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ON ‘A CHARACTERIZATION OF R-FUCHSIAN GROUPS
ACTING ON THE COMPLEX HYPERBOLIC PLANE’

SASHA ANAN'IN

ABSTRACT. We indicate a C-Fuchsian counter-example to the result with the above title announced at
http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf and prove a stronger state-
ment.

1. Introduction

The following result

‘We prove that a complex hyperbolic non-elementary Kleinian group G acting on two-dimensional
complex hyperbolic space HZ is R-Fuchsian, that is, G leaves invariant a totally real plane in HZ,
if and only if every loxodromic element of G is either hyperbolic or loxodromic whose elliptic part is of
order 2.

is announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf as a
content of a one-hour talk.

The assertion as it stands is wrong (see a C-Fuchsian counter-example in Section 3). The following
theorem directly implies a corrected statement.

Theorem. Let V be a C-linear space equipped with a hermitian form (—, —) of signature ++ — and
let G < SUV be a subgroup such that the trace tr g of every loxodromic element g € G belongs to Ré,,
where 53 = 1. Suppose that G contains a loxodromic element. Then either there exists a 1-dimensional
G-stable C-subspace in V' or there exists a totally real 3-dimensional G-stable R-subspace in V.

2. Proof of Theorem
We assume that there is no 1-dimensional G-stable C-subspace in V.

2.1. First, suppose that tr G C R.
Let W < V be a G-stable R-subspace in V. Then the C-subspaces CW, W NiW, and W+ := {v €
V| (v, W) =0} are obviously G-stable. It follows that dimg W cannot equal

e 1 because, otherwise, CW is a 1-dimensional G-stable C-subspace in V;

o 2 because, otherwise, dime CW equals 1 or 2 and, in the latter case, dime¢ W+ = 1;

o 4 because, otherwise, either W is a complex subspace with dimc W+ =1 or W +iW = CW =V and

dimg (W NiW) = 2, that is, dim¢(W NiW) = 1;

e 5 because, otherwise, W 4+ iW = CW =V and dimg(W NiW) = 4, that is, dimc(W NiW) = 2.
Suppose that dimg W = 3. Let g € G be loxodromic. The eigenvalues of g are 1,771, 7, where

0,+1 # r € R. Denote by eg,e1,ea € V the corresponding eigenvectors, where eq is positive and

orthogonal to the isotropic e1, ea such that ¢ := (e1, ea) # 0. Since W NiW = 0, there is no C-subspace

in W. Therefore, dimg(WW N Ce;) < 1. On the other hand, since the characteristic polynomial of g

equals (z — 1)(x — r=1)(z — r), there is a basis of eigenvectors of g in W. Thus, we can assume that

eo,e1,e2 € W. Clearly, W is totally real if ¢ € R. Suppose that ¢ ¢ R. Then Im(W,w) = 0 for
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w € W is equivalent to w € Reg. For any h € G, we have 0 = Im(W, eg) = Im(hW, heg) = Im(W, heo).
So, Geg C Reg. A contradiction.

Suppose that V' has no proper G-stable R-subspaces. Let A := RG denote the real span of G and
D := Endy V denote the division R-algebra of endomorphisms of the simple A-module V' (Schur’s
lemma). By Artin-Wedderburn theorem, a quotient algebra of A is isomorphic to End Vp. Since
dimg V = 6, we have D = R and dimg EndVp = 36 or D = C and dim¢c EndVp = 9. On the other
hand, A < End¢ V and dimgc Ende V = 9. Hence, A = End¢ V, which contradicts tr A C R.

2.2. Without loss of generality, we can assume that G contains a nontrivial cubic root of unity. Then
there exists a loxodromic g € G with trg € R. In a suitable basis eg, €1, es with the Gram matrix

100 100
[001}, such a g has the form g := |:Or1 0], where 0, +1 # r € R.
010 00 r

2.3. Remark. Let g € G be loxodromic with trg € R and let eg,e1,ea € V be eigenvectors of g
100
with the Gram matrix |00 1|. Then, for every h € G, there exists a cubic root of unity § such that

010
(heg, eq), (he1, ea), (hea,e1),tr(g"h) € RS for all n € Z.

Proof. It is easy to see that tr(g™h) = (heg,eq) + r~"(hei,e2) + r"(hea,e1). If (hey,es) # 0 or
(hea,e1) # 0, then ¢g™h is loxodromic for sufficiently large |n|. Therefore, (heg, eo), (he1,ez), (hea,e1) €

-2 0 0
R¢ for a suitable cubic root of unity 4. If (hey,es) = (hea,e1) =0, then h = [ Eo 0 as} with a > 0
0 a'eoO

too -

and |e| = 1. Since h? = [80 2 o] and (hZe1,es) = (h?e2,e1) = €2 # 0, we obtain €2 € RS, where
0 0 &2

8% = 1. Again, we get (heg, eo), (her,ea), (hea,e1) € RS m

2.4. Lemma. Let g,h € G be loxodromic with tr g,tr h € R. Then tr(gh) € R.

100
Proof. In some bases eg, e1,e2 and fy, f1, fo with Gram matrix {0 0 1], we respectively have g =
010

0 0 r 0 0 s
for i = 0,1,2. By Remark 2.3, for every n € Z, there exists some cubic root of unity d,, such that

(h™ep, eq), (h™e1,e2), (heq,e1) € R4,. Taking § such that §,, = ¢ for infinitely many n’s, from

100 100
|:0r1 0] and h = |0s7! 0}, where 0,+1 # r, s € R. Let ¢;; := (e;, fj). Then e; = gio fo + gi2f1 + gi1 f2

<hn€07 €0> = go0Goo + 5~ 902001 + 5" 90102,

<hn€17 €2> = g10090 + 5 "g12021 + 5" 911029, <hne2a €1> = 20010 + 5 "g22011 + 5" 921012,

we obtain
9009005 9029015 9019025 9109205 9129215 9119225 9209105 9229115 921912 € RO.

If 911790 = 0, then eg # €1 = f1 # fa or e1 # e = fo # f1 (the equalities and inequalities are meant in
the projective sense). Hence, g1279; # 0. We conclude that 6 =1 g

2.5. Lemma. Let g,h1,he € G be such that g is loxodromic and tr g,tr(g"h1),tr(¢g"h2) € R for all
n € Z. Then tr(g"hy 'hsy) € R for all n € Z.

Proof. Using the symmetry between hy, hy and replacing hi, ha by g*h1, g*ha, if necessary, we can as-

+1 0 0
sume (as in the proof of Remark 2.3) that hs is loxodromic unless both k1, he have the type { 0 0 as:|
0 a e 0

in the basis related to g, where a > 0 and €2 = F1. In this particular case, hflhg is diagonal with
coefficients in R U Ri. By Remark 2.3, for some cubic root of unity §, we have tr(g"hflhg) € R§ for all
n € Z. Therefore, the mentioned coefficients have to be real.
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So, we assume that ho is loxodromic with tr he € R. Suppose that tr(g"hl_lhg) € RJ for all n € Z,
where 6% = 1 and § # 1. For some m € Z, we have 0 # tr(¢™hy *ha) € RS as, otherwise, we are done.
Hence, by Remark 2.3, tr(¢g™h; *h3) € RS for all n € Z. In particular, tr(¢g™h; ") € RS, which implies
tr(g™hy ") = 0.

Suppose that gkhl_1 is loxodromic for some k € Z. As in the proof of Remark 2.3, we conclude that
g™hy* is loxodromic for all sufficiently large/small n. By Lemma 2.4, tr(¢"h] 'hs) € R for all such n’s,
implying tr(g"hflhg) = 0, a contradiction.

1 0 0
So, hy! is of the type [ 0 0 a5:|. This contradicts tr(¢™h;') =0 m
0 ateo0

2.6. By Lemma 2.5, H := {h € G | tr(g"h) € R for all n € Z} is a subgroup in G. Obviously, G is
generated by H and the cubic roots of unity. It suffices to deal with H in place of GG. In other words,
we can assume that tr G C R.

3. Counter-example

Let A(c,ps,q7) be a geodesic triangle in the hyperbolic
plane with the corresponding interior angles ¢, %,5. The
area of this triangle equals ;. Taking 10 congruent trian-
gles with common vertex ¢, we obtain a pentagon with area
area(ps, e, P7, P8, P9) = m. By [ABG], the reflections R(g;) in
the middle points ¢;, i = 6,7,8,9, 10, of the sides of the penta-
gon satisfy the relation R(q10)R(q9)R(gs)R(q7)R(gs) = £1 in
SU(1,1) and provide a discrete group Hs. Note that, by the
definition from [ABG], we have R(q)z := z(x -2 g’z; q).
Denote Q(q) := —iR(q) (in the complex hyperbolic plane, Q(q) € SUV). We consider 3 more

Copies of the pentagon P(qﬁ7 q7,48,49, Q10)7 na'mely: P(qf)u 410,99, 912, q11)7 P(q47 q11, 912,413, Q14)7 and
P(q1,92,3,q14,q13). The geodesics G <qg, 10~ and G <q11,¢12> are ultraparallel (this can be shown
with the help of SEs; see [ABG]). The geodesics of this type separate the four pentagons, so that we

-1 0 0
have exactly what is drawn on the picture. Since Q(q10)Q(q9)Q(gs)Q(q7)Q(g6) = [ 0 £(=1)> 0 5] =
0 0 +(—i)

-10 0
[ 0 Fi 0 } and Q(¢)Q(¢) =1 in SUV, we have
0 0 Ti

1 4
- [ 2 %0 } — (Q(a)Q(47)Q(06)Q(010)Q(a9)) - (Q(00)Q(010)Q(5) Q1) Qc12))-

0 0 Fi

(Q(q12)Q(q11)Q(4)Q(q14)Q(q13)) - (Q(q13)Q(q14)Q(43)Q(q2)Q(q1)) =

= Q(q8)Q(q7)Q(q6)Q(q5)Q(94)Q(q3)Q(q2)Q(q1)-

By [ABG], we obtain a C-Fuchsian faithful and discrete representation of Hg and, hence, a C-Fuchsian

faithful and discrete representation of the fundamental group Gg of a surface of genus 3. As Gg consists

of all words of even length in the Q(g;)’s, i = 1,2,3,4,5,6,7,8, every element I € Gg has the form
1 0 0

I= [0 r~la 0 } in a suitable basis eg, e1, €2, where ej, eo are isotropic points in the complex geodesic,

0 0 ra
eo is its polar point, r > 0, and |a| = 1. Since I € SUV, we obtain o = +1.
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