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Abstract

Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant

classical electromagnetic zero-point radiation so as to account for the Casimir forces between paral-

lel conducting plates at low temperatures. However, this zero-point radiation also leads to classical

explanations for a number of phenomena which are usually regarded as requiring quantum physics.

Here we provide a cursory overview of the classical electromagnetic theory which includes classical

zero-point radiation, and we note the areas of agreement and disagreement between the classical

and quantum theories, both of which contain Planck’s constant ~.
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I. INTRODUCTION

Although classical physics provides satisfactory explanations for many phenomena in

mechanics and electromagnetism, there seems to be little interest in classical explanations

for phenomena which involve Planck’s constant ~. Thus although there are natural classical

explanations for the stable ground state of hydrogen, for the blackbody radiation spectrum,

for Casimir forces, for specific heats of solids, and for diamagnetism, these explanations are

not mentioned in the physics textbooks. The root cause for this neglect is the failure of

modern physicists to allow the possibility of classical electromagnetic zero-point radiation.

In this article we start out by discussing the experimentally observed Casimir forces where

measurements have become increasingly accurate in recent years. We note that these

experiments demand the presence of classical electromagnetic zero-point radiation if we

attempt to explain nature within classical electromagnetic theory. We then point out that

the presence of classical zero-point radiation has significant implications for thermal behavior

and atomic structure.

Some physicists will object that we already have perfectly good quantum explanations

for these phenomena so that classical explanations are superfluous. To these physicists

who like the quantum theory explanations, we would simply repeat the words of Sherlock

Holmes: ”I don’t mean to deny that the evidence is in some ways very strong in favour of

your theory; I only wish to point out that there are other theories possible.”[1]

The classical theory which includes classical electromagnetic zero-point radiation has in

the past been termed ”random electrodynamics”[2] or ”stochastic electrodynamics”[3] or

”classical electron theory with classical electromagnetic zero-point radiation.”[4][5] The

theory corresponds to the classical electron theory of H. A. Lorentz but with a change in

the boundary conditions to include classical electromagnetic zero-point radiation. In recent

years, the theory has had notable successes in the simulation work for the hydrogen atom by

Cole and Zou[6] and also in the relativistic work which provides an entirely new perspective

on blackbody radiation.[7]
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II. CASIMIR FORCES AND CLASSICAL ELECTROMAGNETIC ZERO-POINT

RADIATION

A. Casimir Forces

The need for classical electromagnetic zero-point radiation within a classical theory seems

most transparent when we try to explain the experimentally observed Casimir forces between

conducting parallel plates. Casimir forces are forces associated with the discrete normal

mode structure of waves in a finite volume.[8] Thus if we consider the thermal motion

of a one-dimensional string of length L which has fixed end points at x = 0 and x = L,

the random thermal motion can be expressed in terms of the oscillations of the normal

modes of the string with random phases between the modes. Thermal wave motion will

have a characteristic energy U(ωn) associated with each mode of (angular) frequency ωn =

2πnv/(2L), n = 1, 2, ... where v is the speed of the waves on the string. If we imagine the

string passing through a small hole in a partition located at some point x between the fixed

end points, 0 < x < L, then the small hole will enforce a node in the string’s oscillations,

and therefore the partition will experience forces due to the oscillations of the string on

the two different sides of the partition. In general the partition will experience a net force

because the normal modes on opposite sides of the partition are associated with different

lengths x and L − x. This net force is a Casimir force on the partition arising from the

differences in energies U(ωn) for different frequencies associated with the different lengths

x and L − x of the string. An analogous situation arises for any wave system where the

boundary conditions enforce a nodal structure.

For a conducting partition in a conducting-walled box, electromagnetic waves will lead to

Casimir forces. The possibility of Casimir forces between conductors was first proposed by H.

B. G. Casimir[9] in 1948 in connection with the normal modes for electromagnetic radiation

between conducting parallel plates. Any spectrum of random radiation will lead to forces on

a conducting partition in a conducting-walled box. One of the familiar spectra for random

electromagnetic radiation is the Rayleigh-Jeans spectrum where the energy URJ (ω, T ) per

normal mode at (angular) frequency ω and temperature T is independent of the frequency ω

and is given by URJ (ω, T ) = kBT . This spectrum leads to an attractive Casimir force FRJ

between conducting parallel plates of area A = L× L and separation d, where d << L; the
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force is proportional to the temperature T and to the plate area A = L × L, and inversely

proportional to the third power of the separation d between the plates[10]

FRJ = −

ζ(3)kBTA

4πd3
(1)

where ζ(3) is a numerical constant. According to this formula, the Casimir force should

vanish as the temperature T goes to zero. However, experimental measurements[11] show

clearly that the Casimir forces do not vanish at low temperature, but rather become in-

dependent of temperature. Within classical physics, the only natural explanation for the

experimentally measured Casimir forces between uncharged conducting plates at low tem-

perature is the existence of temperature-independent random radiation. This radiation has

been termed classical electromagnetic zero-point radiation.

B. Spectrum of Classical Electromagnetic Zero-Point Radiation

What is the natural spectrum for classical electromagnetic zero-point radiation? This

radiation should correspond to the state of lowest possible energy, the vacuum state. And

our qualitative notion is that the vacuum should be as featureless as possible; in an inertial

frame, it should be homogeneous, isotropic, scale invariant, and indeed Lorentz invariant.

It turns out that there is a unique spectrum (unique up to one multiplicative constant) of

random classical radiation which satisfies these requirements.[3][12] The spectrum has an

energy U0(ω) per normal mode given by

U0(ω) = const× ω/c (2)

where const is an unknown constant. We mentioned that any spectrum of random classical

radiation will lead to Casimir forces between conducting parallel plates. The force between

parallel conducting plates of area A = L × L separated by a small distance d, d << L, in

the presence of the classical electromagnetic zero-point spectrum of Eq. (2) is given by

F0 = const×
π2A

120d4
(3)

Indeed, it is found that this formula describes the experimental measurements provided that

const = 1.58× 10−26J ·m (4)
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Thus the experimentally observed Casimir forces at low temperature are accounted for by

the Lorentz-invariant spectrum of classical electromagnetic zero-point radiation given in Eq.

(2) provided that the constant takes the value in Eq. (4).

C. Planck’s Constant ~ and Classical Electromagnetic Zero-Point Radiation

The constant appearing in Eq. (4) was obtained from a purely classical analysis of the

Casimir forces between conducting parallel plates. No aspects of energy or action quanta

are involved. However, the numerical value of the constant as well as the spectrum of Eq.

(2) are familiar from a very different theory, namely from quantum theory. Thus we can

either continue to work with const = 1.58× 10−26J ·m or we can instead everywhere in the

classical analysis replace const by the familiar expression ~c/2

const = ~c/2 (5)

since both have the same numerical value.

Of course, there is a danger in introducing Planck’s constant. Planck’s constant ~ has

been associated with ”quantum phenomena” for so long that it is often referred to as ”a

quantum constant,” and some physicists believe that the mere presence of Planck’s constant

in a theory indicates that the theory is a ”quantum” theory. However, Planck’s constant

is simply a numerical value which in itself does not indicate the type of theory where it

appears. As a numerical value, Planck’s constant may appear in any theory. Indeed,

Planck’s constant h = 2π~ was first introduced in 1899 before there was any mention of

quantum theory.

In the present discussion based upon classical electromagnetic theory, Planck’s constant

~ is introduced simply as a numerical value setting the scale of classical electromagnetic

zero-point radiation. As we have emphasized above, we can avoid Planck’s constant alto-

gether simply by always writing the expressions in terms of the const appearing in Eq. (4)

or by writing out its numerical value. The zero-point radiation of Eq. (2) is regarded as

random classical radiation with a Lorentz-invariant spectrum which appears as a homoge-

neous solution of Maxwell’s equations. Thus the solutions of Maxwell’s equations in terms

of sources can be expressed as integrals over the sources using the retarded Green function

of the wave equation (thus providing the particular solution) plus zero-point radiation as
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the homogeneous solution of Maxwell’s equations.

Perhaps the reader can obtain a sense of what is involved in classical zero-point radiation

by envisioning the more familiar situation involving thermal radiation at nonzero tempera-

ture. Suppose that an experimenter sets up his electromagnetic sources in a laboratory full

of classical thermal radiation at temperature T > 0. Then in order to describe the electro-

magnetic fields in the lab, the experimenter would include both the fields due to the sources

which he has manipulated plus the fields due to the thermal radiation which were already

present and which the experimenter did not introduce intentionally. And as every experi-

menter knows, finite-temperature behavior will alter his sources. Thus the sources which

are introduced by the experimenter are influenced by the radiation which is already present

when the experimenter arrives in his lab. This radiation, which is already present when

the experimenter sets up his equipment, corresponds to the homogeneous boundary condi-

tion on Maxwell’s equations used by the experimenter. Zero-point radiation is analogous

to thermal radiation as radiation which is not introduced by the experimenter but which is

always present and which can influence the sources which are arranged by an experimenter.

III. IMPLICATIONS OF CLASSICAL ELECTROMAGNETIC ZERO-POINT RA-

DIATION

A. Linear Systems

1. Linear Oscillator

Because classical electromagnetic zero-point radiation must be present in any classical

electromagnetic theory which accounts for the experimentally observed Casimir forces be-

tween conductors, we also expect zero-point radiation to influence every classical electro-

magnetic system. For example, if we picture a particle of charge e and mass m at the end of

a spring oscillating along the x-axis so that the system has a natural mechanical oscillation

frequency ω0, then we expect that the system will both be damped as the oscillating charge

emits radiation and be pushed into motion by the random zero-point radiation. Thus in

the nonrelativistic point-dipole approximation, we expect the system to satisfy the equation
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of motion

m
d2x

dt2
= −mω2

0
x+

2

3

e2

c3
d3x

dt3
+ eEx(0, t) (6)

where the mass times the acceleration equals the spring restoring force plus the radiation

damping force plus the zero-point radiation driving force. This is a linear stochastic equation

which can easily be solved. For a small electric charge e, the charge actually cancels out of

the expressions for the average values. The average position and momentum of the system

are both zero, but the mean square of the displacement < x2 > and mean square of the

momentum < p2 >=< (mv)2 > are given by[4][13]

< x2 >=
const/c

mω0

=
1

2

~

mω0

(7)

and

< p2 >=
const

c
×mω0 =

1

2
~mω0 (8)

while the average energy is given by

U =
const

c
× ω0 = (1/2)~ω0 (9)

We have included the expressions involving const so as to remind the reader that these

expression arise from the balance between the driving force from classical zero-point radi-

ation and the damping from the radiation reaction force. However, it is clear that these

expressions are identical with those which appear in the quantum mechanics of the harmonic

oscillator. It turns out that the average values of all of the products of oscillator position

and momentum given by the classical calculations are identical with the expectation values

of the symmetrized operator products of the corresponding quantum oscillator.[13]

2. Physical Systems Described by Linear Oscillators

There are a number of physical systems which are traditionally described in terms of

molecules modeled as harmonic oscillators. These include the van der Waals forces between

molecules and also the van der Waals forces between molecules and conducting or dielectric

walls.[14] The specific heats of solids involve molecules which are often described by har-

monic oscillators.[15] Finally, the diamagnetism of molecules can be described in terms of

the behavior of linear oscillator systems.[16] Because of the general connection[13] between
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the average values of products of classical oscillator position and momentum with the sym-

metrized operator products of the corresponding quantum variables, all of these phenomena

have natural classical descriptions within classical electromagnetic theory which includes

classical electromagnetic zero-point radiation.

3. Disagreement for Nonrelativistic Nonlinear Non-Coulomb Systems

One needs to be circumspect about the areas of agreement and disagreement between

classical and quantum theories. Despite the very close agreement for linear systems between

quantum theory and classical theory with classical zero-point radiation, the theories part

company for nonrelativistic nonlinear non-Coulomb systems. Thus rotator specific heats

are quite different within quantum theory and classical theory with classical zero-point

radiation.[17] Furthermore, classical nonlinear oscillator systems scatter random radiation

toward the Rayleigh-Jeans spectrum[18] whereas quantum systems do not.

B. The Classical Hydrogen Atom

One hundred years ago, Rutherford[19] published his work proposing the nuclear model

of the atom. Instead of the plum-pudding model for the atom, consisting of a continuous

”jelly” of positive charge with embedded negative point electrons, the atom rather followed

a ”planetary” model, consisting of a small, heavy, positive nucleus with electrons outside.

However, it was realized at the time that electrons in Coulomb orbit around the heavy

nucleus would radiate energy as electromagnetic radiation, and so it was thought that they

would spiral into the nucleus as they lost energy. At the time of Rutherford’s experiments,

physicists were not aware of the idea of classical electromagnetic zero-point radiation. The

presence of this random zero-point radiation, which we now know is required to exist in

a classical theory so as to account for Casimir forces, changes the perspective on the old

problem of atomic collapse. The presence of classical electromagnetic zero-point radiation

raises the possibility that atomic structure is due to a balance between the loss of energy

as electrons radiate and the pick-up of energy as electrons experience the random forces of

the zero-point radiation. This basic model is the same as that used above in Eq. (6) when

discussing linear oscillator systems. The nonrelativistic model for hydrogen corresponds to
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the equation

m
d2r

dt2
= −

e2r̂

r2
+

2

3

e2

c3
d3r

dt3
+ eE(0, t) (10)

where the mass times acceleration equals the Coulomb force attracting the electron to the

nucleus plus the radiation damping force plus the random force due to the zero-point radi-

ation.

In contrast to Eq. (6) for a linear system which was easy to solve analytically, the

stochastic differential equation (10) for the hydrogen atom has never been solved analytically.

However, the ground state has been solved by numerical simulation. In 2003, Cole and

Zou[6] followed the motion of an electron described by equation (10) and found that the

electron did not plunge into the nucleus or go far from the nucleus; indeed, the probability

distribution for the electron’s distance from the nucleus agreed closely with the familiar

result given by the Schroedinger ground state. There are no free parameters in Cole and

Zou’s calculation; the values for the electron mass, charge, and scale of zero-point radiation

are all fixed by other experiments. The work is a striking suggestion of the power of a

classical theory in describing some parts of atomic physics.

There is also a revealing controversy associated with the calculation of the hydrogen atom

ground state. Cole and Zou’s calculation provides a numerical probability distribution for

the hydrogen ground state and suggests that the classical hydrogen atom with zero-point

radiation is stable over the time. On the other hand, Marshall and Claverie[20] in 1980

set up the same nonrelativistic calculation in terms of action-angle variables. They never

computed any ground state distribution, but rather it was concluded that there could be no

stable ground state for the classical hydrogen atom in classical electromagnetic zero-point

radiation. The zero-point radiation was viewed as ”too strong,” so that the electrons in

Coulomb orbit around the nucleus were ionized through the plunging orbits of small angular

momentum. Thus the work beginning with Marshall and Claverie’s analysis suggested the

opposite situation from that of the old problem of atomic collapse in classical theory.

However, there is a failure in Marshall and Claverie’s calculation as applied to nature.

Plunging elliptical orbits of small angular momentum do not exist in nature! This situation

often comes as a shock to physicists who are familiar with the nonrelativistic classical me-

chanics of Coulomb and Kepler orbits. Relativity changes the orbits of mechanical motion

most severely for orbits of small angular momentum.[21] Within the relativistic mechanics

of a point mass held in a Coulomb or Kepler orbit by a force F = − e2r̂/r2, any orbit which
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has small angular momentum, L < e2/c, must plunge into the nucleus while conserving

energy and angular momentum! It should be emphasized that this last sentence involves

pure relativistic mechanics, not electromagnetism, and there is no energy loss or gain due

to radiation emission or absorption.[21]

Thus we find that the calculations of Marshall and Claverie are modified by relativity

at precisely the point where they suggest that the electron is ejected from the atom. We

conclude that Cole and Zou’s numerical simulations have indeed found the nonrelativistic

approximation to the ground state of the classical hydrogen atom in classical electromagnetic

zero-point radiation.[22]

C. Blackbody Radiation and Relativity

The beginning of the twentieth century saw the introduction of quantum ideas in con-

nection with the problem of blackbody radiation. Indeed today, those textbooks which still

introduce quanta from a historical[23] rather than an axiomatic[24] perspective still discuss

the classical physics of radiation normal modes and energy equipartition within nonrela-

tivistic statistical mechanics.[23] The blackbody radiation problem troubled physicists all

though the first quarter of the century. In addition to the now-famous quantum calculations,

there were attempts to derive the equilibrium spectrum of thermal radiation from classical

scattering calculations[18] and from equilibrium classical particle motion.[25] However, the

physicist in the first quarter of the twentieth century were unaware of two important as-

pects of classical physics: classical electromagnetic zero-point radiation and the importance

of relativity.

The mere presence of classical electromagnetic zero-point radiation alters our ideas of

classical statistical mechanics. Indeed a number of derivations of the Planck spectrum for

blackbody radiation have been given within classical physics based upon the presence of

classical electromagnetic zero-point radiation, some using as their starting point precisely

the earlier calculations which (in the absence of classical zero-point radiation) led to the

Rayleigh-Jeans spectrum.[26] However, all of those calculations left a nagging doubt because

of the scattering calculations using nonrelativistic charged mechanical systems; all of these

calculations show that nonrelativistic nonlinear scattering systems push classical radiation

toward the Rayleigh-Jeans spectrum.[18]
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The importance of relativity appeared above in validating the work of Cole and Zhou

against the conclusion of Claverie and Marshall. The importance of relativity also appears

in understanding the spectrum of blackbody radiation. Only in 2010 was it pointed out that

a relativistic scattering system will not scatter classical electromagnetic zero-point radiation

toward the Rayleigh-Jeans spectrum.[27] This result is absolutely crucial. All of the

calculations leading to the Rayleigh-Jeans spectrum for classical thermal radiation involve

mixtures of nonrelativistic physics and relativistic electromagnetic radiation.[18] None of the

calculations leading to the Rayleigh-Jeans law holds up as a fully relativistic calculation.[28]

Indeed most recently, it has been shown that the Planck spectrum for thermal radiation

follows from the presence of classical zero-point radiation and the structure of relativistic

spacetime within classical physics.[7] Zero-point radiation is the unique spectrum of random

classical radiation which is Lorentz invariant and scale invariant. Zero-point radiation is

required in the classical theory so as to account for the experimentally observed Casimir

forces. Now classical electromagnetism is invariant under not only relativistic transforma-

tions but also conformal transformations which include dilatations and proper conformal

transformations.[29] In an inertial frame, classical thermal radiation is carried into ther-

mal radiation at a different temperature by a time-dilating conformal transformation, while

the spectrum of classical zero-point radiation is invariant under time-dilating conformal

transformations and indeed under all conformal transformations. However, if we consider

thermal radiation not just in an inertial frame but in a general non-inertial, static coordinate

frame, then time-dilating conformal transformations carry zero-point radiation into thermal

radiation at finite non-zero-temperature. We can use this connection between zero-point

radiation and thermal radiation in a coordinate frame undergoing uniform relativistic ac-

celeration through flat spacetime (a Rindler frame[30]) to give a derivation of the Planck

spectrum in an inertial frame by taking the zero-acceleration limit.[7] The Planck spectrum

is connected directly with zero-point radiation and relativity in classical physics.

D. Speculations Regarding Wave-Like Aspects of Particles and Line Spectra

Although classical physics can give satisfying classical explanations for some phenomena

involving Planck’s constant ~, there are at present no calculations which give a definite

explanation for the experimentally observed diffraction effects for particles passing through
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small slits. Clearly classical electromagnetic zero-point radiation interacts with any con-

ducting or dielectric surface, and this interaction changes the correlation function for the

electromagnetic fields compared to free space. Also, qualitatively, the motion of charged

particles near slits will be influenced by the correlation function for the classical electro-

magnetic zero-point radiation near the slits. Perhaps one day we will be able to calculate

this influence within a classical theory. In any case, it is obvious that if the number of

slits is changed, then the correlation function for zero-point radiation will change, and hence

the pattern of particles passing through the slits will change. Indeed, the influence of sur-

faces which change the correlation functions for zero-point radiation is well-understood for

charged harmonic oscillator systems at rest outside plane surfaces where the changes in the

correlation function lead to van der Waals forces.[14]

Furthermore, there is at present no definitive explanation for the experimentally observed

line spectra. Within classical physics, we expect line spectra to correspond to some sort of

resonance behavior. In the hydrogen atom, a highly excited electron radiates away more

energy than it picks up from the zero-point radiation, and indeed the spectra of hydrogen do

indeed approach the traditional spectral frequencies calculated in the absence of zero-point

radiation. This is the idea which is involved in the correspondence principle. However, when

the electron is excited but near the ground state in energy, it seems hard to calculated the

radiation emitted by the electron as it loses energy by radiation emission and absorbs energy

from the classical electromagnetic zero-point radiation. Cole and Zou have pointed out that

the Coulomb potential holds fascinating nonlinear resonances for electrons in a circularly

polarized electromagnetic driving wave.[31] However, there is at present no explanation

within classical phyisics for the line spectra of atoms.

IV. DISCUSSION

In this article, we have pointed out that any attempt at a classical explanation of nature

must included classical electromagnetic zero-point radiation to account for the experimen-

tally observed Casimir forces between conducting parallel plates. The spectrum of classical

zero-point radiation can be determined up to one multiplicative constant by symmetry re-

quirements, such as Lorentz invariance or scale invariance or conformal invariance. The scale

of the classical zero-point radiation is determined by fitting Casimir-force experiments. The
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numerical value obtained for the scale of zero-point radiation is familiarly given in terms

of the number appearing in Planck’s constant ~. Thus within classical theory, Planck’s

constant ~ enters the theory as a number setting the scale of the homogeneous solution of

Maxwell’s equations corresponding to classical electromagnetic zero-point radiation.

Once classical electromagnetic zero-point radiation is introduced into the classical theory,

there are implications for van der Waals forces, specific heats, diamagnetism, atomic struc-

ture, and blackbody radiation. In some cases, the classical calculations are in agreement

with quantum theoretical calculations, and in some cases they are not. For mechanical

systems described in terms of free fields or linear oscillator systems, there is agreement be-

tween the classical and quantum average values. For nonrelativistic nonlinear non-Coulomb

systems, there is disagreement between the classical and the quantum calculations. For the

ground state of hydrogen, there is fascinating agreement between classical numerical simu-

lation calculations and the Schroedinger ground state. Also, classical physics gives a simple

and powerful explanation for the blackbody radiation spectrum in terms of zero-point radi-

ation and relativistic theory.

Planck’s constant ~ is a number which can appear in classical or quantum theories. The

constant ~ appears in all theories which include zero-point radiation or zero-point energy.

Within quantum theory, Planck’s constant is related to commutators of operators which

then lead to zero-point energy for quantized mechanical systems and zero-point radiation

for quantized fields. Within classical electron theory with classical electromagnetic zero-

point radiation (stochastic electrodynamics), Planck’s constant appears as a scale factor

for classical zero-point radiation, and Planck’s constant then reappears in all systems with

electromagnetic interactions. Thus Planck’s constant ~ is introduced at very different points

in quantum as compared to classical theory. What should we say about the limit ~ → 0

which is often called ”the classical limit”? The limit ~ → 0 turns the quantum theory

of noncommuting operators into a classical theory with commuting variables, but any idea

of zero-point energy or zero-point radiation has disappeared along with quantum operator

behavior. On the other hand, the limit ~ → 0 removes the zero-point energy from any

classical theory, and therefore this limit turns the classical electron theory with classical

electromagnetic zero-point radiation into the classical electron theory of H. A. Lorentz[32]

which was used in the years around 1900. Clearly the more recent classical electron theory

which includes classical zero-point radiation with a scale set by ~ can explain far more of
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nature than is possible with the older classical electron theory where zero-point radiation is

omitted and ~ is regarded as zero.
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