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Abstract 

Factorization of the incompressible Stokes operator linking pressure and velocity is revisited.  

The main purpose is to use the inverse of the Stokes operator with a large time step as a 

preconditioner for Newton and Arnoldi iterations applied to computation of steady three-

dimensional flows and to study of their stability. It is shown that the Stokes operator can be 

inversed within an acceptable computational effort. This inverse includes fast direct inverses of 

several Helmholtz operators and iterative inverse of the pressure matrix. It is shown, 

additionally, that fast direct solvers can be attractive for the inverse of the Helmholtz and 

Laplace operators on fine grids and at large Reynolds numbers, as well as for other problems 

where convergence of iterative methods slows down. Implementation of the Stokes operator 

inverse to time-stepping-based formulation of the Newton and Arnoldi iterations is discussed. 
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1. Introduction 

Motivation of this study is two-fold. First, it is connected with fully three-dimensional time-

dependent CFD modelling at very large Reynolds numbers, where all the known iterative 

methods slow down or fail. Here we argue that for calculation on fine grids and at large 

Reynolds numbers the eigenvalue decomposition based direct solver [1] becomes more efficient 

than iterative solvers. In particular, since computational requirements of the direct solver do not 

depend on the time step and Reynolds number, all the time steps are completed within the same 

CPU time, which is an attractive feature by itself. 

Second, we are interested in application of time-stepping algorithms to steady state Newton 

solvers and Arnoldi eigensolvers preconditioned by an inverse Stokes operator [2] below. To 

become an effective preconditioner the Stokes operator must be evaluated with a large time step. 

The latter becomes especially difficult when three-dimensional flows are studied on fine grids 

making most of traditional iterative methods to disconverge. In particular, we are interested in 

coupled incompressible pressure-velocity solvers, which are more computationally demanding 

than segregated ones, but possess important advantages: more stable time integration, correct 

calculation of pressure at each time step, and a possibility to proceed without pressure boundary 

conditions. Applied as preconditioners to Newton and Arnoldi solvers the coupled methods are 

expected to perform well if the Stokes operator with a large time step can be efficiently inversed. 

Considering 2D stability problems one can apply a direct sparse solver to inverse the 2D Stokes 

operator [4], however this becomes too memory demanding for fine three-dimensional grids. A 

similar approach with the same restrictions in 3D cases was implemented in [5] for explicitly 

calculated Jacobian matrices. At the same time, our recent pressure-velocity coupled multigrid 

solver [6], which performs well at small time steps fails to converge at large steps needed for 3D 

stability studies [4]. Based on the above experience, in this paper we recall the well-known 

factorization of the Stokes operator, which we use for computation of its inverse applying fast 

direct methods where possible. Using the finite volume method, we arrive to an analog of the 

Uzawa scheme [7], in which only one matrix, called "pressure matrix" has to be inversed 

iteratively. We show that the latter inverse can perform faster up if preconditioned by the inverse 

of pressure Laplacian, which is computed by a fast direct method. As a result, we arrive to a 

time-stepping method, which may be too CPU-time consuming for a straight-forward time-
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integration, but yields the inverse of the Stokes operator with a large time step, for which we are 

seeking.  

We start the description of our approach from the factorization of the Stokes operator and the 

corresponding matrix resulting from the finite volume discretization. We show that the 

factorization can be obtained in different ways that all lead to equivalent results. Then we discuss 

the connection of our factorization with Chorin's projection, Uzawa and related methods. We 

argue that in the general case the approximations of the gradient and divergence operators are not 

the same which makes our pressure matrix not necessarily symmetric and positive semi definite, 

contrary to what is usually assumed for the Uzawa matrix. We discuss also how spatial 

discretization of the Stokes operator should be done to exclude pressure boundary conditions 

from a coupled pressure-velocity formulation.  

The largest part of the direct Stokes operator inverse reduces to inverses of the Helmholtz 

operators. To do these inverses independently on the time step we apply the already mentioned 

factorization of Lynch et al. [1]. This method is based on the eigenvalue decomposition of one-

dimensional operators from which the discretized operator is restored via tensor, or Kronecker, 

products. During many years, this method was used for higher order spectral and pseudo-spectral 

methods (see, e.g., [7]-[10]), but, seemingly, is very rarely applied to lower-order finite 

differences, finite volumes or finite elements methods [11]-[13]. We apply the eigenvalue 

decomposition in all directions, or treat one of the directions by the Thomas algorithm, which 

retains the solution direct but reduces the overall computational work. In case of a uniform grid 

the eigenvalue decomposition can be replaced by fast Fourier transform, and the Thomas 

algorithm must be replaced by cyclic reduction, which is realized in the well-known FISHPACK 

package [14]. We, however, consider application of uniform grids as an exceptional case, and 

seek a solution applicable for any non-uniform structured grid. 

As a preliminary step, we examine computational performance of the above direct solver 

when implemented in a pressure-velocity segregated time-integration solver. We consider a 

series of well-known natural convection benchmarks with the purpose of comparing its 

performance of the direct solvers with that of an iterative method. We have chosen the 

BiCGstab(2) iteration as a representative example of modern Krylov-subspace-based iteration 

methods. Our test calculations show that the direct methods perform better than BiCGstab(2) on 

fine grids and for problems with large Reynolds or Grashof numbers. Since performance of the 
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direct methods is independent on problem governing parameters and the time step size, we argue 

that they can be attractive for fluid flow computational modeling at large Reynolds numbers with 

a high spatial resolution.  

The above test calculations allow us, in particular, to estimate computational cost of inverse 

of the Helmholtz operators needed for the inverse of the Stokes operator. The remaining step, 

which is done iteratively, is the inverse of the pressure matrix. We observe that this matrix is 

close to the pressure Laplacian and find that the inversed pressure Laplacian can be a good 

preconditioner. The inverse of the pressure Laplacian is also done by the fast direct method. The 

preconditioned BiCGstab(2) iteration converges in 2-3 iterations for small time steps and within 

6-8 iterations for large ones, which we consider as an acceptable performance. 

Finally, we perform a test calculation for the time-stepping based Newton steady solver and 

Arnoldi eigensolver. These computations show that the present approach removes the memory 

restrictions of the technique proposed in [5], however remains too slow on a scalar computer. In 

contrast to computations of [5] the present approach is scalable and can be speeded up using 

massively parallel calculations.  
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2. Symbolic factorization of the Stokes operator 

 

Consider numerical semi-implicit time integration of the incompressible Navier-Stokes 

equations where linear pressure and velocity terms are treated implicitly and all the other terms – 

explicitly. Independently on a spatial discretization this leads to a system of linear algebraic 

equations with the Stokes operator that links velocity and pressure. For simplicity we start from a 

consideration of the two-dimensional case, where u and   are x- and y- velocity components and 

p is the pressure. The system of equations discretized in time, but with remaining spatial 

differential operators can be written as 

[
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   –   
 

  
   

 
 

] [

 

 

 

]  [

  

  

 

]     (1) 

Here    and    are the first derivatives in the x- and y- directions and          are 

Helmholtz operators.   is the Laplacian operator, I is the identity operator and t is the time step. 

The lower indices show on which variable an operator acts. The right hand sides contain the non-

linear terms and all other terms that are treated explicitly. The left hand side 3×3 operator matrix 

assembles the 2D Stokes operator. 

 For any spatial discretization, we can associate the vector of unknowns in Eq. (1) with a 

vector assembled from all scalar unknowns of the problem, and the operators of the left hand 

sides as matrices containing a discretization of the corresponding operator. By assigning the 

lower indices, we also take into account a possibility of different discretization of different terms, 

which takes place, e.g., on staggered grids. Therefore, in all further considerations      , 
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 Treating the Stokes operator as a 3×3 matrix, we derive its LU decomposition. Assigning 

identity operators to the main diagonal of either L or U we arrive to the following expressions: 

[

   –  
 

   –   
 

  
   

 
 

]  [

   

   

  
   

    
   

   

] [

   –  
 

   –   
 

   

]   (2) 

[

   –  
 

   –   
 

  
   

 
 

]  [

    
    

  
   

 
 
] [

  –  
    

 

  –  
    

 

   

]    (3)  



6 
 

where 
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Another possibility is to apply the Sherman-Morrison-Woodbury (SMW) formula. Denoting 

the Stokes operator as S we define 
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],  (5) 

and according to the SMW formula 

    (     )                     (         )  (6) 

Simple evaluations yield 
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]     (7) 

 

and the matrix C is defined by Eq. (4). Other factorization methods, e.g., Schur complement 

equation [15]-[17], lead to an equivalent formulation. The matrix C is an analog of the Schur 

complement matrix (or Uzawa matrix), which arises in the well-known Uzawa method [7],[17]. 

Our matrix C, however, is different since we took into account that velocity divergence and 

pressure gradient operators on staggered grids act on variables defined at different nodes and also 

result at different nodes. Therefore, these operators cannot be connected via the transpose 

operation. Additionally, computation of the divergence in the whole flow region involves 

velocity boundary values, while computation of the pressure gradient does not use pressure 

boundary values. Contrarily to the Uzawa matrix, which is symmetric and positive semi 

defined [17], the matrix C is not necessarily symmetric and its positive definition should be 

examined for each scheme separately. 

It is well known that the Uzawa method usually is not applied directly, but is used as a 

starting point for definition of various segregated pressure-velocity solvers [7],[17]. We, 

however, are interested in the implementation of the Stokes operator factorization directly. As 

mentioned, the equations (2) – (7) define three equivalent ways to derive the solution of Eqs. (1). 

The solution is obtained in three steps: 

1. Solve  ̂    
      and   ̂    

      for  ̂ and  ̂.   
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2. Solve       (  
  ̂    

  ̂)  for  . 

3. Solve    ̂    
    

    and     ̂    
    

 
 . 

Thus, calculation of the solution of a 2D problem (1) requires four inverses of the Helmholtz 

operator and one inverse of the matrix C. Since the matrix C defines solution for the pressure, we 

call it "pressure matrix".  Extension to a three-dimensional case is straight-forward. The system 

of equations is defined as  
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and the LU decomposition of the Stokes operator becomes, e.g.,  
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, (8) 
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As in the 2D case the solution is calculated in the similar three steps 

1. Solve  ̂    
    ,   ̂    

      and  ̂    
      for  ̂  ̂ and  ̂.   

2. Solve       (  
  ̂    

  ̂    
  ̂)  for  . 

3. Solve    ̂    
    

        ̂    
    

 
 , and     ̂    

    
  . 

Calculation of a 3D solution requires 6 inverses of the Helmholtz operator and one inverse of the 

pressure matrix C. Note, that if to assume very small time step t, and at the steps 2 and 3, as 

well as in Eqs. (4) and (9) apply       , then operator C turns into the Laplacian of pressure, 

and step 3 can be interpreted as a projection of intermediate solution ( ̂  ̂  ̂) on the divergence-

free space. Thus, we arrive to the standard Chorin’s projection method. 

For the fully coupled implementation of the steps 1-3, one needs inverse of the Helmholtz 

operators and of the pressure matrix C. The inverse of the Helmholtz operators is usually a part 

of a pressure-velocity segregated code. Since at small time steps, the Helmholtz operator is close 

to the identity operator, its iterative inverse typically does not involve any numerical difficulties. 
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As it was mentioned above, in some applications involving Newton and Arnoldi iterations for 

computation of steady solutions and analysis of their stability, the inverse Stokes operator with a 

large time step is used as a preconditioner [1],[3]. In these cases an iterative inverse of the 

Helmholtz operators can be problematic. In such cases, the direct methods discussed in the next 

Section can be called for. 

The main difficulty in the implementation of the proposed Stokes operator inverse is 

computation of the inversed pressure matrix C. It is easy to see that this matrix is singular, which 

is a usual consequence of the pressure defined up to an additive constant. As we already 

mentioned, at small time steps this matrix is close to approximation of the pressure Laplacian, 

thus causing well known problems when it is inverted. Apparently, a Dirichlet point should be 

added to make the matrix regular. The pressure boundary conditions, however, can be avoided if 

calculation of the pressure gradient in step 3 does not involve pressure boundary values. The 

simplest example of that is the use of staggered grids, as was proposed by Patankar and 

Spalding [18], and was implemented, e.g., in our earlier studies [5],[6]. In general, to make 

pressure boundary conditions unnecessary the low-order numerical scheme must: (i) close the 

system of the momentum equation by the continuity equation (       in the non-boundary 

points) and not by a pressure or pressure correction equation that always requires boundary 

conditions; and (ii) approximation of the pressure gradient in the momentum equations should 

not involve pressure boundary values.  

Since computation of the whole matrix C can be CPU-time and memory consuming, the 

most natural way of its inverse is implementation of one of the Krylov subspace iteration 

methods, which requires only calculation of multiplication of the matrix by a vector (the action 

of a matrix). The latter can be done by using Eqs. (4) or (9) at the cost of two and three 

Helmholtz operator inverses for 2D and 3D problems, respectively. Our numerical experiments, 

(see below for a detailed description) showed that inverse of C on the 100
2
 stretched grid by the 

BICGstab(2) method requires 80-100 iterations. At small time steps, the Helmholtz operators in 

Eqs. (4) and (9) tend to the identity operator, so that the whole matrix C tends to the 

approximation of the Laplacian of pressure.  Thus, at small time steps the number of iterations 

can be significantly decreased by use of the inverse pressure Laplacian matrix as a 

preconditioner. The latter makes the resulting matrix close to the unity, so that the BICGstab(2) 

method converges in less than 2-4 iterations for a dimensionless time step of 0.01, and in 6-8 
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iterations if the time step is increased to the value of 1. The verification of the above three step 

algorithms against some known benchmark results is straight-forward and is not reported here. It 

is emphasized that evaluation of the action of matrix C requires two or three inverses of the 

Helmholtz operators in 2D and 3D cases, respectively. Therefore it is a CPU-time consuming 

operation, so that time integration is affordable only if C can be inversed in very few iterations. 

It is clear at this stage that implementation of the above algorithm to the Stokes operator 

inverse for time-dependent computations will be much more computationally demanding than 

most pressure-velocity segregated techniques. A comparison with the latter, if meaningful at all, 

is beyond the scope of the present paper. It should be emphasized however, that if direct methods 

are applied to the inverse of the Helmholtz operators (see below), then the inverse of the pressure 

matrix C remains the only iterative part of the algorithm. We call it semi-direct inverse of the 

Stokes operator.  

A weak dependence of the proposed Stokes operator inverse on the time step allows one to 

perform calculations with large time steps, which we consider as a prerequisite to applications of 

methodology of [1],[3] to calculate developed steady three-dimensional flows and to study their 

stability. In the following, we describe this approach using the present notations. Assuming U as 

a vector containing all the unknown values of pressure and velocity, a steady solution of the 

discretized Navier-Stokes equation is defined by 

 ( )      ( )           (10) 

where L stays for the linear operators, N for the non-linear terms and f for all the additional 

volume forces. The Newton iteration for equations (10) is defined as  

  ( 
( ))    ( ( ))         (11) 

 (   )   ( )            (12) 

Here    is the Jacobian matrix of (10) and u is the correction calculated as a solution of the 

linear equation system (11). Apparently the stable steady state of (10) can be calculated via a 

time-integration process 

       

  
        (  )          (13) 

Taking into account that L−I/t=−S, where S is the Stokes operator defined in Eq. (1), Eq. (13), 

this can be rewritten as 

             (  )         (14) 
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Similarly, considering the linearized time step 

       

  
          

        (15) 

we arrive to the relation 

               
          (16) 

Rewriting Eq. (11) in an equivalent form 

      ( 
( ))        ( ( ))       (17) 

We observe that the r.h.s of Eq. (17) can be calculated as a difference between two consecutive 

time steps (14), while action of the l.h.s. matrix       ( 
( )) on an arbitrary vector    is 

defined as a difference between two consecutive linearized time steps (16). The latter allows one 

to apply the Krylov-subspace-based iteration methods to calculate the Newton correction u. 

 For a steady state U, the linear stability problem is reduced to the generalized eigenvalue 

problem  

  ( )  [    ( )]       ,      (18) 

where  is the eigenvalue,   is the eigenvector, and B is the diagonal matrix whose diagonal 

values are unity for the rows corresponding to the velocities and zeroes for those corresponding 

to the pressure. Since the matrix B is singular, and the Arnoldi iterations converge effectively to 

the eigenvalues with the largest absolute value [5], it is necessary to consider the eigenproblem 

in the shift-and inverse transformation mode 

   [    ( )    ]
   ,        

 

   
    (19) 

where  is a complex shift which must be chosen close to the leading eigenvalue . Application 

of the Arnoldi iteration requires computation of Krylov basis vectors defined as 

     [    ( )    ]
        or [    ( )    ] 

         (20) 

It is easy to see that 

             [    ( )    ] 
    (    )    ( )        ( )  (21) 

The term      ( ) can be interpreted as a Stokes time step with the nullified forcing, i.e., with 

N=f=0. Thus, instead of the second equality of (20), we consider the equivalent one 

    [    ( )    ] 
               (22) 

The r.h.s. of Eq. (22) is calculated as the Stokes time step with the nullified forcing. The action 

of the l.h.s. matrix on a vector is calculated according to Eq. (21) as the difference between two 

consecutive linearized time steps to which the linearized Stokes time step multiplied by a shift 
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should be added. This allows us to apply a Krylov subspace iteration method for calculation of 

the next Krylov vector      for the Arnoldi iteration.  

 Note that the inverse Stokes operator     serves as a preconditioner in Eqs. (17) and 

(22). At small time steps the Helmholtz operators in Eq. (1) tend to unity, so that     will affect 

mainly the pressure terms, from which we cannot expect any convergence improvement. 

However, application of     with a large time step as a preconditioner will make the product 

     close to the unity matrix that may improve the convergence.  

 

 

3. Tensor-product inverse of Laplacian and Helmholtz operators revisited 

In this Section we revisit the result of Lynch et al. [1] with the aim to show that with the 

mesh refinement, and especially for 3D computations, the tensor-product based direct inverse of 

the matrices resulting from Laplacian and Helmholtz operators can become faster than traditional 

iterative techniques. 

Consider a Laplace operator acting on a scalar function u(x,y), defined on a rectangle 

            . The function u satisfies Dirichlet, Neumann or mixed linear 

homogeneous boundary conditions. We assume that the rectangle             is 

covered by an orthogonal grid, whose nodes are defined as xi and yj,       ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅       We 

denote discretization of the x- and y- second derivatives as operators Dxx and Dyy, that are one-

dimensional and act on a row or a column of the grid function uij=u(xi,yj), respectively. 

Representing Dxx and Dyy by matrices and following notations of the Kronecker product we write 

the discretized Poisson equation as  

   [             ]          (23) 

where Ix and Iy are identity matrices of the order Nx and Ny, respectively,   denotes the tensor 

product, and fij=f(xi,yj) is the discretized right hand side of the Poisson equation. For the 

following we assume that the eigenvalue decompositions of matrices Dxx and Dyy are known and 

are represented as 

          
                 

           (24) 
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Here Ex and Ey are square matrices of the order  Nx and Ny, respectively, whose columns are 

eigenvectors of the matrices Dxx and Dyy. x and y are diagonal matrices having the eigenvalues 

of Dxx and Dyy on their diagonals. According to [1] the solution of Eq. (23) can be represented as  

  (     ) 
  (  

     
  )       (25) 

where 

  (     )  (     )      (26) 

is a diagonal matrix of the order NxNy whose diagonal values are              . 

In the case of the Helmholtz equation  

(    )  [                    ]        (27) 

the solution u can be expressed as in Eq. (25) with                 .  

 Finally, in the case of the Neumann problem for the Poisson equation we define 

    {
                         

           
       (28) 

It can be shown that a replacement of the zero value of     by unity is equivalent to definition of 

a zero Dirichlet point at the boundary.  

 The eigenvalue decompositions (24) of the one-dimensional operators Dxx and Dyy are 

computed in  (  
 ) and  (  

 ) operations, respectively. For a time–marching procedure (see 

below) this computation is needed only once, so that its computational cost can be neglected if 

the number of time steps is sufficiently large.  Once these are known, the calculation of the 

solution of Eq. (10) or (14) requires      (     ) multiplications and      divisions by     

for calculations of u from Eq. (12). Therefore the total amount of multiplications and divisions is 

    (         ). This can be compared with the computational cost of the Gauss 

elimination of a banded matrix, which for the second-order finite difference discretization of the 

Laplacian has band width      . Then the preprocessing step, say the LU-decomposition, 

will need  ( (    )
 
) operations, and  (      ) operations for each individual solution, 

which is much larger than that for the proposed method. In the special case of uniform grid the 

Fourier transform can replace the eigenvalue decomposition. Then multiplication by the 

operators Ex or Ey requires          and          operations, reducing the operation count to 

(    )(             ) [14]. Nevertheless, iterative methods may still converge in a lesser 
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amount of operation, so that the choice of a solution method should always be checked by 

representative test calculations.  

The generalization of (25) for three-dimensional case is straight-forward. Adding the 

third eigenvalue decomposition           
  , we obtain 

  (        ) 
  (  

     
     

  )     (29) 

where                    . The whole procedure needs       (            

 ) multiplications and divisions. In the following we refer to Eqs. (25) and (29) as the tensor 

product factorization (TPF) solver proposed in [1]. As mentioned, this solver is often applied 

together with spectral and pseudospectral methods [8]-[10], however its application together 

with lower-order spatial discretization, remains rare [11]-[13]. Regarding the lower-order 

methods, two additional comments should be made. First, increase of an approximation order by 

use of longer stencils will not increase the computational cost of implementation of Eqs. (25) or 

(29), however performance of any iterative methods will be affected due to lesser sparseness of 

the matrices. Second, short three- or five-points stencils usually used in lower order methods 

allow one to replace the eigenvalue decomposition in one of directions by the Thomas algorithm, 

thus applying the Haidvogel-Zang decomposition [19]. This will retain the direct inverse of the 

matrices, but will decrease the overall computational time. In the test computations below, we 

call this approach the TPT solver. Apparently, the direction with a maximal number of grid 

points should be chosen for such a replacement. The Thomas algorithm applied for N grid points 

and a scheme defined on the 3-point stencil requires 5N multiplications and divisions, which is 

significantly less than N
2
 multiplications needed for computations of the mass-vector product. 

Assuming in the above Nx=Ny=Nz>>5 we see that application of the Thomas algorithm in one 

direction reduces the number of operations almost twice for a 2D case and by a factor of 

approximately 2/3 for a 3D case. 

 

4. Computation of the pressure matrix using the tensor-products  

To obtain the analytical expression for the pressure matrix C, we define one-dimensional 

operators D describing the first derivative operators of Eq. (4): 

  
    

       ,       
 
      

 
          (30) 

  
    

       ,       
 
      

 
          (31) 
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Then, using Eq. (25) for the inverse operators and performing  some simple evaluations with 

the Kronecker products we obtain the following expressions for the two terms of Eq. (4): 

  
   

    
 
   

 [(  
    

 ) (      
    

    
    

    
    

 )
  

(  
     

 
   

   )] (32) 

  
   

    
 
   

 [(  
    

 )
 
(      

    
    

    
    

    
 )

  

(  
      

     
 
)] (33) 

and derivation of the similar expressions for the three-dimensional case is straight-forward. 

The expressions (4), (32), and (33) form the analytical representation of the pressure matrix 

C. Formally, it can be calculated and inversed, which completes a fully direct inverse of the 

Stokes operator. Practically, evaluation of the above Kronecker products is CPU-time 

consuming, but possible.  The matrix C is not sparse, so that its direct inverse is practically 

impossible. Relations (32) and (33) can be used also for evaluation of the action of matrix C. 

Calculating the matrix C and observing its components we find that many of them are, in 

fact, numerical (but not analytical) zeroes. After nullifying all the components that are at least 10 

orders of magnitude smaller than the leading term of the same row, we discover that the matrix C 

can be approximated by a sparse matrix. This artificial sparseness is most profound when the 

uniform grid is used, for which more than 95% of the matrix elements are numerical zeroes. This 

allows us to apply a sparse matrix solver and to keep the LU decomposition of the resulting 

matrix. Then carrying out of step 2 of the above algorithms reduces to computation of sparse 

back/forward substitutions, which makes the inverse of the Stokes operator fully analytical. For 

stretched grids, this approach is possible, however not efficient. Some additional details are 

given below. 

 

5. Implementation of TPF and TPT for incompressible CFD time marching 

For test calculations we consider a system of Boussinesq equations describing convection in 

a rectangular 3D box. The flow is described by the energy, momentum and continuity equations 

(details can be found in [16]-[26]) 

  

  
 (   )  

 

      ⁄            (34) 

  

  
 (   )      

 

    ⁄               (35) 

                 (36) 
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where   =(u,v,w), p, t, and T are the dimensionless velocity, pressure, time and temperature, 

respectively, and    is the unit vector in z-direction. It follows from Eq. (18) that in the 

formulation used     ⁄  yields an estimation of the Reynolds number.  

As an example of numerical solution of eqs. (34)-(36) a standard incremental pressure-

correction scheme [[20]] is applied. Denoting the time step by t and by the superscript (n) the 

values of the functions at t=nt, we perform the time integration as  

 

   
(  (   )    ( )   (   ))  ( ( )   ) ( )  

 

      ⁄   
(   )     (37) 

 

   
(  (    ⁄ )    ( )   (   ))  ( ( )   ) ( )     ( )  

 

    ⁄   
(    ⁄ )   (   )    (38) 

 (  )   
 

  
     (    ⁄ )         (39) 

 (   )   ( )           (   )    (    ⁄ )  (  )    (  )     (40) 

Extracting the problems for  (   ) from Eq. (37) and  (    ⁄ )from Eq. (38), performing one 

time step reduces to the solution of one Helmholtz equation for the temperature, three Helmholtz 

equations for the velocity components and one Poisson equation for the pressure, in addition to 

the calculation of the nonlinear advective terms. Note that also more advanced projection 

schemes or SIMPLE-like algorithms (see, e.g., [20],[21]) also consist primarily of a sequence of 

Helmholtz and Poisson problems, so that the following conclusions apply also in all these cases. 

In the following, to illustrate when the eigenvalue decomposition approach may be more 

effective than an iterative solution, we consider several benchmark problems on natural 

convection in laterally heated two-and three-dimensional cavities [9],[22],[24]-[26]. We solve 

the Helmholtz and Poisson equations both by Jacobi (diagonal) preconditioned BiCGstab(2) 

iteration [22], by the tensor product factorization (TPF) method, and by the tensor product 

method combined with the Thomas algorithm (TPT) in one of the directions. In all the results 

reported both approaches yielded numerical solutions that coincided at least to within the tenth 

decimal digit. After establishing the equivalence of all the three solutions we compare the 

consumed CPU times.  

The choice of Jacobi preconditioner for the BiCGstab(2) iteration is justified by diagonal 

dominance of the matrices and its negligible computational cost (see also [23]). We are aware of 

the fact that Krylov subspace iteration methods, like BiCGstab(2), with a smarter choice of a 

preconditioner, can perform faster than they do in the following test calculations. However, the 

choice of a preconditioner is usually problem-dependent, the effect we want to avoid. Moreover, 
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we believe that the qualitative conclusions we derive will hold also in the case of more efficient 

iteration techniques applied to large Reynolds number CFD problems. 

 

 

5. Test calculations 

5.1. TPF and TPT solvers versus BiCGstab(2)  

As mentioned above, to compare CPU time consumption of the fast direct solvers, tTPF and 

tTPT, with that of the BiCGstab(2) iteration, tBiCG, we consider well-known benchmark problems 

on natural convection in laterally heated rectangular and three-dimensional cavities. In the 

following, we perform the time integration based on Eqs. (34)-(36) with the finite volume 

discretization in space. We consider convection of air (Pr=0.71) in a laterally heated square 

cavity [24],[25], in a two-dimensional cavity with height-to-width ratio A=8 [26], and in a 

laterally heated cubical box [9]. The finite volume staggered grid is stretched near the 

boundaries.  

It is emphasized that the numerical method and the code are already completely 

verified [5],[6]. Here we are interested only in comparison of consumed CPU times. To do that 

we start from the laterally heated square cavity and perform time-dependent calculations for 

Gr=10
5
 until convergence to a steady state. Then we set the Grashof number to Gr=10

6
, use the 

calculated steady state as an initial condition, and carry out 10,000 time steps. Then we again 

increase the Grashof number by an order of magnitude to Gr=10
7
, and perform 10,000 more time 

steps. All the runs were carried out on a 100
2
 nodes grid with the time step t=0.01, using either 

the BiCGstab(2), TPF or TPT method. The consumed CPU times are reported in Table 1. To 

gain additional information we also considered the supercritical oscillatory flow in a tall vertical 

cavity [26] and performed the calculation over 5 oscillation periods. The calculation is carried 

out on the grid with 100×800 nodes, for A=8 and Gr=4.8×10
7
. To perform calculations on an 

already converged limit cycle solution, we used a snapshot of the oscillatory flow computed 

in [6] on the same grid as the initial state. The time step was t=0.001.  

Table 1 shows that the TPF and TPT methods consume approximately the same CPU time 

for all of the unknown functions: u, v, T (which satisfy a Dirichlet problem for the Helmholtz 

equation) and p (which satisfies a Neumann problem for the Poisson equation). The TPT 

method is faster in agreement with the above estimations. The slight difference in tTPF and tTPT 
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times consumed for different variables is an effect of the staggered grid that has a slightly 

different number of nodes for each of the unknowns. In contrast, BiCGstab(2) converges much 

faster for the Helmholtz problems than for the Poisson problem. This is because the Helmholtz 

operator, which is close to being a perturbation of the identity operator, is far better conditioned 

than the Laplacian, and hence requires many fewer BiCGstab(2)  iterations to converge. More 

specifically, BiCGstab(2) requires between 10 and 33 times longer to solve the Poisson problem 

than to solve one of the Helmholtz problems. In consequence, BiCGstab(2)  is about 3 to 5 times 

faster than TPF for each of the Helmholtz problems and about 5 times slower than TPF for the 

Poisson problem. Moreover, with the increase of the Grashof number, the BiCGstab iterations 

converge slower, which is quite expected, while the CPU time consumptions of the TPF method 

does not change. Therefore, one can expect that for the flows with larger Grashof (or Reynolds) 

numbers, the TPF (or TPT) approach can become even more attractive. The results obtained for 

2D problems (Table 1) suggest combining BiCGstab (or another iterative solver) to calculate the 

temperature and velocity with the TPF or TPT solver to calculate the pressure.   

In the test calculations for the three-dimensional problem, we also started from Gr=10
5
. After 

carrying out 10,000 time steps, with the time step t=0.001, we increased the Grashof number to 

Gr=10
6
 and then, after another 10,000 time steps to Gr=10

7
. These calculations were performed 

for stretched grids consisting of 50
3
, 75

3
 and 100

3
 nodes. To explore the potential scalability of 

the TPF and TPT approaches we carried out these computations twice, using either scalar or 

vector processors. The results are summarized in Tables 2 and 3. In the three-dimensional 

calculations, the TPF approach is always faster than BiCGstab. For a scalar processor, the ratio 

tBiCG/tTPF of CPU times is between 1.5 (for a Helmholtz problem) and 12 (for a Poisson problem), 

while for a vector processor, this ratio is between 2.5 and 50. As expected, the CPU time 

consumed by BiCGstab(2) increases with Gr, as well as with the grid refinement. The CPU time 

consumed by the TPF and TPT approaches is Grashof-number (or Reynolds-number) 

independent and grows with the mesh refinement according to the operation counts discussed in 

Section 3. We observe also that the ratios tBiCG/tTPF and tBiCG/tTPT obtained on a vector processor 

are significantly larger than the ratio obtained for a scalar processor. The proportion between the 

ratios corresponding to the scalar and vector processors for 50
3
 and 75

3
 grids varies between the 

values 3 and 4, which corresponds to the length of vector (equal to 4) in the processor used (cf. 

Tables 2 and 3). This ratio is larger for a finer 75
3
 grid, which also can be expected. The ratios 
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tBiCG/tTPF and tBiCG/tTPT obtained on a vector processor (Table 3) for 75
3
 grid is larger than that 

obtained for a 100
3
 grid, so that the grid refinement does not necessarily lead to a more profound 

difference in the consumed CPU times. At the same time in all the 3D cases considered, the TPF 

and TPT methods perform significantly faster than BiCGstab(2), and the CPU time ratios 

tBiCG/tTPF and tBiCG/tTPT  grow with the increase of the Grashof (Reynolds) number. This shows 

that time-dependent fully three-dimensional calculations possibly should use fast direct solvers 

instead of iterative ones. 

 

5.2. Implementation of the Stokes operator inverse 

The CPU time consumed when the time integration was carried out using the proposed 

Stokes operator inverse is reported in Table 4. The integration was repeated twice with the 

inverse of the pressure matrix C using BiCGstab(2) and by a direct inverse using the sparse 

matrix solver MUMPs [27]. We report the total CPU time consumed by the whole computation 

in each of the cases, ttotal_bicg_C and ttotal_mumps, as well as CPU times consumed for the inverse of 

the matrix C. The latter we denote as tbicg_C for the case of the BiCGstab(2) solver. In the case of 

the direct MUMPs solver we report the time needed to perform the LU decomposition of C, tLU, 

and the time spent for the back and forward substitution, tbs, at the solution phase. Comparing 

with the CPU times reported in Table 1 we observe that, as expected, the time stepping using the 

proposed Stokes operator inverse is rather slow. The implementation of the direct sparse solver 

in this case leads to extremely slow computations and therefore is excluded from further test 

runs. The decrease of the CPU time consumed by MUMPs with the increase of the Reynolds 

number is explained by filtering out the numerical zeroes from the resulting C matrix, as it was 

explained above. Implementation of the BiCGstab(2) algorithm for the inverse of C shows that it 

requires most of the whole computational effort. As expected, the convergence of BiCGstab(2) 

slows down with the increase of Grashof (Reynolds) number.  

Performance of the Newton method based on the eqs. (11), (12) and (17) was tested on the 

same 2D thermal convection benchmark [24],[25]. The steady state at Gr=5×10
6
 was used as an 

initial state to calculate steady state solution at Gr=10
7
.  The whole Newton process converges in 

6 iterations. The time step t was varied between 1 and 100, however, for t≥80 the iterations for 

the inverse of C disconverge. The total consumed CPU time, the number of BiCGstab(2) 

iterations needed for calculation of the current Newton correction u and the maximal number of 
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BiCGstab(2) iterations needed for the inverse of pressure matrix C, are reported in Table 5. We 

observe that starting from t=2 the whole Newton iteration process completes in 700-800 

seconds. Clearly, the number of iterations and the consumed CPU time are problem dependent, 

making it impossible to find a generally optimal time step. Thus, for example, calculation of the 

steady state at Gr=10
8
 using the solution at Gr=5×10

6
 and t=10 as an initial guess consumes 

more than 2 CPU hours. The same Newton process as reported in Table 5, implemented with the 

approach proposed in [5], completes in less than 5 seconds on the same processor. Clearly the 

present approach is more than 100 times slower. At the same time, compared to the approach 

of [5], it has two important advantages. First, it removes a heavy memory restriction that allows 

one to compute fully developed 3D steady state flows. Second, the TPT decomposition applied 

for inverse of the Helmholtz and Laplace operators is scalable, while the backward/forward 

substitutions of sparse and packed LU decompositions used in [5] are not scalable. 

Performance of the inversed Stokes operator preconditioned Arnoldi iteration (19)-(22) for 

computation of the leading eigenvalues is illustrated in Table 6. The same benchmark problem as 

above was considered for two values of the Grashof number 10
7
 and 10

8
. The ARPACK package 

was implemented [28]. In both cases 16 Krylov basis vectors are sufficient to meet the ARPACK 

convergence relative convergence criterion of 10
-6

.  In the first case, Gr=10
7
, the leading 

eigenvalue is real and no shift is needed (=0 in Eq. (19)). The numerical experiment shows that 

iterations converge for the time step 2≤t≤40 and disconverge beyond this interval. For 

10≤t≤40 the whole process converges in less than an hour, and again most of CPU time is spent 

for the inverse of the pressure matrix C. The whole process, as well as the convergence of the C 

inverse, significantly slows down when the Grashof number is increased to Gr=10
8
 and the 

leading eigenvalue becomes complex. In this case we calculate with the shift =(0,0.87), which 

adds another complex time step to each the BiCGstab(2) iteration used for the calculation of 

Krylov vectors. The convergence of the whole process is observed now for 0.08≤t≤1, which 

shows that not only optimal time step, but also the convergence yielding one is problem-

dependent. The CPU time needed to calculate a single eigenvalue is beyond 10 hours, while the 

approach of [5] yields the same result in less than one minute. It is stressed again, however, that 

the present approach removes the memory restrictions and allows for scalable computations, 

which is not the case of [5]. 
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6. Implementation of TPT and TPF in orthogonal curvilinear coordinates 

Apparently, the tensor product representation of the Laplacian or Helmholtz operators and 

factorization (25) cannot always be implemented in general curvilinear orthogonal coordinates. 

Consider, for example, a Poisson equation in cylindrical coordinates 

     
 

  
                (41) 
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. Assume that the solution domain is covered by a 

grid          ,      ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅   In the following, we keep the same notations for the 

differential and discretized operators. If the eigenvalue decompositions of the discretized 

operators in - and z-directions are known 
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one may look for solution of Eq. (41) in the form 
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where      and      are the m-th and n-th eigenvectors of     and    , respectively. 

Substitution of Eq. (43) into Eq. (41) yields for each coefficient     

*    
    

  
     +    (  )  (     

     
  )    (44) 

Equations (44) for     can be solved, for example, by the Thomas algorithm for banded 

matrices. Alternatively, we can consider M eigenvalue decompositions of the operators  

    
    

  
 =            

  ,       ̅̅ ̅̅ ̅̅        (45) 

Then denoting the diagonal values of      as     ,      ̅̅ ̅̅ ̅, we obtain 

  ∑ [(          ) 
  (    

     
     

  ) ] 
   ,     (46) 

and the diagonals values of the matrix  are               . We can mention here that in the 

case of general orthogonal curvilinear coordinates the eigenvalue factorization in at least one 

direction is always possible, so that a 3D problem can be reduced to a series of 2D problems.  

 

7. Concluding remarks 

In this study we formulated and performed a semi-direct inverse of the Stokes operator using 

an extended Uzawa method. Our pressure matrix C is an analog of the Uzawa matrix, however 

not necessarily symmetric or positive semi defined. As in the Uzawa method, the inverse of the 

pressure matrix C is the main bottleneck of the whole calculation. We have discussed the semi-
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analytic inverse of the Stokes operator, where only the pressure matrix C is inversed iteratively, 

as well as fully analytic inverse, where the pressure matrix is treated as “artificially sparse” and a 

sparse matrix direct solver is applied.  

We have shown that factorization of the Stokes operator followed by a fast direct method 

used to inverse the Helmholtz and Laplacian operators and the preconditioned Krylov subspace 

iterations used to inverse the pressure matrix, allow one to perform computations with a large 

time step. The latter is needed for application of inverse Stokes operator preconditioned Newton 

and Arnoldi methods for calculation of three-dimensional steady states and analysis of their 

stability. The corresponding test calculations showed that in this way the heavy memory 

demands of the approach [5] can be removed. On the other hand, the calculations can become 

fast enough only with a massive parallelization of the basic Laplace/Helmholtz operator direct 

inverse. The parallelization is algorithmically straight-forward. 

We have shown additionally that the tensor product factorization (TPF) method, possibly 

combined with the Thomas solver (TPT), is sometimes, but not always, faster than iterative 

methods. Our numerical experiments made for incompressible Boussinesq equations showed that 

the direct TPF and TPT solvers can perform faster than an iterative method on fine grids and for 

large Reynolds (Grashof) numbers, when convergence of any iterative method slows down. It is 

emphasized that since the methods are direct, their computational cost depends only on the 

problem size, but not on governing parameters, which may make it attractive for cases where 

iterative methods converge too slowly. 

In spite of the fact that the whole TPF/TPT solution is restricted to Poisson and Helmholtz 

equations defined in the Cartesian coordinates only, the eigenvalue decomposition can be used to 

reduce the dimension of the problem from 3D to a series of 2D and sometimes, e.g., in 

cylindrical coordinates, to a series of 1D problems. The effectiveness of the latter is yet to be 

examined.  In the case of, say, vector Laplacian in orthogonal curvilinear coordinates one should 

take care of cross-conjugate terms when the x1-component of the Laplacian contains x2- and x3- 

components of the vector along with the x1-component. These terms sometimes can be excluded 

by a change of variables, as was carried out in [29] for cylindrical coordinates. Alternatively, in 

time-dependent problems these terms can be treated explicitly.  
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Table 1. CPU times (sec) consumed by the BiCGstab iterative solver (tBiCG), by the tensor product factorization (tTPF), and by the 

tensor product factorization combined with the Thomas algorithm (tTPF). Computations for convection of air (Pr=0.71) in 

laterally heated square (A=1) and tall (A=8) cavities. Calculation on a single scalar Intel 2.4 GHz processor. 

Problem A=1, Gr=105,  
8700 time steps, 1002 grid 

A=1, Gr=106,  
10,000 time steps, 1002 grid 

A=1, Gr=107,  
10,000 time steps, 1002 grid 

A=8, Gr=4.8×105, 17,175 time 
steps (5 periods), 100×800 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 17.86 51.78 29.39 21.44 60.03 33.67 21.16 60.88 33.77 535.95 3366.8 409.5 
vx 22.77 51.22 28.61 24.33 59.50 32.95 24.31 58.72 32.47 657.10 3356.8 406.0 
vy 18.59 51.06 28.41 21.36 57.31 32.86 21.41 58.39 33.02 532.89 3305.4 399.6 

p 246.83 52.31 28.67 305.82 59.83 32.80 343.5 59.55 32.98 16820 3372.13 409.8 

total 306.05 206.37 115.08 372.94 236.67 132.28 410.37 237.53 132.23 18546 13401 1625 
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Table 2. CPU times (sec) consumed for 10,000 time steps by the BiCGstab iterative solver (tBiCG) and by the present eigenvalue 

decomposition solvers (tTPF and tTPT) for convection of air (Pr=0.71) in laterally heated cubical cavity. Calculation on a single 

scalar Intel 2.4 GHz processor. 

Problem Gr=105,  303 grid Gr=105, 503 grid Gr=106, 503 grid  Gr=107, 503 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 175.8 86.4 62.5 1004.4 611.6 428.5 920.6 608.5 426.4 929.0 611.2 428.2 

vx 183.1 85.3 61.7 1400.1 618.6 433.4 1381.1 618.6 433.4 1393.8 619.8 434.3 

vy 193.4 84.7 61.3 1385.6 594.8 416.8 1368.9 596.2 417.7 1379.6 598.2 419.1 

vz 125.7 84.6 61.2 881.6 600.7 420.9 872.4 599.4 420.0 879.8 604.5 423.6 

p 906.4 87.1 63.0 8566.0 609.3 426.9 7393.6 609.4 427.0 7699.5 612.3 429.0 

total 1584.3 428.2 309.7 13237.7 3035.0 2126.5 11936.7 3032.1 2124.5 12281.8 3046.0 2134.2 

 

Problem Gr=105, 753 grid Gr=106, 753 grid  Gr=107, 753 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 4042.4 3169.4 2184.8 3260.4 3171.6 2186.3 3264.6 3169.3 2184.8 

vx 5409.2 3110.1 2179.1 5402.3 3111.6 2180.2 5398.9 3109.3 2178.6 

vy 5394.5 3111.0 2179.8 5394.0 3112.9 2181.1 5373.8 3111.59 2180.2 

vz 3114.8 3138.8 2199.2 3122.4 3140.9 2200.7 3124.5 3136.51 2197.6 

p 38999.1 3169.8 2221.0 34517.4 3172.1 2222.6 34706.7 3169.2 2220.5 

total 56959.9 15699.2 10963.9 51696.5 15709.1 10970.9 51868.5 15695.9 10961.7 

 

 



27 
 

 

 

Table 3. CPU times (sec) consumed for 10,000 time steps by the BiCGstab iterative solver 

(tBiCG) and by the present eigenvalue decomposition solvers (tTPF and tTPT)for convection 

of air (Pr=0.71) in laterally heated cubical cavity. Calculation on a single vector Xeon(R) 

CPU 5355 2.66 GHz processor. 

Problem Gr=105, 503 grid Gr=106, 503 grid  Gr=107, 503 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 76.2 29.12 20.40 76.3 28.9 20.25 76.3 29.0 20.32 

vx 132.2 27.39 19.19 133.7 27.3 19.13 135.94 27.5 19.27 

vy 131.9 27.45 19.23 133.3 27.3 19.13 135.51 27.6 19.34 

vz 72.2 27.29 19.12 42.3 27.3 19.13 72.4 27.4 19.20 

p 724.7 29.32 20.54 1166.5 29.2 20.46 1222.1 29.3 20.53 

total 1137.3 140.6 98.49 1582.2 140.0 98.09 1642.3 1407 98.65 

 

Problem Gr=105, 753 grid Gr=106, 753 grid  Gr=107, 753 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 369.9 104.8 72.24 269.2 105.1 72.45 269.1 105.1 72.45 

vx 547.4 117.2 80.79 551.1 117.1 80.72 551.4 117.5 81.00 

vy 543.3 116.7 80.45 546.5 116.5 80.31 547.1 116.9 80.58 

vz 257.6 109.5 75.48 257.9 109.5 75.48 257.7 109.7 75.62 

p 3186.4 104.4 71.97 4696.8 104.7 72.17 5454.7 104.9 72.31 

total 4904.6 552.6 380.93 6321.5 552.8 381.14 7080.0 554.0 381.97 

 

Problem Gr=105, 1003 grid Gr=106, 1003 grid  Gr=107, 1003 grid 

Variable tBiCG tTPF tTPT tBiCG tTPF tTPT tBiCG tTPF tTPT 

T 872.7 384.4 262.81 877.1 383.9 262.47 6256 384.7 263.01 

vx 1298.4 354.8 242.57 1307.4 355.1 242.78 1310.1 355.1 242.78 

vy 1293.0 357.5 244.42 1300.3 357.7 244.55 1302.4 356.9 244.01 

vz 600.5 361.9 247.43 601.4 360.9 246.74 601.3 361.9 247.43 

p 9036.4 383.7 262.33 12133.4 383.77 262.38 14152.1 384.2 262.67 

total 13101.0 1842.3 1259.55 16219.6 1841.3 1258.92 17991.5 1842.8 1259.89 
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Table 4.  CPU times (sec) consumed by the time stepping using inverse of the Stokes operator 

with iterative or sparse direct inverse of the pressure matrix C for the same 2D tests as in Table 

1, with 100×100 stretched grid. 

 

Gr No. of time 
steps 

ttotal,bicg_C tbicg_C ttotal,mumps tLU tbs 

105 8,200 751 611 28,618 157 28,372 

106 10,000 919 755 17,137 151 16,833 

107 10,000 1021 856 8,822 144 8,578 
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Table 5. Number of BiCGstab(2) iterations needed to compute the Newton correction NNewton for the first five Newton iterations and maximal 

number of BiCGstab(2) iterations NC needed for the inverse of pressure matrix C. Computation of steady state of the benchmark problem 

of [24],[25] at Gr=10
7
 starting from the steady state at Gr=5×10

6
 as an initial guess. For t≥80 iterations for the inverse of C disconverge. Single 

scalar Intel 2.4 GHz processor. 

 

 

 

 

 

iteration 1 2 3 4 5 ttotal 

t NNewton NC NNewton NC NNewton NC NNewton NC NNewton NC (sec) 

1 64 368 21 141 41 229 11 79 1 52 1312 

2 48 139 31 130 29 72 9 43 1 64 846 

5 61 96 27 70 31 67 9 63 5 55 762 

10 74 96 38 61 17 58 37 50 2 31 793 

20 99 64 34 124 45 55 19 46 10 33 845 

30 94 326 40 300 54 54 35 29 13 24 806 

40 33 122 39 42 38 38 52 28 5 22 720 

50 140 228 40 225 43 41 46 33 18 38 799 

60 132 235 46 51 54 34 51 67 1 19 753 

70 129 135 43 33 45 31 69 112 1 17 729 
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Table 6. Number of Krylov vectors Nvectors, maximal number of BiCGstab(2) iterations needed to compute the Krylov vectors for Arnoldi iterations 

NArnoldi and maximal number of BiCGstab(2) iterations NC needed for the inverse of pressure matrix C. Calculation of the dominant eigenvalues 

corresponding to the steady state of the benchmark [24],[25]: =(−0.02812, 0) at Gr=10
7
 and =(−0.032, 0.8663) at Gr=10

8
. 

 

Gr=107 Gr=108 

t Nvectors NArnoldi NC ttotal (sec) t Nvectors NArnoldi NC ttotal (sec) 

     0.08 16 834 746 38013 

2 16 128 931 17438 0.1 16 877 755 38491 

5 16 99 180 7603 0.2 16 672 903 42660 

10 16 103 875 6012 0.3 16 592 968 47491 

20 16 116 801 5980 0.4 16 532 979 50949 

30 16 141 641 6091 0.5 16 484 945 52224 

40 16 149 736 5658 0.6 16 480 979 55974 


