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Abstract

The extreme eigenvalues of adjacency matrices are important indica-
tors on the influences of topological structures to collective dynamical
behavior of complex networks. Recent findings on the ensemble average-
ability of the extreme eigenvalue further authenticate its sensibility in the
study of network dynamics. Here we determine the ensemble average of
the extreme eigenvalue and characterize the deviation across the ensemble
through the discrete form of random scale-free network. Remarkably, the
analytical approximation derived from the discrete form shows significant
improvement over the previous results. This has also led us to the same
conclusion as [Phys. Rev. Lett. 98, 248701 (2007)] that deviation in the
reduced extreme eigenvalues vanishes as the network size grows. In addi-
tion, we found that the extreme eigenvalue of individual network can be
better represented by the ensemble average when the networks are sparse.
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Many concepts in network science have been well recognized as fundamental
tools for exploring the dynamics of complex systems. In particular, scale-free
networks are used widely to describe and model social, biological and economic
systems [1, 2, 3, 4, 5]. In an ensemble of scale-free networks, although the de-
gree distribution of the nodes remains the same, the topological structure of
each individual network can be diverse with different connections introduced
between the nodes. Such structural diversity can lead to discrepancy in dy-
namics of the individual network. Since the structural influences on certain
dynamical processes are governed by the extreme eigenvalues of the network
adjacency matrices [6, 7, 8, 9, 10, 11, 12, 13], deviations in the extreme eigen-
values in network ensembles are of increasing interest. Recently, it is found that
the extreme eigenvalues of adjacency matrices, despite fluctuate widely in an
ensemble of scale-free networks, are well characterized by the ensemble average
after normalized by functions of the maximum degrees [14]. Specifically, it has
been proven that the probability of having greatly deviated extreme eigenvalues
in the ensemble diminishes as the size of the network increases. Considering the
rich assortment of possible structural configurations for scale-free networks in an
ensemble, this averageability is significant as it implies that dynamical processes
which are governed by the extreme eigenvalues can be described simply using
the ensemble average without the need of incorporating the connection details
of the individual network. In particular, the average of network synchronization
ability and epidemic spreading threshold are shown to be well approximated by
functions of the ensemble average of the eigenvalues. Therefore, finding a way
to determine the ensemble average of the extreme eigenvalues becomes crucial
to uncover the topological influences of the network structure on a number of
network dynamical processes.

To the best of our knowledge, the extreme eigenvalue of adjacency matrix
of random, undirected scale-free network has been analytically approximated

up to the second order correction as λ2
H ≈ kH + k

(1)
H − 1 which gives better

precision over the previous result λ2
H ≈ kH [15, 16, 17, 18]. Note that kH is the

largest degree of the network and k
(1)
H denotes the average degree of the first

nearest neighbors of node H . The probability distribution of the largest degree
Pd(kH) is given by the Fréchet distribution and the ensemble average of kH
can be calculated from Pd(kH). This approximation provides, however, limited
precision to 〈λH〉. The second order correction, on the other hand, introduce
another fluctuation on λH which depends on the local connection of the largest

degree node. In addition, 〈k(1)H 〉 will need to be solved before a second order
correction can be obtained for 〈λH〉.

In this paper, we investigate the extreme eigenvalue of the scale-free network
through its discrete form, the multimodal network. Note that unlike the network
studied in [19, 20], we consider only scale-free networks which are uncorrelated
and undirected. Benefited from the mathematical properties of multimodal net-
work that are more tractable, we found a way to analytically determine the en-
semble average of the extreme eigenvalues while investigating the circumstances
under which individual network can be better represented by the ensemble av-
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erage. In addition, for bimodal networks which are shown to be more robust
than the scale-free networks against both random and target removal of nodes
[21, 22], we study the difference between them and scale-free networks in terms
of the extreme eigenvalue and its ensemble averageability.

A multimodal network [23] with m modes contains m distinct peaks in the
degree distribution: P (k) =

∑m

i=1 riδ(k−ki). Note that δ(x) is the Dirac’s delta
function, ri = r1a

−(i−1) and ki = k1b
−(i−1) for i = 1, 2, · · · ,m. It is assumed

that a > 1 and 0 < b < 1 such that the degree distribution of the multimodal
network follows a power law P (ki) = ri ∝ k−β

i , and hence r1 > r2 > · · · > rm
for k1 < k2 < · · · < km. As m → ∞, the multimodal network converges to
a scale-free network. For a given network’s size N with average degree 〈k〉,
km =

√

〈k〉N . By further fixing the value of the smallest possible degree k1

between 1 and 〈k〉, and thus b = (k1/km)
1

m−1 , the rest of the parameters can be
determined through the following equations:

m
∑

i=1

ri = r1

m
∑

i=1

a−(i−1) = 1 , (1)

m
∑

i=1

kiri = k1r1

m
∑

i=1

(ab)−(i−1) = 〈k〉 . (2)

We shall follow the method outlined in [15] to find λH of the multimodal
network. Let A be the adjacency matrix of a network, then (An)ji will be the
number of walks of length n from node j to node i, denoted by yj→i(n). In the
eigen-decomposition form, we have An = vDnv′, where v is the square matrix
whose columns are the eigenvectors of A, v′ denotes the inverse of v and D is
the diagonal matrix whose diagonal elements are the corresponding eigenvalues,
i.e. Dll = λl. Hence,

yj→i(n) = (An)ji =
∑

l

λn
l vj,l v

′
l,i . (3)

Note that Eq.(3) gives a summation over the nth power of the eigenvalues. When
n is sufficiently large, the nth power of λH will be much larger than the nth
power of the rest of the eigenvalues. Therefore, yj→i(n) can be approximated
in terms of only the maximum eigenvalue λH as

yj→i(n) ≈ λn
Hvj,Hv′H,i . (4)

Now if we consider the number of walks of length n+2 which start and terminate
at node H,

yH→H(n+ 2) = yH→H(n) yH→H(2) +
∑

j 6=H

yH→j(n)yj→H(2) , (5)

then according to Eq. (4),

λ2
H ≈ yH→H(2) +

∑

j 6=H

yH→j(n) yj→H(2)

yH→H(n)
. (6)
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The first term on the right hand side of Eq. (6) corresponds to the number of
the nearest neighbors of node H , i.e. the largest degree of the network kH . In
[15], the second term on the right hand side of Eq. (6) is shown numerically
to be very small for scale-free networks and is hence neglected. Since we are
interested in finding a better approximation to the ensemble average of the
maximum eigenvalues, we shall include the second term on the right hand side
of Eq. (6) in the calculation of λH through a statistical approach. To start from
node H , the possible number of walk of length n is

W = kH k
(1)
H k

(2)
H · · · k(n−1)

H , (7)

where k
(i)
H is the average degree of the ith nearest neighbors from node H . Since

out of the N〈k〉 total number of in-links and out-links, kj are directing into node

j, hence, the probability of these walks to end up at node j is
kj

N〈k〉 . Indeed,

we have verified from numerically generated networks that
yH→j(n)
yH(n) → kj

N〈k〉 for

large N (see Fig. 1). Therefore,

yH→j(n) = kH k
(1)
H k

(2)
H · · · k(n−1)

H

kj
N〈k〉 , (8)

yH→H(n) = kH k
(1)
H k

(2)
H · · · k(n−1)

H

kH
N〈k〉 , (9)

and

yj→H(2) = kj k
(1)
j

kH
N〈k〉 . (10)

For multimodal scale-free network, there is a finite number, m of distinct
degrees ki, each with probability ri. Thus,

λ2
H ≈ km +

m
∑

i=1

Rik
2
i

k
(1)
i

〈k〉 , (11)

where

Ri =

{

ri for 1 < i < m− 1 ,
ri − 1/N for i = m.

(12)

Equation (11) implies that λH depends on the specific way the nodes within
the network are connected, which can deviate broadly across the ensemble.
For an ensemble with fixed k1 and km =

√

〈k〉N , the degree distribution of
multimodal networks vary with different values of 〈k〉. Specifically, they are
more heavy-tailed for large 〈k〉 and less heavy-tailed for small 〈k〉. When the
network size is large, 〈k〉 has to be small for a fixed value of km, and this results

in a smaller variation in the distribution of k
(1)
i in the multimodal network

ensemble. Hence, the values of λH in an ensemble of multimodal networks
deviate less as the networks become more sparse. In an ensemble of sparse
networks, the individual network can thus be well represented by the ensemble
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average. We approximate the ensemble average of multimodal networks as

〈λH〉 =

√

√

√

√km +
m
∑

i=1

Rik2i . (13)

In order to determine the ensemble averages of scale-free networks, we find
〈λH〉 in the limit of large m. Here, we set k1 = 〈k〉/2 so that the multimodal
networks converge to scale-free networks generated from the Barabási-Albert
(BA) model as m increases. As shown in Fig. 2, 〈λH〉 is the highest for the
bimodal network and it decreases gradually as the number of modes increases
until it finally converges to the ensemble average of the BA networks. This
indicates that the ensemble averages of the extreme eigenvalues of scale-free
networks can be determined through their discrete form by letting m large.
In Figs. 3, we show the dependence of 〈λH〉 on 〈k〉 and N . By having m =
30, we compare the ensemble averages given by Eq. (13) and those given by
〈λH〉 =

√

〈kH〉 with numerical results averaged over 50 realizations of the BA

networks. It is assumed that 〈kH〉 = 〈k〉
√
N/2 [2] for the BA networks. As

shown in Fig. 3, our results give values of λH that are closer to the numerical
results compared to approximation from the previous results especially when
the network is sparse.

In [14], the smallest degrees are fixed while the largest degrees are allowed
to fluctuate in the network ensemble. For multimodal networks, the ensembles
have however fixed value of km but varying values of k1. The choice of different
values of k1 can lead to deviation in λH . Specifically, k1 = 1 gives the extreme
eigenvalue that is the largest, and λH decreases as k1 increases (see Fig. 4). In
other words, the deviation in λH can become larger in ensembles with different
k1. Furthermore, as shown in Fig. 5(a), the discrepancy between the largest
and smallest extreme eigenvalues, ∆λH = λH(k1 = 1) − λH(k1 = 5) increases
as N grows. The extreme eigenvalues in ensembles of multimodal networks
with erratic k1 are thus not ensemble averageable. Nonetheless, if we normalize
the extreme eigenvalue with the largest degree, the reduced extreme eigenvalue
λ̂H = λH/km is ensemble averageable. In Fig. 5(b), for multimodal networks
with 〈k〉 = 6, we show the dependence of the deviations of the normalized

extreme eigenvalues, ∆λ̂H on the network size. It decreases as N increases for
both m = 2 and 30. Compare to multimodal networks with m = 30, bimodal
networks show larger extreme eigenvalues with greater deviations. Hence, for
a bimodal network, although the tolerance against both random and targeted
removal of node is optimal, epidemic spreading is less controllable.

In conclusion, the ensemble averages of the extreme eigenvalues of scale-free
networks can be determined more precisely through the multimodal networks
with a large number of modes. Previous approximations give much lower values
on ensemble average of the extreme eigenvalues, and this can cause an over-
estimation of epidemic threshold. When dealing with network dynamics such as
the epidemic spreading of the community-acquired meticilin-resistant Staphy-
lococcus aureus (CA-MRSA) superbugs that are resistant to many antibiotics
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[24], over-estimating the epidemic threshold can lead to serious consequences.
In view of this, the analytical solution derived from the multimodal network
which is able to provide significantly closer approximation to the ensemble av-
erage of extreme eigenvalue of scale-free network is important. In addition, we
found that this approximation of ensemble average can characterize the indi-
vidual network more appropriately when the networks are sparse. For dense
network, one will have to expect a higher value for the ensemble average from
that given by Eq. (13).
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Figure 1: Convergence of
yH→j(n)
yH(n) to

kj

N〈k〉 for large N. Analytical results are

shown in lines while numerical results are shown as stars, circles and triangles.
Note that 〈k〉 = 6 and n = 100.
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Figure 2: Dependence of the ensemble average of the extreme eigenvalues, 〈λH〉
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analytical results and numerical results averaged over 50 realizations of network
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Figure 3: Dependence of 〈λH〉 on (a) 〈k〉 and (b) N for ensembles of scale-free
networks with k1 = 〈k〉/2. Note that N = 3 × 103 for (a) and 〈k〉 = 6 for (b).
〈λH〉 =

√
kH are shown in solid curves, analytical results from Eq. (13) are

shown in dashed curves and numerical results of the BA model averaged over
50 realizations of network are shown as squares.
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