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1 Dipartimento di Fisica e Astronomia, Università di Catania and INFN, Via S. Sofia, 64, 95123 Catania, Italy

2 Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania, Italy
3 Computer Laboratory, University of Cambridge, 15 JJ Thomson Av., Cambridge CB3 0FD, UK

4 School of Computer Science, University of St Andrews, Fife KY16 9SX, UK and
5 Dipartimento di Matematica ed Informatica, Università di Catania, Via S. Sofia, 64, 95123 Catania, Italy
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Real complex systems are inherently time-varying. Thanks to new communication systems and
novel technologies, it is today possible to produce and analyze social and biological networks with
detailed information on the time of occurrence and duration of each link. However, standard graph
metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs
in which the links do not change over time, or graphs built from time-varying systems by aggregating
all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness,
and the definitions of node and graph components, to the case of time-varying networks, which are
represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that
the problem of finding strongly connected components in a time-varying graph can be mapped into
the problem of discovering the maximal-cliques in an opportunely constructed static graph, which
we name the affine graph. It is therefore a NP-complete problem. As a practical example, we have
performed a temporal component analysis of time-varying graphs constructed from Reality Mining,
a dataset of human contacts recorded at MIT over a period of six months. The results show that
taking time into account in the definition of graph components allows to capture important features
of the system. In particular, we observe a large variability in the size of node temporal in- and out-
components. This is due to intrinsic differences in the activity patterns of the individuals, which
cannot be detected by static graph analysis.

PACS numbers: 89.75.Hc,89.75.-k,89.75.Fb

I. INTRODUCTION

Complex network theory has proved to be a versatile
framework to represent and analyze biological, social and
man-made complex systems [1, 2]. Typically, a complex
system is inherently dynamic. Social interactions and hu-
man activities are intermittent [3–6], the neighborhood of
individuals moving over a geographic space evolves over
time [7, 8], links appear and disappear in the World-
Wide-Web [9], in patterns of interactions among genes
from microarray experiments [10, 11] and in functional
brain networks [12, 13]. In all these networks, time plays
a central role: links exist only for certain time periods,
and are often recurrent. Despite this fact, most of the
classic studies in complex networks theory are based on
the analysis of the topological properties of static graphs.
These are graphs in which the links do not change over
time, or graphs built from time-varying systems as the
result of the aggregation of all interactions, as if these
were all concurrent in time. The evolution of linking
patterns over time, when considered, has been usually
studied by creating a series of graphs, each graph con-
taining all the links appeared in a certain time interval.
Then, each standard graph measure is evaluated for the
static graph obtained at each time window, and plotted
as a function of time [14, 15]. Today, thanks to modern
technologies, for the first time we have the opportunity
to study large social and biological networks with precise
temporal information on the appearance, duration and
frequency of links among a set of nodes, and many other

similar databases will be produced, at an ever increas-
ing rate, in the near future. These datasets demand for
new network measures and models that can take account
of the richness introduced by detailed temporal informa-
tion. Some recent works have analyzed large intercon-
nected systems with fluctuating interactions [16–18], and
some graph measures have been already extended to the
case of connection patterns which evolve over time [19].
In previous works [20–22] we have shown that static anal-
ysis of aggregated graphs is not able to capture the real
dynamic behavior and time correlations of complex net-
works which evolve over time. Moreover, if temporal or-
dering of links is ignored, static analysis overestimates
the number of available links at each time and, therefore,
underestimates actual lengths of walks and paths. In
Ref. [23] we have formalized the concept of time-varying
graph and we have introduced a measure of path lengths
for time-varying graphs which takes into account the ac-
tual time ordering, duration and correlations between
links which appear at different times. The concept of
walk has been generalized to the case of time-varying
graphs in Refs. [24, 25], while alternative definitions of
path lengths have been proposed in Refs. [26, 27]. Recent
works have also studied the onset of synchronization in
populations of agents interacting through time-evolving
topologies [28].

In this paper, we focus our attention on two impor-
tant concepts in graph theory, namely those of connect-
edness and connected components of a graph. These con-
cepts have been used in complex networks to study the
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reachability of pairs of nodes [29], and to characterize
the resilience of networks to attacks [30]. The paper
is organized as follows. In Section II, we briefly review
the concepts of connectedness and components in static
graphs, while in Section III we extend them to the case
of time-varying graphs. In particular, we define the in-
and out-component of a given node, and we give the def-
inition of weakly and strongly connected components. In
Section IV we show that the problem of finding compo-
nents in a time-varying graph can be mapped into the
maximal-clique problem for an opportunely constructed
graph, which we call affine graph. An affine graph is a
static graph which incorporates all the information on the
temporal reachability of couples of nodes, and is a use-
ful tool to analyze the components of the corresponding
time-varying graph. Thanks to this mapping, we prove
also that finding strongly connected components in time-
varying graphs is a NP-complete problem. Finally, in
Section V we analyze time-varying graphs constructed
from a dataset of human interactions, and we show that
the analysis of temporal strongly connected components
reveals interesting variations in the pattern of contacts,
which cannot be observed by using an aggregate static
graph.

II. COMPONENTS IN STATIC GRAPHS

Let us consider a graph G with N nodes and K links.
From now on we will refer to it as to a static graph. We
will consider the case of undirected and directed static
graphs separately. An undirected static graph G can be
represented by a symmetric adjacency matrix, a N × N

matrix A whose each entry aij is equal to one if and
only if there is a link between i and j, and is equal to
zero otherwise. In order to define graph components,
we need to introduce the concept of connectedness, first
for pairs of nodes, and then for the whole graph. Two
nodes i and j of an undirected graph G are said to be
connected if there exists a path between i and j. G is said
to be connected if all pairs of nodes in G are connected,
otherwise it is said to be unconnected or disconnected.
A connected component of G associated to node i is the
maximal connected induced subgraph containing i, i.e.,
it is the subgraph induced by all nodes connected to node
i. If an undirected graph is not connected, it is always
possible to find a partition of the graph into a set of
disjoint connected components. It is straightforward to
prove that this partition is unique.
A directed static graph G is described in general by

a non-symmetric adjacency matrix, a N × N matrix A
whose each entry aij is equal to one if and only if there
is a directed link from i to j, and is equal to zero oth-
erwise. Defining connectedness for pairs of nodes in a
directed graph is more complex than in an undirected
graph, because a directed path may exist through the
network from vertex i to vertex j, but this does not guar-
antee that any path from j to i does actually exist. Con-

sequently, we have two different definitions of connect-
edness between two nodes, namely weak and strong con-
nectedness. In particular, we can define the weakly and
the strongly connected components of a directed graph as
follows [31]. Two nodes i and j of a directed graph G
are said strongly connected if there exists a path from i

to j and a path from j to i. A directed graph G is said
strongly connected if all pairs of nodes (i, j) are strongly
connected. A strongly connected component of G associ-
ated to node i is the maximal strongly connected induced
subgraph containing node i, i.e., it is the subgraph which
is induced by all nodes which are strongly connected to
node i. A weakly connected component of G is a com-
ponent of its underlying undirected graph Gu, which is
obtained by removing all directions in the edges of G.
Two nodes i and j of G are weakly connected if they are
connected in Gu, and a directed graph G is said to be
weakly connected if the underlying undirected graph Gu

is connected. Hence, the components of a directed graph
can be of two different types, namely weakly and strongly
connected. It is useful to review also the definitions of
components associated to a node of a directed graph. We
have four different definitions:

1. The out-component of node i, denoted as OUT(i),
is the set of vertices j such that there exists a di-
rected path from i to j, ∀j.

2. The in-component of a node i, denoted as IN(i), is
the set of vertices j such that there exists a directed
path from j to i, ∀j.

3. The weakly connected component of a node i, de-
noted as WCC(i), is the set of vertices j such that
there exists a path from i to j, ∀j in the underlying
undirected graph Gu.

4. The strongly connected component of a node i, de-
noted as SCC(i), is the set of vertices j such that
there exists a directed path from i to j and also a
directed path from j to i, ∀j.

We have already used the last two concepts for the defi-
nitions of weakly and strongly connected components of
a directed graph given above. In fact, the property of
weakly and strongly connectedness between two nodes is
reflexive, symmetric and transitive, i.e., in mathematical
terms, it is an equivalence relation. Therefore, it is possi-
ble to define weakly and strongly connected components
of a graph by means of the weakly and strongly con-
nected components associated to the nodes of the graph:
a strongly (weakly) connected component of node is also
a strongly (weakly) connected component of the whole
graph.
Conversely, the definitions of out-component and in-

component of a node are not based on equivalence re-
lations. In fact, the symmetry property does not yield:
i ∈ OUT(j) does not imply j ∈ OUT(i). This means that
out- and in-components can be associated only to nodes,
and cannot be directly extended to the entire graph. In
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FIG. 1. A directed graph can be partitioned into a set of
disjoint weakly connected components (in yellow). Further-
more, each of these components has a rich internal structure,
as shown for the GWCC.

practice, we cannot partition a graph into a disjoint set
of in- or out-components, while it is possible to identify
a partition of a static graph into a disjoint set of weakly
or strongly connected components. However, the in- and
out-components of the nodes of a graph can be used to
define the strongly connected components of the graph.
From the above definitions, we observe that i ∈ OUT(j)
if and only if j ∈ IN(i). Furthermore, we notice that i

and j are strongly connected if and only if j ∈ OUT(i)
and, at the same time, i ∈ OUT(j). Or equivalently, if
and only if j ∈ OUT(i) and j ∈ IN(i). Therefore, the
strongly connected component of node i is the intersec-
tion of IN(i) and OUT(i).
We are now ready to describe in detail the rich in-

terplay between the various concepts of connectedness
in a directed static graph. In the most general case, as
shown in Fig. 1, a directed graph can be decomposed in a
set of disjoint weakly connected components. In a large
graph, one component will be larger than all the oth-
ers. This component is usually called the giant weakly
connected component GWCC of the graph. If we treat
each link in the GWCC as bidirectional, then every node
in the GWCC is reachable from every other node in the
GWCC. As shown in Fig. 1, the GWCC contains the gi-
ant strongly connected component GSCC, consisting of all
sites reachable from each other following directed links.
All the sites reachable from the GSCC are referred to as
the giant OUT component, and the sites from which the
GSCC is reachable are referred to as the giant IN compo-
nent. The GSCC is the intersection of the giant IN- and
OUT-components. All sites in the GWCC, but not in the
IN- and OUT-components, are referred to as “tendrils”.

III. COMPONENTS IN TIME-VARYING

GRAPHS

In this paper, we consider time-varying graphs, which
are graphs characterized by fluctuating links among a
fixed set of nodes. A time-varying network can be de-
scribed as an ordered sequence of graphs, i.e., an ordered
set {G1, G2, . . . , GM} of M graphs defined over N nodes,

where each graphGm in the sequence represents the state
of the network, i.e., the configuration of links, at time
tm, where m = 1, . . . ,M . In this notation, the quantity
tM − t1 is the temporal length of the observation period.
The graphs in the sequence can be uniformly distributed
over time, i.e., tm+1 = tm +∆t, ∀m = 1, . . . ,M − 1 [23],
or in general they can correspond to any ordered sequence
of times such that t1 < t2 < . . . < tM [24]. In compact
notation, we denote the graph sequence as G ≡ G[t1,tM ].
Each graph in the sequence can be either undirected or
directed. Consequently, the time-varying graph G can be
described by means of a time-dependent adjacency ma-
trix A(tm), m = 1, . . . ,M , where aij(tm) are the entries
of the adjacency matrix of the graph at time tm. This
matrix is in general non-symmetric. If we discard the
time-ordering of the links of a time-varying graph G, and
consider all links as concurrent in time, we obtain its cor-
responding aggregate static graph. In Fig. 2 we report a
simple time-varying graph G[t1,t4] with N = 5 nodes and
M = 4 graphs (panel a) and the corresponding aggregate
static graph (panel b). It is worth noticing that the ag-
gregate graph discards most of the richness of the original
time-varying graph. For instance, three paths exist be-
tween node 1 and 5 in the static aggregate graph, namely
1-4-5, 1-2-5 and 1-2-4-5, while in the time-varying graph
there is no temporal path from 1 to 5. The problem of
defining connectedness and components in time-varying
graphs looks more similar to the case of directed static
graphs than to the case of undirected static graphs. In
fact, even if each graph Gm, m = 1, . . . ,M in the se-
quence is undirected, the temporal ordering of the graphs
naturally introduces a directionality. Imagine a time-
varying graph composed by a sequence of 24 undirected
graphs {G1, G2, . . . G24}, where each graph reports the
contacts observed among a set of N individuals during
one hour of the day. Let us suppose that there exists no
link between nodes i and j in any of the 24 graphs. More-
over, imagine that i meets a third node l at 9:30am (i.e.,
ail(t10) = 1) while l meets j at 3:15pm (i.e., alj(t16) = 1).
This means that in the time-varying graph there exists a
path i-l-j from i to j , and in practice i can use this path
to send a message to j through l. However, this does not
imply that j can also send a message to i. Due to the
temporal ordering of links, the path i-l-j is different from
the path j-l-i, even if all the 24 graphs in the sequence
are undirected. The existence of the first path does not
imply the existence of the second one, and vice-versa.
For instance, in the time-varying graph G[t1,t4] reported
in Fig. 2, there exists a path which connects node 5 to
node 1 (i.e., the link a52 at time t1 and the link a21 at
time t3) but there is no path which connects node 1 to
node 5. An immediate consequence of this fact is that
node 5 can send a message to node 1 at time t1, while
node 1 cannot send a message to node 5.

In order to define node connectedness for a time-
varying graph, we first need to introduce a mathematical
definition of reachability for an ordered pair of nodes i
and j. We say that i can reach j if i can send a mes-



4

4

4

4

5

5

5

1

1

1

1

2

2

2

2 3

3

3

3

4 5

t1

t2

t3

t4

(a)

1

4

5

3
2

(b)

FIG. 2. A time-varying graph G consisting of a sequence of
M = 4 graphs with N = 5 nodes (panel a) and its corre-
sponding aggregate static graph (panel b). The static repre-
sentation of graphs discards time ordering of links and time
correlations of paths. In the aggregate graph node 1 and node
2 are neighbors, but in the original time-varying graph they
are directly connected only in one of the four graphs of the
sequence, namely in Gt3 . Moreover, in the aggregate graph a
path exists from node 1 to node 5 and vice-versa, while in the
time-varying graph there exists a temporal path from 5 to 1
but there are no temporal paths from 1 to 5.

sage to j directly or through a time-ordered sequence of
contacts. In mathematical terms this implies the exis-
tence of a walk connecting i to j. In [24] the concept
of walk has been generalized to the case of time-varying
graphs. In a time-varying graph, a walk, also called tem-
poral walk, from node i to node j is defined as a sequence
of L edges [(nr0 , nr1), (nr1 , nr2), . . . , (nrL−1

, nrL)], with
nr0 ≡ i, nrL ≡ j, and an increasing sequence of times
tr1 < tr2 < . . . < trL such that anr

l−1
,nr

l
(rl) 6= 0 l =

1, . . . , L. A path, also called temporal path, of a time-
varying graph is a walk for which each node is not visited
more than once. For instance, in the time-varying graph
of Fig. 2, the sequence of edges [(5, 2), (2, 1)] together
with the sequence of times t1, t3 is a temporal path of
the graph. This path starts at node 5 at time t1 and
arrives at node 1 at time t3. The concept of temporal
path from a node to another, together with a measure of

temporal node distance, was first introduced in [23]. Al-
ternative measures of temporal distance have also been
proposed in [26, 27]. Given the definitions of temporal
walk and path, we can introduce the concepts of tempo-
ral connectedness (in a weak and in a strong sense) for a
pair of nodes.
A node i of a time-varying graph G[t1,tM ] is temporally

connected to a node j if there exists in [t1, tM ] a temporal
path going from i to j. This relation is not symmetric: if
node i is temporally connected to node j, in general node
j can be either temporally connected or disconnected to
i. In the graph G[t1,t4] of Fig. 2, node 5 is temporally con-
nected to 1 but node 1 is not connected to node 5. For
this reason, we introduce the definition of strong connect-
edness, which enforces symmetry:

Definition 1 (Strong connectedness) Two nodes i

and j of a time-varying graph are strongly connected if
i is temporally connected to j and also j is temporally
connected to i.

Strong connectedness is a reflexive and symmetric re-
lation, so that if i is strongly connected to j, then j is
strongly connected to i. However this definition of strong
connectedness lacks transitivity, and therefore it is not an
equivalence relation. In fact, if i and j are strongly con-
nected and j and l are strongly connected, nothing can
be said, in general, about the connectedness of i and l.
In the example shown in Fig. 2, node 5 and 2 are strongly
connected and also 2 and 1 are strongly connected, but
nodes 5 and 1 are not strongly connected, since there ex-
ists no temporal path which connects node 1 to node 5.
It is also possible to introduce the concept of weak con-
nectedness for a pair of nodes. Similarly to the case of
static directed graphs, given a time-varying graph G, we
construct the underlying undirected time-varying graph
Gu, which is obtained from G by discarding the direction-
ality of the links of all the graphs {Gm}, while retaining
their time ordering.

Definition 2 (Weak connectedness) Two nodes i

and j of a time-varying graph are weakly connected if
i is temporally connected to j and also j is temporally
connected to i in the underlying undirected time-varying
graph Gu.

Also weak connectedness is a reflexive and symmetric
relation, but it is not transitive. This definition of weak
connectedness is quite similar, but not identical, to that
given for directed static graphs. In fact, two nodes in
G can be weakly connected even if there is no temporal
directed path which connects them, but the temporal or-
dering of links breaks the transitivity so that if i and j are
weakly connected and j and l are weakly connected, then
nothing can be said about the weak connectedness of i
and l. All these subtleties are due to the fact that time-
varying graphs have a much richer structure compared
to static graphs, so that the existence of a temporal path
between two nodes crucially depends on the time order-
ing of links, and does not guarantee the existence of the
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backward path. Notice that the definitions of strong and
weak connectedness given above for time-varying graph
are consistent with those given for static graphs, so that
if two nodes are strongly (weakly) connected in a time-
varying graph, then they are also strongly (weakly) con-
nected in the corresponding aggregate static graph. The
vice-versa is trivially not true, so that two nodes which
are strongly connected in the aggregate graph can be
temporally disconnected in the time-varying graph.
We are now ready to give the definitions of components

associated to a node of a time-varying graph G:

1. The temporal out-component of node i, denoted as
OUTT (i), is the set of vertices which can be reached
from i in the time-varying graph G.

2. The temporal in-component of a node i, denoted as
INT (i), is the set of vertices from which i can be
reached in the time-varying graph G.

3. The temporal weakly connected component of a node
i, denoted as WCCT (i), is the set of vertices which
i can reach, and from which i can be reached, in
the underlying undirected time-varying graph Gu.

4. The temporal strongly connected component of a
node i, denoted as SCCT (i), is the set of vertices
from which vertex i can be reached, and which can
be reached from i, in the time-varying graph G.

Differently from the case of directed static graphs, it
is not possible to define the strongly (weakly) connected
components of a time-varying graph starting from the
definition of connectedness for pairs of nodes. As we ex-
plained above, this is because the relation of strongly
(weakly) connectedness for couples of nodes is not an
equivalence relation. For this reason, we give the fol-
lowing definition of strongly connected component of a
time-varying graph:

Definition 3 (Strongly connected component)
A set of nodes of a time-varying graph G is a temporal
strongly connected component of G if each node of the
set is strongly connected to all the other nodes in the set.

Similarly, a set of nodes is a weakly connected compo-
nent if each node in the set is weakly connected to all
the other nodes in the set. The definitions of strongly
and weakly connected components enforce transitivity,
but the check of strong (weak) connectedness has to be
directly performed for every couple of nodes. Suppose
for instance that we want to verify if the five nodes in
the graph G shown in Fig. 2 form a strongly connected
component. In the static aggregate graph this check has
O(K) computational complexity, where K is the total
number of links in the graph. In fact, we have only to
check that 2, 3, 4 and 5 are connected to 1, which can be
done by a depth first visit of the graph started at node
1, since node connectedness is an equivalence relation for

static graphs, and a component of a node is also a com-
ponent for the whole graph. On the contrary, for a time-
varying graph we should check the connectedness of all
the possible couples of nodes, so that a procedure to ver-
ify that a set of N nodes forms a strongly connected com-
ponent has computational complexity O(N2), for every
check, instead of O(K). Moreover, while static directed
graphs admit only one partition into strongly connected
components, for a time-varying graph there exists in gen-
eral more than one possible partition, as we shall see in
the next section.

IV. THE AFFINE GRAPH OF A

TIME-VARYING GRAPH

We show in the following that the problem of find-
ing the strongly connected components of a time-varying
graph is equivalent to the well-known problem of finding
the maximal-cliques of an opportunely constructed static
graph [32]. We call such a static graph the affine graph
corresponding to the time-varying graph. It is defined as
follows:

Definition 4 (Affine graph of G)
Given a time-varying graph G ≡ G[t1,tM ], the asso-
ciated affine graph GG is an undirected static graph with
the same nodes as G, and such that two nodes i and j

are linked in GG if i and j are strongly connected in G.

In practice, the affine graph of a time-varying graph can
be obtained by computing the temporal shortest paths
between any two pairs of nodes, and then adding a link
between two nodes i and j of the affine graph only if the
temporal distance from i to j and the temporal distance
from j to i are both finite. Another method to construct
the affine graph makes use of the out-components of all
the nodes. We start by considering the out-component
of the first node, let us say i = 1, and then we check,
one by one, if for each node j ∈ OUTT (i), j > i then also
i ∈ OUTT (j). If this is true, we put a link between i and
j in the affine graph. We then repeat this procedure for
the second node, i = 2, for the third node, i = 3 and so
on. We obtain the affine graph by iterating over the out-
components of all the nodes. In Fig. 3 we report the affine
graph corresponding to the time varying graph shown in
Fig. 2. In this graph, node 1 is directly connected to
nodes {2, 3, 4}, since it is temporally strongly connected
to them in the time-varying graph. Similarly, node 2
is connected to nodes {1, 3, 4, 5}, node 3 is connected
to {1, 2}, node 4 is connected to {1, 2, 5} and node 5 is
connected to {2, 4}. Hence, the affine graph GG has only
7 of the 10 possible links, each link representing strong
connectedness between two nodes.
We briefly report here some definitions about graph

cliques. Given an undirected static graph, a clique is a
complete subgraph, i.e., a subgraph in which all the nodes
are directly linked to each other. A maximal-clique is a
clique that is not included in any larger clique, while a
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FIG. 3. The affine graph GG associated to the time-varying
graph G reported in Fig. 2. The affine graph is static and
undirected, and each of its maximal-cliques correspond to a
strongly connected component of the original time-varying
graph G.

maximum-clique is a maximal-clique whose size is equal
or larger than those of all the other cliques [33].
By construction, a clique of the affine graph GG , con-

tains nodes which are strongly connected to each other,
so that the maximal-cliques of the affine graph, i.e., all
the cliques which are not contained in any other clique,
are temporal strongly connected components (SCCT )
of G. Similarly, all the maximum-cliques of the affine
graphGG , i.e., its largest maximal-cliques, are the largest
temporal strongly connected components (LSCCT ) of G.
Therefore, the affine graph can be used to study the
connectedness of a time-varying graph, and the prop-
erties of the strongly connected components of a time-
varying graphs can be obtained from known results about
maximal-cliques on static graphs. For instance, the prob-
lem of finding a partition of G that contains the mini-
mum number of disjoint strongly connected components
is equivalent to the well–known problem of finding a par-
tition of the corresponding affine graph GG in the small-
est number of disjoint maximal-cliques [32]. Unfortu-
nately, this problem is known to be NP–complete, and in
practice can be exactly solved only for small graphs. In
the case of the affine graph in Fig. 3, it is possible to check
by hand that there are only three possible partitions of
GG into maximal-cliques, namely:

1. {1, 2, 3}
⋃

{4, 5}

2. {1, 2, 4}
⋃

{3}
⋃

{5}

3. {2, 4, 5}
⋃

{1, 3}

Notice that the second partition contains two isolated
nodes, which are indeed degenerated maximal-cliques.
Therefore, the original time-varying graph admits only
two different partitions into a minimal number of non-
degenerated strongly connected components, namely into
two components containing at least two nodes each. One
possible partition of our network G[t1,t4] is composed of
the components {1, 2, 3} and {4, 5}, while the other par-
tition consists of {2, 4, 5} and {1, 3}. If we discard the
temporal ordering of links, we obtain different results.

In fact, the aggregate static graph shown in Fig. 2 has
only one connected component, which includes all the
five nodes.
Other interesting results stem from the mapping into

affine graphs and from the following well known results
for cliques in graphs.

1. Checking if a graph contains a clique of a given size
k has polynomial computational complexity, and
precisely O(Nkk2) [34].

2. The clique decision problem, i.e., the problem of
testing whether a graph contains a clique larger
than a given size k, is NP–complete [32]. There-
fore, any algorithm which verifies if a time-varying
graph has a strongly connected component whose
size is larger than a fixed value k, has exponential
computational complexity.

3. Listing all the maximal-cliques of a graph has expo-
nential computational complexity, namely O(3N/3)
on a graph with N nodes [35, 36]. Consequently,
finding all strongly connected components of a
time-varying graph with N nodes, requires an
amount of time which exponentially grows with N .

4. The problem of finding a maximum-clique for
an undirected graph is known to be hard–to–
approximate [37–39], and an algorithm that finds
maximum-cliques requires exponential time. The
best algorithm works in O(∼ 1.2N) for a graph with
N nodes [40, 41].

5. The problem of determining if a graph can be parti-
tioned into K different cliques is NP–complete, and
consequently also the problem of finding the mini-
mum number of cliques that cover a graph, known
as the minimum clique cover, is NP–complete [32].
This means that there exists no efficient algorithm
to find a partition of a time-varying graph made
by a set of disjoint strongly connected components.
Moreover, there are in general more than one parti-
tion of a graph into maximal-cliques, so that a time-
varying graph cannot be uniquely partitioned into
a set of disjoint strongly connected components.

The existence of a relation between the strongly con-
nected components of a time-varying graph and the
maximal-cliques of its affine graph implies that it is prac-
tically unfeasible to find all the strongly connected com-
ponents of large time-varying graphs. The problem can
be exactly solved only for relatively small networks, for
which it is computationally feasible to enumerate all the
maximal-cliques of the corresponding affine graphs. Even
if, in many practical cases, it is possible to find only the
maximal-cliques up to a certain size k, we can still obtain
some information about the maximum value of k to be
checked. First of all, in order to have a clique of size k

the graph should have at least k nodes having at least k
links. Moreover, each clique of order k > 3 has exactly
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(

k
3

)

sub–cliques of order 3, so that in order for a subgraph

to be a clique of order k, the graph should have at least
(

k
3

)

triangles. This means that there is a relation between
the number of triangles of the affine graph and the size
of its maximum-cliques. In particular, the number of ex-
isting triangles in the affine graph fixes an upper bound
for the size of the largest admissible maximal-cliques of
the graph.

V. RESULTS

As a practical example, in this section we extract
and analyze node and graph components of real time-
varying social networks. Namely, we consider time-
varying networks constructed from the Reality Mining
dataset, which records contacts among students and fac-
ulty members at the Massachussets Institute of Technol-
ogy [42]. The information on contacts were collected by
providing each participant with a Bluetooth-enabled mo-
bile phone. A Bluetooth device is able to detect similar
devices within a limited range (5 to 10 meters), and par-
ticipants were asked to bring the mobile phone with them
all the time. Each device performs a scan procedure to
detect other devices every 5 minutes, and stores the list
of other detected devices at each scan. We make the rea-
sonable assumption that two individuals are co–located,
i.e., they are at the same place, at a given time, if their re-
spective devices detect each other. The dataset includes
co–location information among one hundred individuals
during six months, from the end of June 2004 to the end
of December 2004. At each time t, a co–location graph
can be obtained by connecting through undirected links
all the nodes which are co–located at that time. We con-
structed several time-varying graphs, i.e., sequences of
co–location graphs obtained every 5 minutes.
Here we report results of component analysis per-

formed on a) graphs corresponding to the first half and
to the second half of a week, b) graphs corresponding to
different days of a week and c) graphs corresponding to
different weeks. In particular, we will focus our atten-
tion on the Fall term (namely from start of September to
mid of December), which corresponds to weeks from 10
to 19 in the dataset. We chose this dataset for two very
simple reasons. First of all, due to the relatively small
number of nodes, it is possible to extract all the maximal-
cliques of the corresponding affine graphs by using a lim-
ited amount of computational resources. Secondly, this
dataset represents a real human interaction network and,
as we shall see in the following, the approximation made
representing it as a static graph, i.e., considering all the
links as concurrent in time, is a very poor and unrealistic
representation of the system.
In Fig. 4 we consider week 11. For each node, we re-

port the size of temporal in-component (panel a) and
temporal out-component (panel b) during the beginning
of the week (WB), namely from Monday 12:00am to
Thursday 12:00pm (red circles), and during the end of
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FIG. 4. Size of the temporal in-component (a) and out-
component (b) for each of the N = 100 individuals during
week 11 of the Reality Mining dataset. Red circles and blue
squares correspond, respectively, to the beginning of the week
(WB) and to end of the week (WE). For comparison, the size
of the largest connected component of the corresponding ag-
gregate static graph are reported as dashed red line (WB) and
solid blue line (WE), respectively.

the week (WE), namely from Thursday 12:00pm to Sun-
day 11:59pm (blue squares). During WB almost all
nodes have temporal in-components and out-components
of similar sizes. In fact, the majority of nodes have in-
component of size 72 and out-component of size 74. Con-
versely, during WE, we observe a wider distribution of
the sizes of temporal in- and out-components. In par-
ticular, in panel (a) we notice a group of nodes having
an in-component of size 53, another group whose in-
component contains around 40 nodes, and other nodes
with in-component of size smaller than 30. Similarly, in
panel (b), there is a group of nodes whose out-component
contains around 60 nodes, a second group of nodes with
out-component sizes between 40 and 50, and many other
nodes having out-component with less than 40 nodes.
The observed small variability in the size of node com-
ponents during WB, is due to the fact that students and
faculty members have more opportunities to meet and
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interact at lectures during WB. Even if not all students
attend the same classes, and not all professors teach to
all the students, there is a high probability that two in-
dividuals would be connected by longer temporal paths.
Conversely, during WE, the students usually meet other
students in small groups, and they usually do not meet
professors and lecturers, except for the classes held on
Thursday afternoon and on Friday. As a result, the size
of the in- and out-components during WE exhibits large
differences from node to node. Such fluctuations are lost
in a static graph description, which aggregates all the
links independently of their time ordering. In fact, the
two static aggregate graphs corresponding respectively
to WB and WE, have only one giant connected compo-
nent, which contains the majority of the nodes, while the
remaining nodes are isolated. As comparison, the size
of the giant component of the aggregate static graphs
for WB and WE are also reported in Fig. 4, respec-
tively as dashed red line and solid blue line. Notice that
the static aggregate graph corresponding to a co–location
time-varying graph is intrinsically undirected. Therefore,
the in- and out-components of a node in this graph coin-
cide and correspond to the component to which the node
belongs. Moreover, in a static aggregate graph all the
links (and consequently also all the paths) are always
available, so that all the nodes in the same connected
component have the same component size. As a result,
the variability in the node connectedness of the time-
varying network, which is evident from the distribution
of circles and squares in Fig. 4, is flattened down in the
aggregate static graph. In the latter case, all information
about network connectedness is represented by a single
value, namely the size of the largest connected compo-
nent, which does not provide any information about the
mutual reachability of two generic nodes of such a com-
ponent. In particular, the size of the giant connected
component of the static aggregate graph is equal to 74
during WB and to 66 during WE, despite the fact that
in the same intervals the majority of nodes have much
smaller temporal in- and out-components.

In Table I we report some relevant structural prop-
erties of the affine graphs. We consider and compare
the time-varying graphs constructed in the first 24 hours
(Monday) of ten consecutive weeks (from week 10 to week
19). We observe large fluctuations in the measured val-
ues. The number of links K ranges from 105 in week 12
to 1485 in week 15, while the number of triangles T is in
the range [307, 22096], with a mean value around 10000
and a standard deviation equal to 6932. This variance
is due to the fact that, even if the daily activity of each
individual is, on average, almost periodic, in a particu-
lar day we can observe a peculiar temporal pattern of
connections, for instance because some students decide
to skip a class or because the lessons are suspended for
public holidays. In particular, this is exactly what hap-
pens on week 12. Monday of week 12 is September 11th

2004, and corresponds to the Patriot Day, a national hol-
iday introduced in the US in October 2001, designated in

Monday
Week #

K T Ns 〈s〉 S NS NU NI C

10 646 4341 22 10.3 27 1 27 27 62
11 554 4414 15 9.1 29 1 29 29 54
12 105 307 11 4.1 13 1 13 13 22
13 772 8322 16 10.6 36 1 36 36 59
14 815 6481 20 12.7 27 1 27 27 62
15 1485 22096 23 23.7 44 1 44 44 67
16 1022 9033 22 16.5 29 1 29 29 70
17 1284 15572 19 22.3 38 1 38 38 67
18 1417 18430 16 20.7 44 1 44 44 67
19 1106 13531 13 20.9 38 2 42 34 60

TABLE I. Structural properties of the affine graph corre-
sponding to the time-varying graph of the first 24 hours of
the week (Monday), for each week of the Fall term: number
of links (K), number of triangles (T ), number of maximal
cliques (Ns), average size of maximal cliques (〈s〉), size of the
largest maximal clique (S), number of largest maximal cliques
(NS), number of nodes in the union (NU ) and in the inter-
section (NI) of all largest maximal cliques. The size of the
giant component of the corresponding static aggregate graph
(C) is reported in the rightmost column.

memory of the 2977 killed in the September 11th, 2001
attacks. Therefore, we observe the minimum connectiv-
ity and the minimum number of triangles on week 12, be-
cause all teaching activities were suspended, and students
did not participate to lessons as usual.Also the number
Ns and the average size 〈s〉 of maximal cliques of the
affine graphs change from one week to another. In par-
ticular, during weeks 10 to 14 we observe relative smaller
values of Ns and 〈s〉 than in weeks 15 to 19, which is
probably due to the relatively lower number of links and
triangles. Conversely, if we consider the size S of the
largest strongly connected component (i.e., the largest
maximal-clique of the affine graph), we notice that it is
not strongly correlated with K and T . For instance, the
size of the largest strongly connected component found
at week 11 (S = 29) is equal to that observed at week 16.
However at week 11 the affine graph has a much smaller
number of links and triangles than at week 16. Moreover,
on Monday of week 14 we have a maximal-clique of size
27, even if the number of links and triangles is higher
than on Monday of week 11. These results confirm that
the size of the largest strongly connected component of
a time-varying graph is mainly due to the actual config-
uration of links and triangles of the corresponding affine
graph, and not only to their relative number. We notice
also that every affine graph reported in Table I admits a
single LSCCT , except at week 19 where two LSCCT s of
size S = 38 emerge. For this reason, we also looked at
the number of nodes NU which participate to at least one
LSCCT , and at the numberNI of nodes which participate
to all LSCCT s. These numbers correspond, respectively,
to the number of nodes found in the union and in the
intersection of all LSCCT s. An interesting result is that
NI = 34 on week 19, so that 34 nodes participate to both
maximal 42-node cliques. These 34 nodes play a very im-
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Week # K T Ns 〈s〉 S NS NU NI C
10 2200 45428 10 44.0 61 1 61 61 69
11 2506 54500 12 46.8 64 1 64 64 75
12 2598 57913 12 43.5 66 1 66 66 77
13 2965 71561 9 62.5 69 1 69 69 79
14 2590 56826 15 39.3 64 1 64 64 79
15 3321 85348 9 54.7 74 1 74 74 85
16 2927 69452 9 53.2 70 1 70 70 80
17 2802 66247 10 57.9 69 1 69 69 77
18 2298 47429 12 40.0 61 2 62 60 73
19 2966 70963 13 53.8 69 3 72 68 81

TABLE II. Structural properties of the affine graph corre-
sponding to the time-varying graph of the whole week, for
each week of the Fall term. Legend as in Table I.

portant role in the structure of the network. If we remove
just one of them, then the resulting affine graph does not
have a clique of size 42 any more, and consequently the
size of the LSCCT of the remaining time-varying graph
is smaller than 42. At the same time, removing all these
NI nodes will cause a significant reduction in the size of
LSCCT s, in the number of triangles of the affine graph
and, consequently, in the number of SCCT s. The nodes
that participate to at least one LSCCT are important
in the diffusion of information throughout time-varying
graphs. In fact, it is sufficient to pass a message to one
of the nodes in a LSCCT early in the morning, to assure
that at least NU nodes will receive the message before
the end of the day.

Finally, in the rightmost column of Table I we report
the size C of the giant component of the corresponding
static aggregate graph. Notice that for any of the ten
weeks under consideration, the value of C is much larger
than S, as a consequence of the fact that the static repre-
sentation of the time-varying graph systematically over-
estimates node connectedness and paths availability. In
panel (a) of Fig. 5 we plot the value of S and C for each
Monday of the Fall term. We notice that both C and S
are able to capture the anomalous behavior at Monday
of week 12 (Patriot Day). If we focus our attention on
the period from week 13 to week 19, the size of the giant
connected component of the aggregate static graph is in
the range [59, 70], while the size of the LSCCT of the
time-varying graphs in the same interval exhibits wider
fluctuations between S = 27 (week 14) and S = 44 (week
15 and week 18). This variability is due to the intrinsic
fluctuations observed in human contact networks. For
instance, some of the students which attended a given
class on Monday of week 13, might have decided to re-
main at home on week 14, and this eventually had an
impact on the availability of links and paths, producing
smaller strongly connected components. This intrinsic
variability is somehow flattened down if we use the stan-
dard static component analysis and compute the largest
connected component of a static graph which aggregates
all the links of one day. Furthermore, we notice the lack
of correlation between C and S. (the linear correlation

coefficient between C and S from week 13 to week 19 is
equal to r = 0.12). For instance, at Monday of week 16
we observe the maximum value of C, namely C = 70,
while the time-varying graph has a largest strongly con-
nected component of size S = 29, which is relatively small
compared to the other weeks. Conversely, at Monday of
week 13 we observe a relatively small giant component,
with C = 59 nodes, while the size of the largest strongly
connected component is S = 36.

In order to show the results of our analysis when ap-
plied at a larger temporal scale (weeks instead of days),
we have reported in Table II the structural properties of
the affine graphs constructed from the contacts observed
during a whole week. As in Table I, we compare the 10
weeks in the Fall term. We observe a variance in the num-
ber of links and triangles: K is in the range [2200, 3321]
and T is in the range [45428, 85348], and still there is
no appreciable correlation between the average size 〈s〉
of SCCT s and K or T . If we look at panel (b) of Fig. 5,
where we report S and C for the time-varying graph cor-
responding to the whole week, we notice that the size of
the LSCCT at each week is still lower than the size of the
giant component of the corresponding aggregate graph.
Differently from the case of single days, at a scale of the
entire week we observe a clear correlation between S and
C. The linear correlation coefficient between C and S,
from week 10 to week 19, is now equal to r = 0.89. These
results confirm that the number and size of strongly con-
nected components in time-varying graphs depend on the
length of the period during which we observe the system.
In our system at the scale of a week, almost all the nodes
are in the largest strongly connected component because
longer temporal paths appear, so that the affine graphs at
different weeks are more similar to each other and the in-
formation extracted from a temporal analysis is similar
to that obtained by plotting static measures on aggre-
gated graphs as function of time. On the contrary, at the
scale of a day, our system has affine graphs which are dis-
connected or similar to trees, with very few triangles and
relatively small cliques. In this case, as shown in Fig. 5, a
temporal component analysis of time-varying graphs re-
veals interesting details about the dynamics of contacts,
which cannot be detected by a static graph analysis.

Finally, in Fig. 6 we show the temporal evolution of
S and C during the week. In particular we compare
week 13 and week 16. A point of the plot at time t

is obtained by considering the time-varying graph con-
structed from the events occurred in the interval [0, t],
where t = 0 corresponds to Monday at 00:00. For each of
these time-varying graphs we construct the correspond-
ing affine graph to compute S(t), and then we consider
the static aggregate graph to obtain C(t). We observe
that S(t) is always smaller than C(t), ∀t. In particular,
until Tuesday at midnight the size of the largest strongly
connected component in week 16 is around S = 30, which
is less than 50% of the size reached on Sunday. More-
over, at Wednesday midnight the maximal-clique con-
tains S = 54 nodes, and the size continues to grow until
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FIG. 5. Panel a): size of the LSCCT of the time-varying graph on Monday (red circles) and of the giant component of
the corresponding static aggregate graph (blue squares). Panel b): the same as panel a) but for the time-varying graph
corresponding to the whole week.
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FIG. 6. Size of the largest strongly connected component of
the time-varying graph (lines with filled symbols) and size
of the giant component of the corresponding static aggre-
gate graph (lines with empty symbols). The black lines with
squares correspond to week 13, while red lines with circles
correspond to week 16. Large ticks on the x-axis indicate
12:00pm of each day.

the end of the week. Conversely, the size of the giant com-
ponent of the corresponding aggregate graph on Tuesday
at midnight is C = 73, which is more than twice larger
than the largest strongly connected component at the
same time and corresponds to 90% of the size of the giant
component at the end of the week. On Friday at mid-
night the size of the giant component has already reached
its maximal value, and does not change any more until
the end of Sunday. Notice that the temporal evolution
of the size of the giant component over the week looks
similar in the two cases, while we observe interesting dif-
ferences in the temporal evolution of the size of largest
strongly connected component. In fact, the size of the
LSCCT at the end of Monday of week 13 is S = 36,

while at the same time the size of LSCCT for week 16
is S = 29. This indicates that during Monday of week
13 there has been a higher number of contacts than dur-
ing Monday of week 16. On the contrary, at the end of
Tuesday the size of LSCCT of week 13 is S = 48, which
is smaller than the value observed at the same time in
week 16, i.e., S = 54. All these variations, which are due
to the temporal correlation and fluctuations in the indi-
viduals’ connection patterns, disappear in an aggregate
static representation.

VI. CONCLUSIONS

Conventional definitions of connectedness and compo-
nents proposed so far have only considered aggregated,
static topologies, neglecting important temporal infor-
mation such as time order, duration and frequency of
links. In this work we have extended the concepts of
connectedness to the case of time-varying graphs, and
we have introduced definitions of node and graph compo-
nents which take into account times of appearance and
temporal correlations of links. The proposed temporal
measures are able to capture variations and fluctuations
in the linking patterns, typical of many real social and
biological systems. As a first application we have studied
a database of human contacts, showing that variations in
the pattern of connections among nodes produce relevant
differences in the size and number of temporal strongly
connected components. We pointed out the important
role played by nodes which belong to many strongly con-
nected components at the same time, and we have also
analyzed how temporal strongly connected components
evolve over time. We hope that our formalism would
be useful to analyze other datasets of time-varying net-
works that will be available in the near future, and to
better characterize dynamical processes that take place
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on these networks, such as diffusion of information and spreading of diseases.
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