ON 'A CHARACTERIZATION OF \mathbb{R}-FUCHSIAN GROUPS ACTING ON THE COMPLEX HYPERBOLIC PLANE'

Sasha Anan'in

Abstract

We indicate a \mathbb{C}-Fuchsian counter-example to the result with the above title announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf and prove a stronger statement.

1. Introduction

The following result
'We prove that a complex hyperbolic non-elementary Kleinian group G acting on two-dimensional complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^{2}$ is \mathbb{R}-Fuchsian, that is, G leaves invariant a totally real plane in $\mathbf{H}_{\mathbb{C}}^{2}$, if and only if every loxodromic element of G is either hyperbolic or loxodromic whose elliptic part is of order 2.'
is announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf as a content of a one-hour talk.

The assertion as it stands is wrong (see a \mathbb{C}-Fuchsian counter-example in Section 3). The following theorem directly implies a corrected statement.

Theorem. Let V be a \mathbb{C}-linear space equipped with a hermitian form $\langle-,-\rangle$ of signature ++- and let $G \leq \mathrm{SU} V$ be a subgroup such that the trace $\operatorname{tr} g$ of every loxodromic element $g \in G$ belongs to $\mathbb{R} \delta_{g}$, where $\delta_{g}^{3}=1$. Suppose that G contains a loxodromic element. Then either there exists a 1-dimensional G-stable \mathbb{C}-subspace in V or there exists a totally real 3 -dimensional G-stable \mathbb{R}-subspace in V.

2. Proof of Theorem

We assume that there is no 1 -dimensional G-stable \mathbb{C}-subspace in V.
2.1. First, suppose that $\operatorname{tr} G \subset \mathbb{R}$.

Let $W \leq V$ be a G-stable \mathbb{R}-subspace in V. Then the \mathbb{C}-subspaces $\mathbb{C} W, W \cap i W$, and $W^{\perp}:=\{v \in$ $V \mid\langle v, W\rangle=0\}$ are obviously G-stable. It follows that $\operatorname{dim}_{\mathbb{R}} W$ cannot equal

- 1 because, otherwise, $\mathbb{C} W$ is a 1 -dimensional G-stable \mathbb{C}-subspace in V;
- 2 because, otherwise, $\operatorname{dim}_{\mathbb{C}} \mathbb{C} W$ equals 1 or 2 and, in the latter case, $\operatorname{dim}_{\mathbb{C}} W^{\perp}=1$;
- 4 because, otherwise, either W is a complex subspace with $\operatorname{dim}_{\mathbb{C}} W^{\perp}=1$ or $W+i W=\mathbb{C} W=V$ and $\operatorname{dim}_{\mathbb{R}}(W \cap i W)=2$, that is, $\operatorname{dim}_{\mathbb{C}}(W \cap i W)=1$;
- 5 because, otherwise, $W+i W=\mathbb{C} W=V$ and $\operatorname{dim}_{\mathbb{R}}(W \cap i W)=4$, that is, $\operatorname{dim}_{\mathbb{C}}(W \cap i W)=2$.

Suppose that $\operatorname{dim}_{\mathbb{R}} W=3$. Let $g \in G$ be loxodromic. The eigenvalues of g are $1, r^{-1}, r$, where $0, \pm 1 \neq r \in \mathbb{R}$. Denote by $e_{0}, e_{1}, e_{2} \in V$ the corresponding eigenvectors, where e_{0} is positive and orthogonal to the isotropic e_{1}, e_{2} such that $c:=\left\langle e_{1}, e_{2}\right\rangle \neq 0$. Since $W \cap i W=0$, there is no \mathbb{C}-subspace in W. Therefore, $\operatorname{dim}_{\mathbb{R}}\left(W \cap \mathbb{C} e_{i}\right) \leq 1$. On the other hand, since the characteristic polynomial of g equals $(x-1)\left(x-r^{-1}\right)(x-r)$, there is a basis of eigenvectors of g in W. Thus, we can assume that $e_{0}, e_{1}, e_{2} \in W$. Clearly, W is totally real if $c \in \mathbb{R}$. Suppose that $c \notin \mathbb{R}$. Then $\operatorname{Im}\langle W, w\rangle=0$ for

2000 Mathematics Subject Classification. 57M50 (57S25).
$w \in W$ is equivalent to $w \in \mathbb{R} e_{0}$. For any $h \in G$, we have $0=\operatorname{Im}\left\langle W, e_{0}\right\rangle=\operatorname{Im}\left\langle h W, h e_{0}\right\rangle=\operatorname{Im}\left\langle W, h e_{0}\right\rangle$. So, $G e_{0} \subset \mathbb{R} e_{0}$. A contradiction.

Suppose that V has no proper G-stable \mathbb{R}-subspaces. Let $A:=\mathbb{R} G$ denote the real span of G and $D:=\operatorname{End}_{A} V$ denote the division \mathbb{R}-algebra of endomorphisms of the simple A-module V (Schur's lemma). By Artin-Wedderburn theorem, a quotient algebra of A is isomorphic to End V_{D}. Since $\operatorname{dim}_{\mathbb{R}} V=6$, we have $D=\mathbb{R}$ and $\operatorname{dim}_{\mathbb{R}}$ End $V_{D}=36$ or $D=\mathbb{C}$ and $\operatorname{dim}_{\mathbb{C}}$ End $V_{D}=9$. On the other hand, $A \leq \operatorname{End}_{\mathbb{C}} V$ and $\operatorname{dim}_{\mathbb{C}} \operatorname{End}_{\mathbb{C}} V=9$. Hence, $A=\operatorname{End}_{\mathbb{C}} V$, which contradicts $\operatorname{tr} A \subset \mathbb{R}$.
2.2. Without loss of generality, we can assume that G contains a nontrivial cubic root of unity. Then there exists a loxodromic $g \in G$ with $\operatorname{tr} g \in \mathbb{R}$. In a suitable basis e_{0}, e_{1}, e_{2} with the Gram matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, such a g has the form $g:=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{-1} & 0 \\ 0 & 0 & r\end{array}\right]$, where $0, \pm 1 \neq r \in \mathbb{R}$.
2.3. Remark. Let $g \in G$ be loxodromic with $\operatorname{tr} g \in \mathbb{R}$ and let $e_{0}, e_{1}, e_{2} \in V$ be eigenvectors of g with the Gram matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. Then, for every $h \in G$, there exists a cubic root of unity δ such that $\left\langle h e_{0}, e_{0}\right\rangle,\left\langle h e_{1}, e_{2}\right\rangle,\left\langle h e_{2}, e_{1}\right\rangle, \operatorname{tr}\left(g^{n} h\right) \in \mathbb{R} \delta$ for all $n \in \mathbb{Z}$.

Proof. It is easy to see that $\operatorname{tr}\left(g^{n} h\right)=\left\langle h e_{0}, e_{0}\right\rangle+r^{-n}\left\langle h e_{1}, e_{2}\right\rangle+r^{n}\left\langle h e_{2}, e_{1}\right\rangle$. If $\left\langle h e_{1}, e_{2}\right\rangle \neq 0$ or $\left\langle h e_{2}, e_{1}\right\rangle \neq 0$, then $g^{n} h$ is loxodromic for sufficiently large $|n|$. Therefore, $\left\langle h e_{0}, e_{0}\right\rangle,\left\langle h e_{1}, e_{2}\right\rangle,\left\langle h e_{2}, e_{1}\right\rangle \in$ $\mathbb{R} \delta$ for a suitable cubic root of unity δ. If $\left\langle h e_{1}, e_{2}\right\rangle=\left\langle h e_{2}, e_{1}\right\rangle=0$, then $h=\left[\begin{array}{ccc}-\varepsilon^{-2} & 0 & 0 \\ 0 & 0 & a \varepsilon \\ 0 & a^{-1} \varepsilon & 0\end{array}\right]$ with $a>0$ and $|\varepsilon|=1$. Since $h^{2}=\left[\begin{array}{ccc}\varepsilon^{-4} & 0 & 0 \\ 0 & \varepsilon^{2} & 0 \\ 0 & 0 & \varepsilon^{2}\end{array}\right]$ and $\left\langle h^{2} e_{1}, e_{2}\right\rangle=\left\langle h^{2} e_{2}, e_{1}\right\rangle=\varepsilon^{2} \neq 0$, we obtain $\varepsilon^{2} \in \mathbb{R} \bar{\delta}$, where $\delta^{3}=1$. Again, we get $\left\langle h e_{0}, e_{0}\right\rangle,\left\langle h e_{1}, e_{2}\right\rangle,\left\langle h e_{2}, e_{1}\right\rangle \in \mathbb{R} \delta$
2.4. Lemma. Let $g, h \in G$ be loxodromic with $\operatorname{tr} g, \operatorname{tr} h \in \mathbb{R}$. Then $\operatorname{tr}(g h) \in \mathbb{R}$.

Proof. In some bases e_{0}, e_{1}, e_{2} and f_{0}, f_{1}, f_{2} with Gram matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, we respectively have $g=$ $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{-1} & 0 \\ 0 & 0 & r\end{array}\right]$ and $h=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & s^{-1} & 0 \\ 0 & 0 & s\end{array}\right]$, where $0, \pm 1 \neq r, s \in \mathbb{R}$. Let $g_{i j}:=\left\langle e_{i}, f_{j}\right\rangle$. Then $e_{i}=g_{i 0} f_{0}+g_{i 2} f_{1}+g_{i 1} f_{2}$ for $i=0,1,2$. By Remark 2.3, for every $n \in \mathbb{Z}$, there exists some cubic root of unity δ_{n} such that $\left\langle h^{n} e_{0}, e_{0}\right\rangle,\left\langle h^{n} e_{1}, e_{2}\right\rangle,\left\langle h^{n} e_{2}, e_{1}\right\rangle \in \mathbb{R} \delta_{n}$. Taking δ such that $\delta_{n}=\delta$ for infinitely many n 's, from

$$
\begin{gathered}
\left\langle h^{n} e_{0}, e_{0}\right\rangle=g_{00} \bar{g}_{00}+s^{-n} g_{02} \bar{g}_{01}+s^{n} g_{01} \bar{g}_{02} \\
\left\langle h^{n} e_{1}, e_{2}\right\rangle=g_{10} \bar{g}_{20}+s^{-n} g_{12} \bar{g}_{21}+s^{n} g_{11} \bar{g}_{22}, \quad\left\langle h^{n} e_{2}, e_{1}\right\rangle=g_{20} \bar{g}_{10}+s^{-n} g_{22} \bar{g}_{11}+s^{n} g_{21} \bar{g}_{12}
\end{gathered}
$$

we obtain

$$
g_{00} \bar{g}_{00}, g_{02} \bar{g}_{01}, g_{01} \bar{g}_{02}, g_{10} \bar{g}_{20}, g_{12} \bar{g}_{21}, g_{11} \bar{g}_{22}, g_{20} \bar{g}_{10}, g_{22} \bar{g}_{11}, g_{21} \bar{g}_{12} \in \mathbb{R} \delta
$$

If $g_{11} \bar{g}_{22}=0$, then $e_{2} \neq e_{1}=f_{1} \neq f_{2}$ or $e_{1} \neq e_{2}=f_{2} \neq f_{1}$ (the equalities and inequalities are meant in the projective sense). Hence, $g_{12} \bar{g}_{21} \neq 0$. We conclude that $\delta=1$
2.5. Lemma. Let $g, h_{1}, h_{2} \in G$ be such that g is loxodromic and $\operatorname{tr} g, \operatorname{tr}\left(g^{n} h_{1}\right), \operatorname{tr}\left(g^{n} h_{2}\right) \in \mathbb{R}$ for all $n \in \mathbb{Z}$. Then $\operatorname{tr}\left(g^{n} h_{1}^{-1} h_{2}\right) \in \mathbb{R}$ for all $n \in \mathbb{Z}$.

Proof. Using the symmetry between h_{1}, h_{2} and replacing h_{1}, h_{2} by $g^{k} h_{1}, g^{k} h_{2}$, if necessary, we can assume (as in the proof of Remark 2.3) that h_{2} is loxodromic unless both h_{1}, h_{2} have the type $\left[\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & 0 & a \varepsilon \\ 0 & a^{-1} \varepsilon & 0\end{array}\right]$ in the basis related to g, where $a>0$ and $\varepsilon^{2}=\mp 1$. In this particular case, $h_{1}^{-1} h_{2}$ is diagonal with coefficients in $\mathbb{R} \cup \mathbb{R} i$. By Remark 2.3, for some cubic root of unity δ, we have $\operatorname{tr}\left(g^{n} h_{1}^{-1} h_{2}\right) \in \mathbb{R} \delta$ for all $n \in \mathbb{Z}$. Therefore, the mentioned coefficients have to be real.

So, we assume that h_{2} is loxodromic with $\operatorname{tr} h_{2} \in \mathbb{R}$. Suppose that $\operatorname{tr}\left(g^{n} h_{1}^{-1} h_{2}\right) \in \mathbb{R} \delta$ for all $n \in \mathbb{Z}$, where $\delta^{3}=1$ and $\delta \neq 1$. For some $m \in \mathbb{Z}$, we have $0 \neq \operatorname{tr}\left(g^{m} h_{1}^{-1} h_{2}\right) \in \mathbb{R} \delta$ as, otherwise, we are done. Hence, by Remark 2.3, $\operatorname{tr}\left(g^{m} h_{1}^{-1} h_{2}^{n}\right) \in \mathbb{R} \delta$ for all $n \in \mathbb{Z}$. In particular, $\operatorname{tr}\left(g^{m} h_{1}^{-1}\right) \in \mathbb{R} \delta$, which implies $\operatorname{tr}\left(g^{m} h_{1}^{-1}\right)=0$.

Suppose that $g^{k} h_{1}^{-1}$ is loxodromic for some $k \in \mathbb{Z}$. As in the proof of Remark 2.3, we conclude that $g^{n} h_{1}^{-1}$ is loxodromic for all sufficiently large/small n. By Lemma 2.4, $\operatorname{tr}\left(g^{n} h_{1}^{-1} h_{2}\right) \in \mathbb{R}$ for all such n 's, implying $\operatorname{tr}\left(g^{n} h_{1}^{-1} h_{2}\right)=0$, a contradiction.

So, h_{1}^{-1} is of the type $\left[\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & 0 & a \varepsilon \\ 0 & a^{-1} \varepsilon & 0\end{array}\right]$. This contradicts $\operatorname{tr}\left(g^{m} h_{1}^{-1}\right)=0$
2.6. By Lemma 2.5, $H:=\left\{h \in G \mid \operatorname{tr}\left(g^{n} h\right) \in \mathbb{R}\right.$ for all $\left.n \in \mathbb{Z}\right\}$ is a subgroup in G. Obviously, G is generated by H and the cubic roots of unity. It suffices to deal with H in place of G. In other words, we can assume that $\operatorname{tr} G \subset \mathbb{R}$.

3. Counter-example

Let $\Delta\left(c, p_{6}, q_{7}\right)$ be a geodesic triangle in the hyperbolic
 plane with the corresponding interior angles $\frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{2}$. The area of this triangle equals $\frac{\pi}{10}$. Taking 10 congruent triangles with common vertex c, we obtain a pentagon with area $\operatorname{area}\left(p_{5}, p_{6}, p_{7}, p_{8}, p_{9}\right)=\pi$. By $[\mathrm{ABG}]$, the reflections $R\left(q_{i}\right)$ in the middle points $q_{i}, i=6,7,8,9,10$, of the sides of the pentagon satisfy the relation $R\left(q_{10}\right) R\left(q_{9}\right) R\left(q_{8}\right) R\left(q_{7}\right) R\left(q_{6}\right)= \pm 1$ in $\mathrm{SU}(1,1)$ and provide a discrete group H_{5}. Note that, by the definition from [ABG], we have $R(q) x:=i\left(x-2 \frac{\langle x, q\rangle}{\langle q, q\rangle} q\right)$.
Denote $Q(q):=-i R(q)$ (in the complex hyperbolic plane, $Q(q) \in \mathrm{SU} V$). We consider 3 more copies of the pentagon $P\left(q_{6}, q_{7}, q_{8}, q_{9}, q_{10}\right)$, namely: $P\left(q_{5}, q_{10}, q_{9}, q_{12}, q_{11}\right), P\left(q_{4}, q_{11}, q_{12}, q_{13}, q_{14}\right)$, and $P\left(q_{1}, q_{2}, q_{3}, q_{14}, q_{13}\right)$. The geodesics $\mathrm{G} \prec q_{9}, q_{10} \succ$ and $\mathrm{G} \prec q_{11}, q_{12} \succ$ are ultraparallel (this can be shown with the help of SEs; see $[\mathrm{ABG}])$. The geodesics of this type separate the four pentagons, so that we have exactly what is drawn on the picture. Since $Q\left(q_{10}\right) Q\left(q_{9}\right) Q\left(q_{8}\right) Q\left(q_{7}\right) Q\left(q_{6}\right)=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \pm(-i)^{5} & 0 \\ 0 & & \pm(-i)^{5}\end{array}\right]=$ $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \mp i & 0 \\ 0 & 0 & \mp i\end{array}\right]$ and $Q(q) Q(q)=1$ in SU V, we have

$$
\begin{gathered}
1=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \mp i & 0 \\
0 & 0 & \mp i
\end{array}\right]^{4}=\left(Q\left(q_{8}\right) Q\left(q_{7}\right) Q\left(q_{6}\right) Q\left(q_{10}\right) Q\left(q_{9}\right)\right) \cdot\left(Q\left(q_{9}\right) Q\left(q_{10}\right) Q\left(q_{5}\right) Q\left(q_{11}\right) Q\left(q_{12}\right)\right) \\
\cdot\left(Q\left(q_{12}\right) Q\left(q_{11}\right) Q\left(q_{4}\right) Q\left(q_{14}\right) Q\left(q_{13}\right)\right) \cdot\left(Q\left(q_{13}\right) Q\left(q_{14}\right) Q\left(q_{3}\right) Q\left(q_{2}\right) Q\left(q_{1}\right)\right)= \\
=Q\left(q_{8}\right) Q\left(q_{7}\right) Q\left(q_{6}\right) Q\left(q_{5}\right) Q\left(q_{4}\right) Q\left(q_{3}\right) Q\left(q_{2}\right) Q\left(q_{1}\right)
\end{gathered}
$$

By [ABG], we obtain a \mathbb{C}-Fuchsian faithful and discrete representation of H_{8} and, hence, a \mathbb{C}-Fuchsian faithful and discrete representation of the fundamental group G_{8} of a surface of genus 3 . As G_{8} consists of all words of even length in the $Q\left(q_{i}\right)$'s, $i=1,2,3,4,5,6,7,8$, every element $I \in G_{8}$ has the form $I=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & r^{-1} & \alpha \\ 0 & 0 & 0\end{array}\right]$ in a suitable basis e_{0}, e_{1}, e_{2}, where e_{1}, e_{2} are isotropic points in the complex geodesic, e_{0} is its polar point, $r>0$, and $|\alpha|=1$. Since $I \in \operatorname{SU} V$, we obtain $\alpha= \pm 1$.

4. References

[ABG] S. Anan'in, E. C. Bento Gonçalves, A hyperelliptic view on Teichmüller space. I, preprint http://arxiv.org/abs/0709.1711

