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Relativistic Reduced–Mass and Recoil Corrections to Vacuum Polarization

in Muonic Hydrogen, Muonic Deuterium and Muonic Helium Ions

U. D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri, MO65409, USA

The reduced-mass dependence of relativistic and radiative effects in simple muonic bound sys-
tems is investigated. The spin-dependent nuclear recoil correction of order (Zα)4 µ3/m2

N is evaluated
for muonic hydrogen and deuterium, and muonic helium ions (µ is the reduced mass and mN is
the nuclear mass). Relativistic corrections to vacuum polarization of order α(Zα)4µ are calculated,
with a full account of the reduced-mass dependence. The results shift theoretical predictions. The
radiative-recoil correction to vacuum polarization of order α(Zα)5 ln2(Zα)µ2/mN is obtained in
leading logarithmic approximation. The results emphasize the need for a unified treatment of rel-
ativistic corrections to vacuum polarization in muonic hydrogen, muonic deuterium and muonic
helium ions, where the mass ratio of the orbiting particle to the nuclear mass is larger than the
fine-structure constant.

PACS numbers: 12.20.Ds, 36.10.Ee, 14.20.Dh, 31.30.jf, 31.30.jr

I. INTRODUCTION

In muonic hydrogen and muonic deuterium, the mass
ratio ξN = mµ/mN of the orbiting particle (muon mass
mµ) to the mass of the atomic nucleus mN is not really
small against unity. It evaluates to

ξp =
mµ

mp
= 0.112609 . . . ≈ 1

9 , (1a)

ξd =
mµ

md
= 0.0563327 . . .≈ 1

18 , (1b)

where the latest recommended values of the masses have
been used [1]. For muonic helium ions, we have

ξHe3 =
mµ

mHe3
= 0.0376223 . . .≈ 1

26 , (1c)

ξHe4 =
mµ

mHe4
= 0.0283465 . . .≈ 1

35 . (1d)

In all cases, ξN is larger than the fine-structure constant
α ≈ 1/137.036 that governs the relativistic and quan-
tum electrodynamic (QED) effects. Consequently, the
reduced-mass dependence of all quantum electrodynamic
(QED) effects that influence the spectrum must be taken
into account exactly, i.e., to all orders. In calculations,
one must first take into account ξN (if possible) to all
orders, before advancing to the next order in the Zα-
expansion; otherwise the higher-order effects in Zα will
be shadowed by the unknown reduced-mass dependence
of lower-order terms in the Zα-expansion.
Hence, particular emphasis has been laid in Ref. [2] on

the correct treatment of the reduced-mass dependence of
all relativistic and QED corrections. The statement made
in the text preceding Eq. (17) in Ref. [2], which says “the
external field approximation does not give an accurate re-
sult,” can hardly be overemphasized. Here, the external
field approximation refers to the Dirac equation, which is
appropriate for heavy muonic atoms where the parameter
Zα (with Z denoting the nuclear charge number) is much
larger than the mass ratiomµ/mN , wheremN is the mass

of the heavy nucleus. Even a tiny conceivable error in the
handling of, say, the reduced-mass dependence of the one-
loop vacuum polarization (VP) shift in muonic hydrogen
could drastically influence the comparison of theory and
experiment: the current discrepancy [3] of theory and ex-
periment for the muonic hydrogen Lamb shift amounts to
roughly 0.3meV, which is about one part per thousand
of the leading vacuum-polarization contribution and thus
smaller than a conceivable additional reduced-mass cor-
rection to the leading VP effect of relative order ξ3N .
In comparison to previous studies on heavy muonic

atoms and ions (excellent theoretical overviews are pro-
vided in Refs. [4, 5]), the magnitude of the mass ratio
is the main characteristic property of muonic hydrogen
and deuterium. In this article, we thus revisit the pre-
cise treatment of the vacuum-polarization contribution
to the Lamb shift in muonic hydrogen (µH) and muonic
deuterium (µD), as well as muonic helium ions (µHe3 and
µHe4), with full account of the two-body structure of the
bound system. Starting from the nonrelativistic Hamilto-
nian (Sec. II), we proceed to discuss the nuclear-spin de-
pendent terms in the Breit Hamiltonian (Sec. III), before
proceeding to the radiatively corrected Breit Hamiltonian
(Sec. IV) and the radiative-recoil correction (Sec. V).
Conclusions are drawn in Sec. VI.

II. NONRELATIVISTIC HAMILTONIAN

The nonrelativistic µH Hamiltonian is separable, and
the nonrelativistic (Schrödinger) Hamiltonian in the
center-of-mass system, where the muon and the nuclear
particle carry opposite momenta ~p and −~p, respectively,
reads (in natural units, ~ = c = ǫ0 = 1),

H =
~p 2

2mµ
+

~p 2

2mN
−Zα

r
=
~p 2

2µ
−Zα

r
, µ =

mµ

1 + ξN
. (2)

This equation can be solved exactly in terms of
Schrödinger eigenstates. The nonrelativistic spinor wave
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functions for the 2S1/2 and 2P1/2 states are exact eigen-
states of H and read, explicitly,

ψ2S(~r) =
(Zαµ)3/2

2
√
2

(2 − Zαµr)e−
1

2
Zαµr χM

−1(r̂) , (3)

ψ2P1/2
(~r) =

(Zαµ)5/2 r

2
√
6

e−
1

2
Zαµr χM

+1(r̂) , (4)

where M = ± 1
2 is the magnetic projection, χM

κ
(r̂) is the

standard two-component spin-angular function [6], and
κ = (−1)j+ℓ+1/2 is the Dirac angular quantum number.
The reduced-mass dependence of the wave functions in
Eq. (3) is exact.
The one-loop vacuum-polarization potential Vvp can

be expressed in terms of the action of a linear operator
K on a screened Coulomb potential vvp as follows,

Vvp(r) = K[vvp(me ρ; r)] , vvp(λ; r) = −Zα
r

e−λ r , (5)

with

K[f(ρ)] =
2α

3π

∞
∫

2

dρ
2 + ρ2

ρ3

√

1− 4

ρ2
f(ρ), (6)

where me is the electron mass. In the following, we often
use the identification λ = me ρ and define the ratio

βN =
me

(Zαµ)
, (7)

which evaluates to βp = 0.7373836 . . . for µH and βd =
0.7000861 . . . for µD (proton and deuteron nuclei, respec-
tively). For muonic helium ions, the values are βHe3 =
0.3438429 . . . and βHe4 = 0.3407691 . . . . (We here refrain
from assigning a subscript to the reduced mass µ, even
though it of course depends on the nucleus N , because
the symbol µN is reserved, canonically, for the nuclear
magnetic moment.) We then use the exact nonrelativis-
tic unperturbed wave functions defined in Eq. (3) and
calculate the leading VP energy shifts as

〈2S1/2|Vvp|2S1/2〉 = −(Zα)2 µK

[

2β2
Nρ

2 + 1

4 (βN ρ+ 1)4

]

(8a)

and

〈2P1/2|Vvp|2P1/2〉 = −(Zα)2 µK

[

1

4 (1 + βN ρ)
4

]

.

(8b)
A numerical evaluation of these compact expressions
is found to be in agreement with the literature (see
Refs. [2, 3, 7, 8]) and confirms that the reduced-mass de-
pendence of the leading VP effect is correctly described
by Schrödinger wave functions scaled with the reduced
mass of the system. It is even possible [9, 10] to carry

out the integration over the spectral parameter ρ analyt-
ically, with the result

〈2P1/2|Vvp|2P1/2〉 − 〈2S1/2|Vvp|2S1/2〉

=
α

π
(Zα)2 µ

[

8πβ3
N

3
+

1− 26β2
N + 352β4

N − 768β6
N

18 (1− 4 β2
N )2

+
4β4

N

(

15− 80β2
N + 128β4

N

)

3 (1− 4 β2
N)5/2

ln

(

1−
√

1− 4β2
N

2βN

)]

(9)

for the Lamb shift difference of the leading VP en-
ergy correction. For reference, the 2P1/2–2S1/2 differ-
ence of the leading nonrelativistic vacuum polarization
effect is 205.0073meV for µH, 227.6346meV for µD,
1641.885meV for µHe3, and 1665.772meV for µHe4.
The latter value differs by 0.010meV from the value of
1665.782meV given in Eq. (10) of Ref. [11]; the differ-
ence probably is due to updated physical constants used
in our calculation (see also Ref. [1]).

III. BREIT HAMILTONIAN AND

BARKER–GLOVER TERMS

The Breit Equation and the corresponding Hamilto-
nian follow from the Bethe–Salpeter equation in the limit
on an instantaneous interaction kernel [12] and describe
the bound states of general two-body systems of arbitrary
mass ratio ξN , including higher-order relativistic correc-
tions [13]. For the 2P1/2–2S1/2 Lamb shift in muonic
bound systems, the relevant terms in the Breit Hamilto-
nian read (δI = 1 for half-integer and δI = 0 for integer
nuclear spin, see [14])

δH =
4
∑

j=1

δHj , δH1 = − ~p 4

8m3
µ

− ~p 4

8m3
N

,

δH2 =

(

1

m2
µ

+
δI
m2

N

)

πZα δ3(r)

2
,

δH3 = − Zα

2mµmNr

(

~p 2 +
1

r2
rirjpipj

)

,

δH4 =
Zα

r3

(

1

4m2
µ

+
1

2mµmN

)

~σ · ~L . (10)

where we use the summation convention for the super-
scripts i and j which denote the Cartesian components
of the position and momentum operators. Using the re-
lations

~∇2

(

1

r

)

= −4π δ3(r) (11)

and

∇i∇j

(

xi xj

r3

)

= +4π δ3(r), (12)
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one may transform δH3 to a more symmetric form,

δH3 = − Zα

2mµmN
pi
(

1

r
+
ri rj

r3

)

pj . (13)

After some algebra, the expectation values of the eigen-
states given in Eq. (3) of the Breit Hamiltonian read

〈

2S1/2 |δH | 2S1/2

〉

= − (Zα)4µ
5 + ξN (11 + 13 ξN)

128 (1 + ξN )2

+ δI
(Zα)4 µ ξ2N
16 (1 + ξN )2

, (14a)

〈

2P1/2 |δH | 2P1/2

〉

= − (Zα4)µ
15 + ξN (33 + 7 ξN)

384 (1 + ξN )2
,

(14b)

and the 2P1/2–2S1/2 difference (2P1/2 is energetically
higher) amounts to

L(2P1/2−2S1/2) =
(Zα)4µξ2N
48 (1 + ξN )2

(4− 3 δI)

=



















(Zα)4µ3

48m2
N

(δI = 1) ,

(Zα)4µ3

12m2
N

(δI = 0) .

(15)

The Barker-Glover [15] correction L given in Eq. (15)
evaluates to 0.05747meV for µH and to 0.12654meV for
µHe3, in full agreement with the literature [Eq. (46) of
Ref. [2]]. Because the zitterbewegung term is absent for
the spin-1 deuteron nucleus [14] and for the spin-zero al-
pha particle, the shift evaluates to L = 0.06722meV for
µD and to L = 0.29518meV for µHe4 [cf. Eq. (61) of
Ref. [11] and Eq. (10) of Ref. [16]]. It constitutes a nu-
clear spin-dependent recoil correction to the Lamb shift,
which is essential for the correct description of the muonic
isotope shift. Equation (15) is exact to all orders in ξN .

IV. RADIATIVELY CORRECTED BREIT

HAMILTONIAN

The massive Breit interaction uses a strictly static
timelike photon propagator component

G00(~q) = − 1

~q2 + λ2
(16)

and spatial components

Gij(~q) = − 1

~q2 + λ2

[

δij − qi qj

~q2 + λ2

]

. (17)

The spatial components are no longer transverse. One
then follows the standard derivation of the Breit interac-
tion given in Chap. 83 of Ref. [18] but has to avoid pit-
falls. The derivation necessitates the evaluation of Fourier

TABLE I. Detailed breakdown of the first-order and second-
order individual contributions δE

(1)
i and δE

(2)
j to the rela-

tivistic Breit correction δEvp of vacuum polarization for µH,
µD, and muonic helium ions. All units are meV.

µH µD µHe3 µHe4

2P1/2 [meV]

δE
(1)
1 −0.000558 −0.000679 −0.020331 −0.020970

δE
(1)
2 0.000064 0.000038 0.000467 0.000360

δE
(1)
3 −0.000290 −0.000181 −0.004587 −0.003584

δE
(1)
4 −0.002026 −0.002303 −0.085970 −0.087587

δE(1)
−0.002811 −0.003125 −0.110421 −0.111781

δE
(2)
1 −0.001124 −0.001545 −0.099980 −0.105132

δE
(2)
2 0.0 0.0 0.0 0.0

δE
(2)
3 −0.000269 −0.000177 −0.008427 −0.006624

δE
(2)
4 −0.001283 −0.001521 −0.093497 −0.095762

δE(2)
−0.002676 −0.003243 −0.201904 −0.207518

δEvp −0.005486 −0.006368 −0.312324 −0.319300

2S1/2 [meV]

δE
(1)
1 0.029112 0.034636 0.846700 0.872150

δE
(1)
2 −0.001928 −0.001142 −0.014512 −0.011243

δE
(1)
3 −0.002280 −0.001416 −0.032734 −0.025535

δE
(1)
4 0.0 0.0 0.0 0.0

δE(1) 0.024904 0.032078 0.799454 0.835372

δE
(2)
1 −0.084996 −0.108282 −2.875794 −2.995690

δE
(2)
2 0.044911 0.053594 1.361115 1.402803

δE
(2)
3 −0.009064 −0.005539 −0.106444 −0.082889

δE
(2)
4 0.0 0.0 0.0 0.0

δE(2)
−0.049149 −0.060227 −1.621122 −1.675776

δEvp −0.024245 −0.028149 −0.821668 −0.840404

2P1/2–2S1/2 [meV] and comparison to other work

∆Evp (this work) 0.018759 0.021781 0.509344 0.521104

(Ref. [17]) 0.0169
(Ref. [11]) −0.202
(Ref. [16])a 0.0169 0.0214 0.495 0.508

a A conceptually different approach is used in Ref. [16].

transforms, the most interesting of which is related to the
interaction [cf. Eq. (83.13) of [18] and Sec. 2 of Ref. [19]],

U(~p, ~q, λ) = − 4πZα

mµmN

[

~p2

~q2 + λ2
− (~p · ~q)2

(~q2 + λ2)2

+
λ2~q2

4(~q2 + λ2)2
− λ2~q · ~p

(~q2 + λ2)2

]

. (18)

For λ = 0, the Fourier transform of this expression with
respect to ~q gives the term δH3 in Eq. (10). For a massive
photon, we find

∫

d3q

(2π)3
U(~p, ~q, λ)ei~q·~r = δv2(r) + δv3(r), (19)
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where δv2(r) and δv3(r) contribute to the Breit potential
δvvp for massive photon exchange,

δvvp = K[δv1 + δv2 + δv3 + δv4] , (20)

where δv1(r) depends on the nuclear spin,

δv1 =
Zα

8

(

1

m2
µ

+
δI
m2

N

) (

4πδ3(r) − λ2

r
e−λr

)

, (21)

and the momentum operators act on the ket state in

δv2 = − Zαλ2e−λr

4mµmNr

(

1− λ r

2
+ 2i~r · ~p

)

, (22a)

δv3 = − Zα e−λr

2mµmNr

(

~p2 +
1 + λ r

r2
rirjpipj

)

, (22b)

whereas the spin-orbit coupling is modified to

δv4 = Zα

(

1

4m2
µ

+
1

2mµmN

)

e−λr (1 + λr)

r3
~σ · ~L . (23)

In the terms δv2 and δv3, all the momentum operators
act on the “incoming” wave function (Dirac ket state),
and the Hamiltonian may be used for the evaluation of
diagonal matrix elements. For off-diagonal elements, it is
helpful to symmetrize δv2 and δv3 with respect to outgo-
ing and incoming momenta, effectively replacing terms
of the form f(~r) i~r · ~p by the commutator i [f(~r)~r, ~p]
and terms of the form f ij(~r) pi pj by the anticommuta-
tor 1

2 {f ij(~r), pi pj}. In a second step, using the relation
1
2 {A2, B} = ABA + 1

2 [A, [A,B]], one obtains an even
more symmetric form, with

δw1 = δv1 , δw4 = δv4 , (24a)

δw2 = − Zαλ2e−λr

4mµmNr

(

1− λ r

2

)

, (24b)

δw3 = − Zα e−λr

4mµmN
pi
(

δij

r
+

1 + λ r

r3
rirj

)

pj , (24c)

δvvp = K[δw1 + δw2 + δw3 + δw4] . (24d)

The terms δw2 and δw3 are used in Eq. (21) of Ref. [2].
The α(Zα)4 µ relativistic reduced-mass correction to vac-
uum polarization then is the sum of four first-order per-

turbations δE
(1)
i and four second-order terms δE

(2)
j ,

δEvp = δE(1) + δE(2) =

4
∑

i=1

δE
(1)
i +

4
∑

j=1

δE
(2)
j , (25a)

δE
(1)
i = K [〈nℓj |δwi|nℓj〉] , (25b)

δE
(2)
j = 2K

[〈

nℓj |δHj | δψnℓj

〉]

, (25c)

where |δψnℓj 〉 is the wave function correction due to VP,

|δψnℓj 〉 =
(

1

Enℓ −H

)

′

vvp |nℓj〉 . (26)

Using a generalization of techniques outlined in Ref. [20],
the perturbation δψnℓj can be evaluated analytically. The
detailed expressions for the reduced Green functions (in-
dicated by a prime) of the 2S1/2 and 2P1/2 states have
been given in Eqs. (23) and (24) of Ref. [2]. All individual
contributions are listed in Table I, in order to facilitate
a numerical comparison with independent calculations.
For µH, we obtain a result of ∆Evp = δEvp(2P1/2) −
δEvp(2S1/2) = 0.018759meV. This result is not in per-
fect agreement with published values [2, 16, 17]. For
comparison, the result indicated in Eq. (25) of Ref. [2]
reads 0.059meV; and in Eq. (25) of Ref. [17] a result of
0.0169meV has been indicated. In Table 1 on page 8 of
Ref. [16], a numerically equivalent result of 0.0169meV
is given. (We note that Ref. [16] contains many unnum-
bered tables; the referenced table is numbered). The ma-
trix elements of the relativistic recoil operator given in
Eq. (7) of Ref. [16] are evaluated using unperturbed wave
functions. All values given in Table I are nonperturbative
in the mass ratio and take the wave function correction
into account. A precise comparison of individual contri-
butions to the approach of Ref. [16] is not possible at
present. As evident from Table I, there are quite signifi-
cant differences with published values for µHe4: e.g., the
entries in Eqs. (26)–(29) and Eq. (41) of Ref. [11] add up
to a correction of −0.202meV for the 2P1/2–2S1/2 Lamb

shift in µHe4, whereas we obtain +0.521meV.

A very important question concerns the verifiability
of the results. In self-energy calculations [21], a cross-
check of the calculation consists in the cancellation of an
overlapping parameter that separates different momen-
tum and energy regions of the physical process. For VP
effects in muonic systems, no such checks are immedi-
ately available. Here, we note that the entries for the
first-order matrix elements in Table I for µHe4 are in
full agreement with the results given in Eqs. (26)–(29)
of Ref. [11]. For the matrix elements needed for δE(1),
the limit as λ→ 0 of the matrix elements 〈nℓj |δwi|nℓj〉
can be verified independently, and the calculation can
otherwise be performed analytically, with ease. For the
matrix elements needed in the evaluation of the second-
order effects δE(2), we can verify the first few terms in
the asymptotic limit as λ→ 0, using the relation

2

〈

nℓj

∣

∣

∣

∣

∣

δH

(

1

E −H

)

′

vvp

∣

∣

∣

∣

∣

nℓj

〉

(27)

= 2

〈

nℓj

∣

∣

∣

∣

∣

δH

(

1

E −H

)

′

(Zα)
∂

∂(Zα)

∣

∣

∣

∣

∣

nℓj

〉

−
〈

nℓj

∣

∣

∣

∣

∣

δH

(

1

E −H

)

′

Zα r

∣

∣

∣

∣

∣

nℓj

〉

λ2 +O(λ3) .

In deriving this relation, the Hellmann–Feynman theo-
rem is useful for the zeroth-order term in λ. The wave
function perturbation in the term of order λ2 can be eval-
uated analytically.
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FIG. 1. Feynman diagrams for the radiative-recoil correction
in two-body muonic bound systems. The three given diagrams
correspond to the vacuum-polarization insertion in the seag-
ull and two-photon exchange and lead to the leading double
logarithm given in Eq. (29).

V. RECOIL CORRECTIONS TO VACUUM

POLARIZATION

Beyond the radiative modifications of the static Breit
Hamiltonian, the recoil correction to vacuum polarization
can be obtained by the insertion of vacuum polarization
loops into the Salpeter recoil correction [22–24]. The re-
coil correction is the sum of four terms [24]; two of these
(low- and middle-energy part) describe the frequency-
dependent part of the Breit interaction, beyond the static
Breit Hamiltonian given in Eq. (10), and two further
terms (seagull and high-energy part) correspond to two-
photon exchange.
The seagull term corresponding to Fig. 1 (left), with

a vacuum polarization insertion in the exchange photon,
leads to the integral

δES = − e4

2mµmN
K

[
∫

d3k1
(2π)3

d3k2
(2π)3

1

ω1k2

1

ω1 + k2
(28)

(

δij − ki1 k
j
1

ω2
1

) (

δij − ki2 k
j
2

k22

)]

〈

nℓj|ei (
~k1+~k2)·~r|nℓj

〉

,

where ω1 =

√

~k21 + λ2 is the frequency of the massive

photon in the vacuum-polarization loop. An ultraviolet
cutoff Λ is introduced via multiplication of the integrand

by a multiplicative regularization factor Λ2

~k2

1
+Λ2

Λ2

~k2

2
+Λ2

.

The auxiliary parameter Λ cancels when the high-energy
part from two-photon exchange [see Figs. 1, middle,
and Fig. 1, right] is added to the result (see also Ref. [24]).
From the integral (28), we extract a leading double log-
arithmic correction,

δES = −4α(Zα)5µ3 δℓ0
3π2mµmN n3

ln2
(

4Zαβ2
N

)

, (29)

which is nonvanishing only for S states (ℓ = 0). This
correction evaluates to 0.0003meV for the 2P1/2–2S1/2

Lamb shift in µH, 0.0002meV for µD, 0.0072meV for
µHe3, and 0.0056meV for µHe4. Because subleading log-
arithmic terms, and nonlogarithmic terms are missing,
the theoretical uncertainty of the results in Eq. (29)
should be taken as 100% of the leading logarithmic cor-
rection calculated here.

VI. CONCLUSIONS

Our theoretical investigations are motivated by the ne-
cessity to shed light on the recently observed discrepancy
of theory and experiment in µH (see Ref. [3]. By an ex-
plicit evaluation of the matrix elements of the two-body
Breit Hamiltonian, we obtain the nuclear-spin dependent
recoil contributions to the Lamb shift in µH and µD given
in Eq. (15), and confirm that the results are exact in
the mass ratio, so that the existence of further recoil
corrections [15] can be ruled out at order (Zα)4. The
calculation of the relativistic reduced-mass corrections
to vacuum polarization using the massive Breit Hamil-
tonian is shown to involve a nontrivial nuclear-spin de-
pendent term [see Eq. (21)]. Our detailed numerical in-
vestigation (see Table I) slightly decreases the observed
experimental-theoretical discrepancy [3] (in contrast to
a recent investigation [25], where the authors obtain an
increase of the discrepancy, based on a treatment which
is perturbative in the mass ratio).

A detailed breakdown of the relativistic corrections to
vacuum polarization, including the reduced-mass correc-
tions is given in Table I for muonic hydrogen, muonic
deuterium and muonic helium ions. For muonic hydro-
gen, the sum of the entries in rows 3 and 19 of the theory
in the supplemental material of Ref. [3], minus the entry
in row 1 of the same supplemental material, amounts to
(205.0282− 0.0041− 205.0074)meV = 0.0167meV; this
is close to the result indicated in Table 1 of Ref. [16],
which is 0.0169meV. In Refs. [3, 7, 16], the second entry
in the mentioned combination (−0.0041meV) has been
referred to as a “recoil correction to vacuum polariza-
tion”, whereas we here refer to the effect as a relativistic
correction to vacuum polarization with a proper account
of the reduced-mass dependence. Our approach is non-
perturbative in the mass ratio ξN and isolates the terms
of order α (Zα)4, while treating the two-body aspects of
the problem to all orders.
Our calculations lead to significant shifts of theoretical

predictions for µHe4 with respect to published values (ex-
periments are planned for the near future). Specifically,
for µHe4, our nuclear-spin dependent Barker-Glover type
correction L of 0.295meV differs from the value of
0.074meV given in Refs. [11, 16] by +0.221meV. For
µHe4, our result for the relativistic correction to vacuum
polarization, with a full account of the reduced-mass de-
pendence, reads as 0.521meV for the 2P–2S difference,
to be compared with a value of −0.202meV given in
Ref. [11]. This leads to a total upward shift of theoret-
ical predictions for the 2P1/2–2S1/2 Lamb shift in µHe4

by [0.521− (−0.202)+ 0.221− 0.010]meV = +0.934meV
relative to Ref. [11] (where we add the small correction of
the reference value of the leading VP correction) and by
(+0.221 + 0.013)meV = 0.234meV relative to Ref. [16]
(where we add the difference in the relativistic correction
to vacuum polarization from Table I).

The radiative-recoil correction obtained in Eq. (29) is
numerically small; however, this two-loop bound-state
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correction has traditionally been one of the most elu-
sive effects in bound-state quantum electrodynamics for
two-body systems. Its calculation in leading logarithmic
approximation helps to determine the overall uncertainty
of theoretical predictions with regard to the conceptually
involved higher-order recoil corrections to VP, given by

the two-body nature of the bound system.

ACKNOWLEDGMENTS

Support by NSF and NIST (Precision Measurement
Grant), and helpful conversations with K. Pachucki are
gratefully acknowledged. The author thanks B. J. Wundt
for carefully reading the manuscript.

[1] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod.
Phys. 80, 633 (2008).

[2] K. Pachucki, Phys. Rev. A 53, 2092 (1996).
[3] R. Pohl et al., Nature (London) 466, 213 (2010).
[4] S. J. Brodsky and P. J. Mohr, in Structure and Colli-

sions of Ions and Atoms, edited by I. A. Sellin (Springer,
Berlin, 1978), pp. 3–67.

[5] E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67
(1982).

[6] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Electron Atoms (Springer, Berlin, 1957).
[7] E. Borie, Phys. Rev. A 71, 032508 (2005).
[8] E. Borie, Phys. Rev. A 72, 052511 (2005).
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