mass in excess of 106 M⊙ in their central regions 56.

Similarly, by monitoring stellar dynamics around the central region of Milky Way for

decades, one infers that the Galactic nucleus contains a heavy and compact object, most

likely to be a supermassive BH with a mass of about 4×106 M⊙, within a radius of 1013 km

from the Galactic Centre 57. It is interesting to note that the Chandra X-ray observatory

(launched on July 23, 1999, and named after S. Chandrasekhar) revealed the presence of a

X-ray source as well as hot gas with high pressure and strong magnetic field in the vicinity

of the Galactic Centre.

However, these are indirect detections, implying strictly speaking the presence of a very

compact, massive central object. Inference of an astrophysical BH, although very likely,

relies on theoretical interpretation. What happens when a BH is perturbed by incident

gravitational waves or electromagnetic radiation or Dirac waves describing electrons or neu-

trinos? Does a perturbed BH have a signature emission like a ‘ringing′, analogous to the

case of a struck bell? To answer such questions, Chandra devoted himself to studying BH

perturbations from 1970s onwards 54,60−67.

When a BH is perturbed, the curved space-time geometry around the BH will be subjected

to metric fluctuations. For sufficiently small perturbations, a linear analysis of the metric

fluctuations can be carried out in terms of normal modes except that dissipation due to

both emission of gravitational waves as well as their absorption by the BH make the mode

frequencies complex, with the decay reflected in the imaginary parts. In the case of a

perturbed BH, such quasi-normal modes (QNMs) correspond to a characteristic ringing

that eventually decays due to dissipation.

QNMs were discovered by Vishveshwara 58 and Press 59 while studying gravitational

wave perturbations of BHs. Chandra and Detweiler suggested for the first time numerical

methods for calculating the QNM frequencies 62 . Such investigations throw light on methods

for direct detection of BHs. For example, matter falling into a Schwarzschild BH would lead

to excitation of QNMs, resulting in emission of gravitational waves with a characteristic

frequency that is inversely proportional to the BH mass.
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One can understand this dependence from simple dimensional analysis. QNMs would in-

volve perturbations of the event horizon characterized by the Schwarzscild radius Rs (eq.(5)).

So, the oscillation wavelengths would be typically of a size proportional to Rs, making the

frequencies depend inversely on the BH mass. A supermassive BH with mass 106 M⊙ would

ring with a frequency of about 10−2 Hz. Because of seismic noise, LIGOs cannot detect

gravitational waves having such low frequencies. Only a space-based gravitational wave

detector like LISA (Laser Interferometer Space Antenna) can pick up such low frequency

signals from supermassive BHs 53,70.

Chandra developed innovative techniques to study BH perturbations, and showed that

radial and angular variables could be decoupled to obtain separable solutions for Dirac

equation in Kerr background, corresponding to a massive particle (like an electron) 62.

Using similar techniques, Don Page extended the separation of variables for massive Dirac

equation to the Kerr-Newman case 68. In 1973, Teukolsky had separated the Dirac equation

for two component massless neutrinos in the Kerr background 69. It will be interesting to

investigate if Chandra′s technique can succeed in separating the Dirac equation for massive

neutrinos (with flavour mixing and massive right-handed components included) in the Kerr

or Kerr-Newman background.

Kerr BHs possess ergosphere, a region surrounding the event-horizon where test particles

with negative angular momenta (i.e. with reverse sense of rotation relative to BH rotation)

can have negative energy (as measured by a distant inertial observer) orbits. Penrose, in

1969, had shown an ingenious way to extract rotation energy of a Kerr BH that involved

sending an object that breaks up into two in the ergosphere, with one of the parts going

into a negative energy trajectory, while the other escaping with an energy greater than the

initial energy (since energy is conserved) 71.

The wave analogue of Penrose process is superradiance wherein impinging scalar, elec-

tromagnetic or gravitational waves emerge out with greater energy after scattering off Kerr

BHs. Zel′dovich was the first to show the existence of superradiance in 1970 72. Chandra

and Detweiler undertook a thorough investigation of scattering of electromagnetic, gravita-

tional and neutrino waves in the Kerr background, and showed that neutrinos do not exhibit

superradiance 73. Absence of neutrino superradiance is most likely due to PEP 73−76.

Exact solutions of two plane gravitational waves colliding with each other were obtained

for the first time by Szekeres 77 as well as Khan and Penrose 78. Their work showed that due
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to mutual gravitational focusing, the collision leads to curvature singularity where gravity

becomes infinite. Chandra, along with Valeria Ferrari and Xanthopoulos, showed that the

mathematical theory of colliding gravitational waves can be cast in the form of mathematical

theory of BHs, and that the formation of curvature singularity due to gravitational focusing

is generic 79−82.

In the later years, Chandra and Valeria Ferrari studied non-radial oscillations of rotating

stars taking into account general relativistic effects 83−85. They showed that the oscillations

could be described in terms of pure metric perturbations, reducing the problem to scattering

of gravitational waves in curved space-time geometry. For strongly gravitating objects like

neutron stars, such gravitational waves may get trapped inside due to deep gravitational

potential well, leading to trapped modes that survive for long durations.

Chandra’s method of studying overwhelmingly diverse astrophysical topics involved ap-

plying physical theories that had been corroborated experimentally, and then subjecting the

relevant equations to rigorous and innovative mathematical analysis. No wonder that most

of the new results he obtained were later confirmed by observations.
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