ON 'A CHARACTERIZATION OF R-FUCHSIAN GROUPS ACTING ON THE COMPLEX HYPERBOLIC PLANE'

Sasha Anan'in

ABSTRACT. We indicate a \mathbb{C} -Fuchsian counter-example to the result with the above title announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf and prove a stronger statement.

1. Introduction

The following result

'We prove that a complex hyperbolic non-elementary Kleinian group G acting on two-dimensional complex hyperbolic space $\mathbf{H}^2_{\mathbb{C}}$ is \mathbb{R} -Fuchsian, that is, G leaves invariant a totally real plane in $\mathbf{H}^2_{\mathbb{C}}$, if and only if every loxodromic element of G is either hyperbolic or loxodromic whose elliptic part is of order 2.'

is announced at http://www.maths.dur.ac.uk/events/Meetings/LMS/2011/GAL11/program.pdf as a content of a one-hour talk.

The assertion as it stands is wrong (see a \mathbb{C} -Fuchsian counter-example in Section 3). The following theorem directly implies a corrected statement.

Theorem. Let V be a \mathbb{C} -linear space equipped with a hermitian form $\langle -, - \rangle$ of signature + + - and let $G \leq \text{SUV}$ be a subgroup such that the trace tr g of every loxodromic element $g \in G$ belongs to $\mathbb{R}\delta_g$, where $\delta_g^3 = 1$. Suppose that G contains a loxodromic element. Then either there exists a 1-dimensional G-stable \mathbb{C} -subspace in V or there exists a totally real 3-dimensional G-stable \mathbb{R} -subspace in V.

2. Proof of Theorem

We assume that there is no 1-dimensional G-stable \mathbb{C} -subspace in V.

2.1. First, suppose that $\operatorname{tr} G \subset \mathbb{R}$.

Let $W \leq V$ be a *G*-stable \mathbb{R} -subspace in *V*. Then the \mathbb{C} -subspaces $\mathbb{C}W$, $W \cap iW$, and $W^{\perp} := \{v \in V \mid \langle v, W \rangle = 0\}$ are obviously *G*-stable. It follows that $\dim_{\mathbb{R}} W$ cannot equal

• 1 because, otherwise, $\mathbb{C}W$ is a 1-dimensional G-stable \mathbb{C} -subspace in V;

• 2 because, otherwise, $\dim_{\mathbb{C}} \mathbb{C}W$ equals 1 or 2 and, in the latter case, $\dim_{\mathbb{C}} W^{\perp} = 1$;

• 4 because, otherwise, either W is a complex subspace with $\dim_{\mathbb{C}} W^{\perp} = 1$ or $W + iW = \mathbb{C}W = V$ and $\dim_{\mathbb{R}}(W \cap iW) = 2$, that is, $\dim_{\mathbb{C}}(W \cap iW) = 1$;

• 5 because, otherwise, $W + iW = \mathbb{C}W = V$ and $\dim_{\mathbb{R}}(W \cap iW) = 4$, that is, $\dim_{\mathbb{C}}(W \cap iW) = 2$.

Suppose that $\dim_{\mathbb{R}} W = 3$. Let $g \in G$ be loxodromic. The eigenvalues of g are $1, r^{-1}, r$, where $0, \pm 1 \neq r \in \mathbb{R}$. Denote by $e_0, e_1, e_2 \in V$ the corresponding eigenvectors, where e_0 is positive and orthogonal to the isotropic e_1, e_2 such that $c := \langle e_1, e_2 \rangle \neq 0$. Since $W \cap iW = 0$, there is no \mathbb{C} -subspace in W. Therefore, $\dim_{\mathbb{R}}(W \cap \mathbb{C}e_i) \leq 1$. On the other hand, since the characteristic polynomial of g equals $(x-1)(x-r^{-1})(x-r)$, there is a basis of eigenvectors of g in W. Thus, we can assume that $e_0, e_1, e_2 \in W$. Clearly, W is totally real if $c \in \mathbb{R}$. Suppose that $c \notin \mathbb{R}$. Then $\operatorname{Im}\langle W, w \rangle = 0$ for

²⁰⁰⁰ Mathematics Subject Classification. 57M50 (57S25).

 $w \in W$ is equivalent to $w \in \mathbb{R}e_0$. For any $h \in G$, we have $0 = \operatorname{Im}\langle W, e_0 \rangle = \operatorname{Im}\langle hW, he_0 \rangle = \operatorname{Im}\langle W, he_0 \rangle$. So, $Ge_0 \subset \mathbb{R}e_0$. A contradiction.

Suppose that V has no proper G-stable \mathbb{R} -subspaces. Let $A := \mathbb{R}G$ denote the real span of G and $D := \operatorname{End}_A V$ denote the division \mathbb{R} -algebra of endomorphisms of the simple A-module V (Schur's lemma). By Artin-Wedderburn theorem, a quotient algebra of A is isomorphic to $\operatorname{End} V_D$. Since $\dim_{\mathbb{R}} V = 6$, we have $D = \mathbb{R}$ and $\dim_{\mathbb{R}} \operatorname{End} V_D = 36$ or $D = \mathbb{C}$ and $\dim_{\mathbb{C}} \operatorname{End} V_D = 9$. On the other hand, $A \leq \operatorname{End}_{\mathbb{C}} V$ and $\dim_{\mathbb{C}} \operatorname{End}_{\mathbb{C}} V = 9$. Hence, $A = \operatorname{End}_{\mathbb{C}} V$, which contradicts tr $A \subset \mathbb{R}$.

2.2. Without loss of generality, we can assume that G contains a nontrivial cubic root of unity. Then there exists a loxodromic $g \in G$ with tr $g \in \mathbb{R}$. In a suitable basis e_0, e_1, e_2 with the Gram matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, such a g has the form $g := \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^{-1} & 0 \\ 0 & 0 & r \end{bmatrix}$, where $0, \pm 1 \neq r \in \mathbb{R}$.

2.3. Remark. Let $g \in G$ be loxodromic with tr $g \in \mathbb{R}$ and let $e_0, e_1, e_2 \in V$ be eigenvectors of g with the Gram matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Then, for every $h \in G$, there exists a cubic root of unity δ such that $\langle he_0, e_0 \rangle, \langle he_1, e_2 \rangle, \langle he_2, e_1 \rangle, \operatorname{tr}(g^n h) \in \mathbb{R}\delta \text{ for all } n \in \mathbb{Z}.$

Proof. It is easy to see that $\operatorname{tr}(g^n h) = \langle he_0, e_0 \rangle + r^{-n} \langle he_1, e_2 \rangle + r^n \langle he_2, e_1 \rangle$. If $\langle he_1, e_2 \rangle \neq 0$ or $\langle he_2, e_1 \rangle \neq 0, \text{ then } g^n h \text{ is loxodromic for sufficiently large } |n|. \text{ Therefore, } \langle he_0, e_0 \rangle, \langle he_1, e_2 \rangle, \langle he_2, e_1 \rangle \in \mathbb{R} \delta \text{ for a suitable cubic root of unity } \delta. \text{ If } \langle he_1, e_2 \rangle = \langle he_2, e_1 \rangle = 0, \text{ then } h = \begin{bmatrix} -\varepsilon^{-2} & 0 & 0 \\ 0 & 0 & a\varepsilon \\ 0 & a^{-1}\varepsilon & 0 \end{bmatrix} \text{ with } a > 0$ $\text{ and } |\varepsilon| = 1. \text{ Since } h^2 = \begin{bmatrix} \varepsilon^{-4} & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^2 \end{bmatrix} \text{ and } \langle h^2e_1, e_2 \rangle = \langle h^2e_2, e_1 \rangle = \varepsilon^2 \neq 0, \text{ we obtain } \varepsilon^2 \in \mathbb{R} \delta, \text{ where } \varepsilon^2 = \langle h^2e_2, e_1 \rangle = \varepsilon^2 \neq 0, \text{ we obtain } \varepsilon^2 \in \mathbb{R} \delta, \text{ where } \varepsilon^2 = \langle h^2e_2, e_1 \rangle = \varepsilon^2 \neq 0, \text{ we obtain } \varepsilon^2 \in \mathbb{R} \delta.$

$$\delta^3 = 1$$
. Again, we get $\langle he_0, e_0 \rangle, \langle he_1, e_2 \rangle, \langle he_2, e_1 \rangle \in \mathbb{R}\delta$

2.4. Lemma. Let $g, h \in G$ be loxodromic with tr g, tr $h \in \mathbb{R}$. Then tr $(gh) \in \mathbb{R}$.

Proof. In some bases e_0, e_1, e_2 and f_0, f_1, f_2 with Gram matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, we respectively have g = 0 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & r^{-1} & 0 \\ 0 & 0 & r \end{bmatrix} \text{ and } h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & s^{-1} & 0 \\ 0 & 0 & s \end{bmatrix}, \text{ where } 0, \pm 1 \neq r, s \in \mathbb{R}. \text{ Let } g_{ij} := \langle e_i, f_j \rangle. \text{ Then } e_i = g_{i0}f_0 + g_{i2}f_1 + g_{i1}f_2$ for i = 0, 1, 2. By Remark 2.3, for every $n \in \mathbb{Z}$, there exists some cubic root of unity δ_n such that $\langle h^n e_0, e_0 \rangle, \langle h^n e_1, e_2 \rangle, \langle h^n e_2, e_1 \rangle \in \mathbb{R} \delta_n$. Taking δ such that $\delta_n = \delta$ for infinitely many n's, from

$$\langle h^n e_0, e_0 \rangle = g_{00}\overline{g}_{00} + s^{-n}g_{02}\overline{g}_{01} + s^n g_{01}\overline{g}_{02},$$

$$\langle h^n e_1, e_2 \rangle = g_{10}\overline{g}_{20} + s^{-n}g_{12}\overline{g}_{21} + s^n g_{11}\overline{g}_{22}, \qquad \langle h^n e_2, e_1 \rangle = g_{20}\overline{g}_{10} + s^{-n}g_{22}\overline{g}_{11} + s^n g_{21}\overline{g}_{12},$$

we obtain

$$g_{00}\overline{g}_{00}, g_{02}\overline{g}_{01}, g_{01}\overline{g}_{02}, g_{10}\overline{g}_{20}, g_{12}\overline{g}_{21}, g_{11}\overline{g}_{22}, g_{20}\overline{g}_{10}, g_{22}\overline{g}_{11}, g_{21}\overline{g}_{12} \in \mathbb{R}\delta$$

If $g_{11}\overline{g}_{22} = 0$, then $e_2 \neq e_1 = f_1 \neq f_2$ or $e_1 \neq e_2 = f_2 \neq f_1$ (the equalities and inequalities are meant in the projective sense). Hence, $g_{12}\overline{g}_{21} \neq 0$. We conclude that $\delta = 1$

2.5. Lemma. Let $g, h_1, h_2 \in G$ be such that g is loxodromic and tr $g, tr(g^n h_1), tr(g^n h_2) \in \mathbb{R}$ for all $n \in \mathbb{Z}$. Then $\operatorname{tr}(g^n h_1^{-1} h_2) \in \mathbb{R}$ for all $n \in \mathbb{Z}$.

Proof. Using the symmetry between h_1, h_2 and replacing h_1, h_2 by $g^k h_1, g^k h_2$, if necessary, we can assume (as in the proof of Remark 2.3) that h_2 is loxodromic unless both h_1, h_2 have the type $\begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & a\varepsilon \\ 0 & a^{-1}\varepsilon & 0 \end{bmatrix}$ in the basis related to g, where a > 0 and $\varepsilon^2 = \mp 1$. In this particular case, $h_1^{-1}h_2$ is diagonal with coefficients in $\mathbb{R} \cup \mathbb{R}i$. By Remark 2.3, for some cubic root of unity δ , we have $\operatorname{tr}(g^n h_1^{-1} h_2) \in \mathbb{R}\delta$ for all $n \in \mathbb{Z}$. Therefore, the mentioned coefficients have to be real.

Suppose that $g^k h_1^{-1}$ is loxodromic for some $k \in \mathbb{Z}$. As in the proof of Remark 2.3, we conclude that $g^n h_1^{-1}$ is loxodromic for all sufficiently large/small n. By Lemma 2.4, $\operatorname{tr}(g^n h_1^{-1} h_2) \in \mathbb{R}$ for all such n's, implying $\operatorname{tr}(g^n h_1^{-1} h_2) = 0$, a contradiction.

So, h_1^{-1} is of the type $\begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & a\varepsilon \\ 0 & a^{-1}\varepsilon & 0 \end{bmatrix}$. This contradicts $\operatorname{tr}(g^m h_1^{-1}) = 0$

2.6. By Lemma 2.5, $H := \{h \in G \mid \operatorname{tr}(g^n h) \in \mathbb{R} \text{ for all } n \in \mathbb{Z}\}$ is a subgroup in G. Obviously, G is generated by H and the cubic roots of unity. It suffices to deal with H in place of G. In other words, we can assume that $\operatorname{tr} G \subset \mathbb{R}$.

3. Counter-example

Let $\Delta(c, p_6, q_7)$ be a geodesic triangle in the hyperbolic plane with the corresponding interior angles $\frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{2}$. The area of this triangle equals $\frac{\pi}{10}$. Taking 10 congruent triangles with common vertex c, we obtain a pentagon with area area $(p_5, p_6, p_7, p_8, p_9) = \pi$. By [ABG], the reflections $R(q_i)$ in the middle points $q_i, i = 6, 7, 8, 9, 10$, of the sides of the pentagon satisfy the relation $R(q_{10})R(q_9)R(q_8)R(q_7)R(q_6) = \pm 1$ in SU(1, 1) and provide a discrete group H_5 . Note that, by the

definition from [ABG], we have $R(q)x := i\left(x - 2\frac{\langle x, q \rangle}{\langle q, q \rangle}q\right)$.

Denote Q(q) := -iR(q) (in the complex hyperbolic plane, $Q(q) \in SUV$). We consider 3 more copies of the pentagon $P(q_6, q_7, q_8, q_9, q_{10})$, namely: $P(q_5, q_{10}, q_9, q_{12}, q_{11})$, $P(q_4, q_{11}, q_{12}, q_{13}, q_{14})$, and $P(q_1, q_2, q_3, q_{14}, q_{13})$. The geodesics $G \prec q_9, q_{10} \succ$ and $G \prec q_{11}, q_{12} \succ$ are ultraparallel (this can be shown with the help of SEs; see [ABG]). The geodesics of this type separate the four pentagons, so that we have exactly what is drawn on the picture. Since $Q(q_{10})Q(q_9)Q(q_8)Q(q_7)Q(q_6) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \pm(-i)^5 & 0 \\ 0 & 0 & \pm(-i)^5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \mp i & 0 \\ 0 & 0 & \mp i \end{bmatrix}$ and Q(q)Q(q) = 1 in SUV, we have

$$1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \mp i & 0 \\ 0 & 0 & \mp i \end{bmatrix}^{4} = \left(Q(q_{8})Q(q_{7})Q(q_{6})Q(q_{10})Q(q_{9}) \right) \cdot \left(Q(q_{9})Q(q_{10})Q(q_{5})Q(q_{11})Q(q_{12}) \right) \cdot \left(Q(q_{12})Q(q_{11})Q(q_{4})Q(q_{14})Q(q_{13}) \right) \cdot \left(Q(q_{13})Q(q_{14})Q(q_{3})Q(q_{2})Q(q_{1}) \right) = \\ = Q(q_{8})Q(q_{7})Q(q_{6})Q(q_{5})Q(q_{4})Q(q_{3})Q(q_{2})Q(q_{1}).$$

By [ABG], we obtain a \mathbb{C} -Fuchsian faithful and discrete representation of H_8 and, hence, a \mathbb{C} -Fuchsian faithful and discrete representation of the fundamental group G_8 of a surface of genus 3. As G_8 consists of all words of even length in the $Q(q_i)$'s, i = 1, 2, 3, 4, 5, 6, 7, 8, every element $I \in G_8$ has the form $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^{-1}\alpha & 0 \\ 0 & 0 & r\alpha \end{bmatrix}$ in a suitable basis e_0, e_1, e_2 , where e_1, e_2 are isotropic points in the complex geodesic, e_0 is its polar point, r > 0, and $|\alpha| = 1$. Since $I \in SUV$, we obtain $\alpha = \pm 1$.

4. References

[ABG] S. Anan'in, E. C. Bento Gonçalves, A hyperelliptic view on Teichmüller space. I, preprint http://arxiv.org/abs/0709.1711