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ON ‘A CHARACTERIZATION OF R-FUCHSIAN GROUPS

ACTING ON THE COMPLEX HYPERBOLIC PLANE’

Sasha Anan′in

Abstract. We indicate a C-Fuchsian counter-example to the result with the above title announced at
http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf and prove a stronger state-
ment.

1. Introduction

The following result

‘We prove that a complex hyperbolic non-elementary Kleinian group G acting on two-dimensional

complex hyperbolic space H2
C

is R-Fuchsian, that is, G leaves invariant a totally real plane in H2
C
,

if and only if every loxodromic element of G is either hyperbolic or loxodromic whose elliptic part is of

order 2.’

is announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf as a
content of a one-hour talk.

The assertion as it stands is wrong (see a C-Fuchsian counter-example in Section 3). The following
theorem directly implies a corrected statement.

Theorem. Let V be a C-linear space equipped with a hermitian form 〈−,−〉 of signature ++− and

let G ≤ SU V be a subgroup such that the trace tr g of every loxodromic element g ∈ G belongs to Rδg,
where δ3g = 1. Suppose that G contains a loxodromic element. Then either there exists a 1-dimensional

G-stable C-subspace in V or there exists a totally real 3-dimensional G-stable R-subspace in V .

2. Proof of Theorem

We assume that there is no 1-dimensional G-stable C-subspace in V .

2.1. First, suppose that trG ⊂ R.
Let W ≤ V be a G-stable R-subspace in V . Then the C-subspaces CW , W ∩ iW , and W⊥ :=

{

v ∈

V | 〈v,W 〉 = 0
}

are obviously G-stable. It follows that dimR W cannot equal

• 1 because, otherwise, CW is a 1-dimensional G-stable C-subspace in V ;
• 2 because, otherwise, dimC CW equals 1 or 2 and, in the latter case, dimC W⊥ = 1;
• 4 because, otherwise, either W is a complex subspace with dimC W⊥ = 1 or W + iW = CW = V and
dimR(W ∩ iW ) = 2, that is, dimC(W ∩ iW ) = 1;
• 5 because, otherwise, W + iW = CW = V and dimR(W ∩ iW ) = 4, that is, dimC(W ∩ iW ) = 2.

Suppose that dimR W = 3. Let g ∈ G be loxodromic. The eigenvalues of g are 1, r−1, r, where
0,±1 6= r ∈ R. Denote by e0, e1, e2 ∈ V the corresponding eigenvectors, where e0 is positive and
orthogonal to the isotropic e1, e2 such that c := 〈e1, e2〉 6= 0. Since W ∩ iW = 0, there is no C-subspace
in W . Therefore, dimR(W ∩ Cei) ≤ 1. On the other hand, since the characteristic polynomial of g
equals (x − 1)(x − r−1)(x − r), there is a basis of eigenvectors of g in W . Thus, we can assume that
e0, e1, e2 ∈ W . Clearly, W is totally real if c ∈ R. Suppose that c /∈ R. Then Im〈W,w〉 = 0 for

2000 Mathematics Subject Classification. 57M50 (57S25).

http://arxiv.org/abs/1107.1859v1


2

w ∈ W is equivalent to w ∈ Re0. For any h ∈ G, we have 0 = Im〈W, e0〉 = Im〈hW, he0〉 = Im〈W,he0〉.
So, Ge0 ⊂ Re0. A contradiction.

Suppose that V has no proper G-stable R-subspaces. Let A := RG denote the real span of G and
D := EndA V denote the division R-algebra of endomorphisms of the simple A-module V (Schur’s
lemma). By Artin-Wedderburn theorem, a quotient algebra of A is isomorphic to EndVD. Since
dimR V = 6, we have D = R and dimR EndVD = 36 or D = C and dimC EndVD = 9. On the other
hand, A ≤ EndC V and dimC EndC V = 9. Hence, A = EndC V , which contradicts trA ⊂ R.

2.2. Without loss of generality, we can assume that G contains a nontrivial cubic root of unity. Then
there exists a loxodromic g ∈ G with tr g ∈ R. In a suitable basis e0, e1, e2 with the Gram matrix
[

1 0 0

0 0 1

0 1 0

]

, such a g has the form g :=

[

1 0 0

0 r−1 0

0 0 r

]

, where 0,±1 6= r ∈ R.

2.3. Remark. Let g ∈ G be loxodromic with tr g ∈ R and let e0, e1, e2 ∈ V be eigenvectors of g

with the Gram matrix

[

1 0 0

0 0 1

0 1 0

]

. Then, for every h ∈ G, there exists a cubic root of unity δ such that

〈he0, e0〉, 〈he1, e2〉, 〈he2, e1〉, tr(g
nh) ∈ Rδ for all n ∈ Z.

Proof. It is easy to see that tr(gnh) = 〈he0, e0〉 + r−n〈he1, e2〉 + rn〈he2, e1〉. If 〈he1, e2〉 6= 0 or
〈he2, e1〉 6= 0, then gnh is loxodromic for sufficiently large |n|. Therefore, 〈he0, e0〉, 〈he1, e2〉, 〈he2, e1〉 ∈

Rδ for a suitable cubic root of unity δ. If 〈he1, e2〉 = 〈he2, e1〉 = 0, then h =

[

−ε−2 0 0

0 0 aε

0 a−1ε 0

]

with a > 0

and |ε| = 1. Since h2 =

[

ε−4 0 0

0 ε2 0

0 0 ε2

]

and 〈h2e1, e2〉 = 〈h2e2, e1〉 = ε2 6= 0, we obtain ε2 ∈ Rδ, where

δ3 = 1. Again, we get 〈he0, e0〉, 〈he1, e2〉, 〈he2, e1〉 ∈ Rδ �

2.4. Lemma. Let g, h ∈ G be loxodromic with tr g, trh ∈ R. Then tr(gh) ∈ R.

Proof. In some bases e0, e1, e2 and f0, f1, f2 with Gram matrix

[

1 0 0

0 0 1

0 1 0

]

, we respectively have g =
[

1 0 0

0 r−1 0

0 0 r

]

and h =

[

1 0 0

0 s−1 0

0 0 s

]

, where 0,±1 6= r, s ∈ R. Let gij := 〈ei, fj〉. Then ei = gi0f0 + gi2f1 + gi1f2

for i = 0, 1, 2. By Remark 2.3, for every n ∈ Z, there exists some cubic root of unity δn such that
〈hne0, e0〉, 〈h

ne1, e2〉, 〈h
ne2, e1〉 ∈ Rδn. Taking δ such that δn = δ for infinitely many n’s, from

〈hne0, e0〉 = g00g00 + s−ng02g01 + sng01g02,

〈hne1, e2〉 = g10g20 + s−ng12g21 + sng11g22, 〈hne2, e1〉 = g20g10 + s−ng22g11 + sng21g12,

we obtain
g00g00, g02g01, g01g02, g10g20, g12g21, g11g22, g20g10, g22g11, g21g12 ∈ Rδ.

If g11g22 = 0, then e2 6= e1 = f1 6= f2 or e1 6= e2 = f2 6= f1 (the equalities and inequalities are meant in
the projective sense). Hence, g12g21 6= 0. We conclude that δ = 1 �

2.5. Lemma. Let g, h1, h2 ∈ G be such that g is loxodromic and tr g, tr(gnh1), tr(g
nh2) ∈ R for all

n ∈ Z. Then tr(gnh−1
1 h2) ∈ R for all n ∈ Z.

Proof. Using the symmetry between h1, h2 and replacing h1, h2 by gkh1, g
kh2, if necessary, we can as-

sume (as in the proof of Remark 2.3) that h2 is loxodromic unless both h1, h2 have the type

[

±1 0 0

0 0 aε

0 a−1ε 0

]

in the basis related to g, where a > 0 and ε2 = ∓1. In this particular case, h−1
1 h2 is diagonal with

coefficients in R ∪Ri. By Remark 2.3, for some cubic root of unity δ, we have tr(gnh−1
1 h2) ∈ Rδ for all

n ∈ Z. Therefore, the mentioned coefficients have to be real.
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So, we assume that h2 is loxodromic with tr h2 ∈ R. Suppose that tr(gnh−1
1 h2) ∈ Rδ for all n ∈ Z,

where δ3 = 1 and δ 6= 1. For some m ∈ Z, we have 0 6= tr(gmh−1
1 h2) ∈ Rδ as, otherwise, we are done.

Hence, by Remark 2.3, tr(gmh−1
1 hn

2 ) ∈ Rδ for all n ∈ Z. In particular, tr(gmh−1
1 ) ∈ Rδ, which implies

tr(gmh−1
1 ) = 0.

Suppose that gkh−1
1 is loxodromic for some k ∈ Z. As in the proof of Remark 2.3, we conclude that

gnh−1
1 is loxodromic for all sufficiently large/small n. By Lemma 2.4, tr(gnh−1

1 h2) ∈ R for all such n’s,
implying tr(gnh−1

1 h2) = 0, a contradiction.

So, h−1
1 is of the type

[

±1 0 0

0 0 aε

0 a−1ε 0

]

. This contradicts tr(gmh−1
1 ) = 0 �

2.6. By Lemma 2.5, H :=
{

h ∈ G | tr(gnh) ∈ R for all n ∈ Z
}

is a subgroup in G. Obviously, G is
generated by H and the cubic roots of unity. It suffices to deal with H in place of G. In other words,
we can assume that trG ⊂ R.

3. Counter-example

c

q1
q2

q3

q4 q5

q6

q7
q8

q9

q10

q11

q12

q13

q14 p5

p6

p7
p8

p9

Let ∆(c, p6, q7) be a geodesic triangle in the hyperbolic
plane with the corresponding interior angles π

5 ,
π
5 ,

π
2 . The

area of this triangle equals π
10 . Taking 10 congruent trian-

gles with common vertex c, we obtain a pentagon with area
area(p5, p6, p7, p8, p9) = π. By [ABG], the reflections R(qi) in
the middle points qi, i = 6, 7, 8, 9, 10, of the sides of the penta-
gon satisfy the relation R(q10)R(q9)R(q8)R(q7)R(q6) = ±1 in
SU(1, 1) and provide a discrete group H5. Note that, by the

definition from [ABG], we have R(q)x := i
(

x− 2
〈x, q〉

〈q, q〉
q
)

.

Denote Q(q) := −iR(q) (in the complex hyperbolic plane, Q(q) ∈ SUV ). We consider 3 more
copies of the pentagon P (q6, q7, q8, q9, q10), namely: P (q5, q10, q9, q12, q11), P (q4, q11, q12, q13, q14), and
P (q1, q2, q3, q14, q13). The geodesics G≺q9, q10≻ and G≺q11, q12≻ are ultraparallel (this can be shown
with the help of SEs; see [ABG]). The geodesics of this type separate the four pentagons, so that we

have exactly what is drawn on the picture. Since Q(q10)Q(q9)Q(q8)Q(q7)Q(q6) =

[

−1 0 0

0 ±(−i)5 0

0 0 ±(−i)5

]

=
[

−1 0 0

0 ∓i 0

0 0 ∓i

]

and Q(q)Q(q) = 1 in SUV , we have

1 =

[

−1 0 0

0 ∓i 0

0 0 ∓i

]4

=
(

Q(q8)Q(q7)Q(q6)Q(q10)Q(q9)
)

·
(

Q(q9)Q(q10)Q(q5)Q(q11)Q(q12)
)

·

·
(

Q(q12)Q(q11)Q(q4)Q(q14)Q(q13)
)

·
(

Q(q13)Q(q14)Q(q3)Q(q2)Q(q1)
)

=

= Q(q8)Q(q7)Q(q6)Q(q5)Q(q4)Q(q3)Q(q2)Q(q1).

By [ABG], we obtain a C-Fuchsian faithful and discrete representation of H8 and, hence, a C-Fuchsian
faithful and discrete representation of the fundamental group G8 of a surface of genus 3. As G8 consists
of all words of even length in the Q(qi)’s, i = 1, 2, 3, 4, 5, 6, 7, 8, every element I ∈ G8 has the form

I =

[

1 0 0

0 r−1α 0

0 0 rα

]

in a suitable basis e0, e1, e2, where e1, e2 are isotropic points in the complex geodesic,

e0 is its polar point, r > 0, and |α| = 1. Since I ∈ SU V , we obtain α = ±1.
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