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Abstract:

This study develops a ray technique for determining the resonance frequencies of triangular 
membranes. The technique is demonstrated for homogenous rectangular and triangular 
membranes with fixed boundaries. Where possible, the results are compared with exact 
calculations. The membrane resonances are calculated using an equivalent string whose length is 
proportional to the reciprocal of the length of closed paths starting from an arbitrary point within 
the membrane. Closed paths are ray paths which arrive back at the starting point going in the 
same direction. 
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Wave approach for the resonances of rectangular and triangular 
membranes

I. Introduction

This paper describes a wave, or ray, technique for determining the resonance frequencies of 
rectangular and triangular membranes. The technique probably has application to a larger class 
of irregular polygonal membranes, but this has not yet been demonstrated. The procedure is to 
start at an arbitrary interior point of the membrane and to generate a family of rays by 
incrementing the starting angle.  The subset of these rays which form closed paths, i.e. paths 
which return to the origin going in the same direction, are identified. A set of one-dimensional 
systems, strings, is formed where the lengths of the strings are proportional to the reciprocal of 
the closed path lengths. The resonances of the membrane are then the resonances of the strings. 
Phase changes as the closed path impinges on boundaries must be incorporated in the string.

The present demonstration of the approach is restricted to 2-D planar homogenous isotropic 
membranes confined by polygonal boundaries with locally reacting impedances which do not 
vary along a given section of the polygon and where the angle of reflection equals the angle of 
incidence. Not all of these restrictions are necessary for the technique to work, but it is necessary 
that the boundary impedance be specified everywhere. Under these restrictions, the resonance 
behavior of three regular polygonal membranes with fixed edges; specifically, rectangles, and 
right isosceles and equilateral triangles are accurately determined. The more general case of the 
obtuse triangle is also studied and gives plausible resonance frequencies which converge to the 
regular cases as boundaries are made to approach these.

The motivation for my doing this was based on the intuition that a basic  propagation (plane 
wave) around closed paths in an object should be related to the resonances of that object. 
Investigating this led to the discovery that closed path lengths in planar polygons are independent 
of starting location. This point deserves some scrutiny since it’s not hard to construct polygons 
and/or their boundary conditions for which this is not true; but, it is true for the rectangles, 
triangles  and associated boundary conditions used here. The association of the closed path 
lengths with a string length seemed logical, but the reciprocal nature of this was, at first, a 
surprise.

The regular polygons mentioned above were used as benchmarks in the present study because 
there are exact solutions available for membranes of these shapes with fixed boundaries. The 
squares and rectangles are treated in many text books. The right isosceles triangle was discussed 
by Rayleigh [1] and the equilateral triangle by Lamé  [2].

There is one major problem which I have not yet resolved. I mentioned above that the lengths of 
the closed paths are related to the string lengths. More specifically, the string lengths are 
proportional to the reciprocals of the closed path lengths. The problem is that the constant of 
proportionality is not the same for all polygon shapes. For example; for rectangles the constant is 
2*A where A is the area of the membrane, for the right isosceles triangle it is 4*A, and for the 
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equilateral triangle it is 3*A. For the present approach to be useful, one needs to be able to derive 
the constant from the shape. 

II. Summary of the technique

1) Define the boundaries.
2) Select a single arbitrary starting point within the membrane.
3) Start a unit amplitude ray from this point at an angle which will be incremented to cover 

all angles.
4) Propagate this ray as a plane wave with propagation loss.
5) When the ray strikes a boundary, reflect it in accordance with the relative impedance of 

the membrane and the boundary, and continue propagating.
6) If the ray comes within a specified proximity of the starting point and within a specified 

proximity of the starting angle, the path is deemed closed and the path length is 
recorded, (Lcp )N . Stop the propagation and go back to step 3) with a new angle.

7) If closure fails, abandon this ray after the propagation loss has reduced the amplitude to 
some specified level. Go back to step 3) with a new angle.

8) Continue re-starting at step 3) until all angles are covered.
9) Form the lengths of the equivalent 1-D systems (strings), L 'n , from the set Lcp .

10) Remove duplicate lengths in L 'n .
11) The total resonances, i.e. the fundamental and all harmonics for each equivalent string, 
L 'n , is the complete set of resonances for the membrane.

Some discussion on the above.
1) There are lots of ways to define boundaries. Since calculations are here done on a 

computer (using MatLab®), I defined the boundaries as algebraic equations and “if” 
statements.

2) For the examples used here, i.e. rectangular and triangular boundaries and homogenous 
isotropic membranes, any starting point (within the membrane) will yield all possible 
closed paths.

3) Starting at angle = 0 makes sense and an increment on the order of 2π 500( )  seemed to 
catch all the closed paths. 

4) The plane wave propagation of an initially unit amplitude wave of angular frequency ω  
is of the form                 ψ (x,t)∝ e− ikx+ iω t , k = k0 (1− iη), k0 =ω / c,                          (1)   
where ψ is any of the linear quantities, displacement, velocity, acceleration or pressure, 
k is the wavenumber, x is the distance propagated, t is the time, c is the wave’s  
propagation velocity, and η  is the propagation loss factor. The step size as the wave 
propagates is important since it affects the accuracy of the reflection at the boundary.  
For all calculations here, the step size was 0.005.
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5) The work here is only concerned with specular reflection where the angle of reflection 
equals the angle of incidence. The reflection coefficients are the plane wave coefficients 
determined by the boundary impedances relative to the membrane impedance. Without 
loss of generality, Dirchlet boundary conditions (boundary impedance = ∞ ) were used 
here.

6) There are some judicious choices here regarding when one decides that the path has 
closed. How close to the origin and how close to the starting angle? For the examples 
here, the membrane dimensions were order unity and the criteria for closeness to the 
wave starting position was 0.05 and the closeness to the starting angle was 0.05 radians. 

7) If closure fails in a reasonable path length, there is need to terminate the ray. The total 
path length used here was generally 20. If the total path length is allowed to be too long, 
the ray may keep reverberating and eventually find itself within the closure criteria 
(depending on the closeness criteria above) and falsely get counted as a closed path. 
Even so, after a long propagation, the amplitude will be so weakened by propagation 
loss that any resonance, actual or false, would be very weak and should not be counted.

8) The angular increment used in searching for closed paths is also an important parameter 
that effects computation time and the certainty of finding closed paths. For regular 
polygons there is no need to cover 2π  radians; a lesser quadrant will suffice.

9) The resonances associated with a particular closed path are calculated from the 
resonances of the equivalent string. The equivalent string length, L ' , for a particular 
closed path length is related to the reciprocal of closed path length.  The rationale for this 
is hinted at by noting that if a wave closes on itself to form a closed path, then, if 
allowed to continue, it will close on itself again, and again, etc. This unending series of 
increasing path lengths must correspond to the unending series of increasing frequencies 
(harmonics) of the equivalent string; but this is equivalent to the series of fundamentals 
of an unending series of shorter strings. Hence, the reciprocal relationship between Lcp  

and L ' . It is necessary to remove a) any paths that do not impinge all sides of the 
polygon and b) any paths which fold back on themselves.

10) Depending on the angular increments and the closeness criteria for closure, there may 
be multiple closed paths which are actually the same one. It’s not really necessary to 
remove the duplicates, but not doing so makes each resonant frequency look like a 
closely spaced group. 

11) Finally the combined resonances of all the equivalent strings is displayed by calculating 

the real of:                  

ψ res ( f ) = [1 − e− ikL 'N (1− iη)eiMNπ ]−1
N
∑

MN

Nth

.                                                    

This is the point at which the boundary conditions are handled. The accumulated phase      
change upon reflection must be accounted for. For example, for Dirichlet boundary 
conditions on all sides, and if there are MN reflections in the Nth path, then the above 
equation becomes       
    ψ res ( f ) = [1 − e− ikL 'N (1− iη)eiMNπ ]−1

N
∑     (2)
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The technique is illustrated by calculating the resonances of a rectangle, a right isosceles triangle, 
and an equilateral triangle; all of which can be solved exactly. Lastly, I calculate the resonances 
of an obtuse triangle, for which we have no analytical solution. For the examples considered, 
these shapes will be fixed on all sides although, as mentioned, the technique can be used for 
other boundary conditions; e.g. free, impedance, or combinations of these. The extension to 
inhomogeneous boundary conditions, e.g. boundary impedances which vary along their length, is 
not straightforward and not allowed in the formulation presented. I believe it is possible to do 
this, but I have not yet done so. The inhomogeneous boundary can probably be related to a 
limiting case of considering the side to consist of a number of segments, each with different but 
homogenous conditions. A problem arises since, in this case, a closed path may not impinge on 
all sides and therefore the missed segments will not influence the resonance frequencies; clearly 
they must. One could then choose a starting point such that the ray did impinge on a particular 
segment but this illuminates another problem; namely, that the resonance determination now 
depends on starting location. The many-sided polygon is similarly not trivial and is another area 
which I have not yet investigated.

I chose the triangle to illustrate the technique because it does not fit any of the coordinate 
systems in which the wave equation separates, and therefore we don’t have exact solutions to 
give us the resonance frequencies. The two lone exceptions to this are the right isosceles and the 
equilateral triangles. The right isosceles, fixed along its perimeter can be considered as half a 
square and, as pointed out by Rayleigh [1], its modes must be a sub-set of the modes for the 
square; specifically, the modes which have nodes along the diagonal (i.e. the base of the 
triangle). The wave equation can be separated in the equilateral triangle; a result first pointed out 
by Lamé [2] and expanded upon for both fixed and free perimeters (Dirichlet and Neumann 
boundary conditions respectively) by McCartin [3].

II.  Determining resonant frequencies. 

A. The String

First consider a finite string driven harmonically at some arbitrary point along its length.  A 
resonance frequency in the string can be viewed as a frequency for which, after one complete 
reverberation, the wave arrives back at the starting point going in the same direction. For some 
values of driving frequency, the eigenfrequencies, it will arrive with the same phase; thereby 
reinforcing the wave emanating from the drive.  For the simple case where both ends are either 
free or fixed, these frequencies are;

    fn = nc 2L = nc Lcp
, f =ω 2π ,       (3)
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where n is a positive integer, c is the wave speed, L is the length of the string and the length of 
the closed path Lcp  is just 2L. This is clearly true for any starting point on the string.

B. The Rectangle

When applying the above resonance criteria to a two-dimensional object, such as a rectangle, we 
would need to pick a starting point and a starting angle. As with the string, the starting point is 
arbitrary, but the angle is not. We would need to search for angles which would give closed 
paths; again, those unique paths wherein the wave passes through its point of origin going the 
same direction as when it started.  This coincidence establishes a length for the closed path.  As 
with the string, we postulate an harmonic drive at the starting point,  and keep track of the phase 
of the wave as it propagates along this path including and phase changes as it reflects from the 
boundaries. If, when the wave closes on itself, this cumulative phase change equals an integer 
multiple of 2π , we have a resonance. There will be a number of closed paths. The shorter paths 
are the stronger (more important) resonances because in the longer paths the wave will have lost 
more amplitude (because of propagation loss and less than unity reflections) and thereby 
provides less reinforcement of the original wave.

The classical analysis for the rectangular membrane with all sides either fixed or free is 

   fm,n =
c
2

m
Lx

⎛
⎝⎜

⎞
⎠⎟

2

+
n
Ly

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

,
m = 1,2,3 .....
n = 1,2,3 .....

    (4)

The four shortest closed paths for a 1.37 aspect ratio rectangle, specifically with (Lx :Ly ) = 

(1:1.37), are shown in Fig. (1). For this simple geometry, the lengths of the closed paths are
 

               

Fig. 1. The trajectories associated with the four shortest allowed closed paths for the 
rectangular membrane with fixed boundary and with aspect ratio = 1.37.   The starting point 
is indicated by the circle.
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simply (Lcp )n,m = 2 nLx( )2 + mLy( )2⎡
⎣

⎤
⎦
1/2

 ,  and each of these lengths is associated with a resonant 

frequency given by  fN = c (Lcp )N  where N simply numbers the various (n,m) lengths. These 

resonances must be the same as in Eq.(4) which leads to the definition 
               
   L 'N = β

(Lcp )N
, β = 2LxLy ,        (5)

where L 'N  is the effective length of the N one-dimensional systems (strings) represented by the 
closed paths. For rectangles, β  is also twice the area; this is not generally true for other 
polygons. 

The paths are one-dimensional and the propagation is plane wave. The resonance condition, as in 
the string, is when the phase matches the phase at the source and if this is taken to be zero, the 
resonances are given by the maxima of 

    ψ res ( f ) = [1 − e− i2kL 'N (1− iη)eiϑ ]−1
N
∑ , k =ω c ,    (6)

whereη  is the propagation loss factor and ϑ  is the accumulated phase change caused by 
reflections. For the rectangle, every closed path involves an even number of reflections and for 
Dirichlet boundary conditions, each reflection is π  so eiϑ = 1 . The “response” presented in the 
figures is the real part of ψ res .

The L 'N are derived from a more complete list of closed paths than shown in Table 1. This table 
gives the angles, measured from the horizontal, Lcp and L 'N  for the 4 shortest path lengths. The 

Angle
(Radians)

Path Length, Lcp L 'cp = 2 (Lx Ly ) Lcp Resonance 
associated
with L 'n ,  (Hz)

Corrisponding 
(m,n) from 
Equation (4)

0.9430 3.3667 0.8139 61.9 (1,1)

0.5970 4.800 0.5708 88.5 (1,2)

1.2190 5.800 0.4724 106 (2,1)

2.7140 6.5667 0.4173 120 (1, 3)

Table 1. The starting angles, path lengths and resonant frequencies for the four shortest 
(and most important) closed trajectories for the rectangle.
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membrane is fixed along its perimeter and the wave speed is taken to be 100 and η = 0.01 . 
It should be noted that the paths for which the starting angles are 0 or π 2  never impinge on 
some sides where boundary conditions are imposed. Such waves can not participate in satisfying 
boundary conditions on these sides and are thereby not allowed. This reasoning also applies to 
the classical mode analysis in Eq. (4) in which the lowest values for m and n are one, i.e.  not 
zero. It should also be noted that these disallowed paths are the only ones that fold back on 
themselves and this will be the criteria for disallowing paths in other shapes.

The correspondence between the classical mode notation and the trajectory diagrams can be 
simply seen by noting that (m+n) is half the number of times the closed path trajectory impinges 
on the horizontal or vertical boundary, respectively.

Equation (6) is calculated and shown in Figure (2). The resonant frequencies given by Eg. (4) are 
marked and labeled by their (m,n) values and vertical lines. Note that the (2,2) mode in the 
Figure is too close to the (1,3) mode to be well resolved.  

Figure 2. The resonant frequency response of a rectangular membrane with dimensions (1, 
1.37), with fixed edges and a wave speed of 100. The curve is calculated by wave approach. 
The vertical lines identified by (m,n) at the top show the fm,n resonance frequencies 
calculated by Eq.(4).
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C. Triangles

1) The Right Isosceles Triangle

The straightforward application of the above procedure is now applied to a triangle. The 
triangular membrane considered here has unit sides in the x and y directions and is fixed on its 
perimeter.

It was noted by Rayleigh  [1], that the modal frequencies of the fixed perimeter right isosceles 
triangle can be associated with a subset of the modes of the corresponding square. Specifically 
the square modes which have a nodal line along the diagonal. For the unit right isosceles triangle, 
these are,

    fm,n =
c
2
(m+ n)2 + n2 , m,n = 1,2,.... ;    (7a)

whereas the resonances for the unit square with fixed perimeter are given by,

    fm,n =
c
2

m2 + n2 , m,n = 1,2,....   .     (7b)

The closed path trajectories are determined in accordance with the method described above, and 
the first few are diagrammed in Fig. (3). The two shortest rays, represented by a) and b), fold 
back on themselves and are thereby disallowed. They would also give rise to resonant 
frequencies not allowed by Eq. (7a). It can be seen, by inspection, that the closed path length in 
a) of Fig. (3) is 2, i.e. twice the  length of one of the equal legs, and that in b) it is 2 2  times the 
leg length; from there on, it is not as obvious.

 

           

       
Figure 3. The first few closed path trajectories for the right isosceles triangle.  
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The factor  β  in Eq. (5), which relates the closed path lengths with the effective length of the 
associated 1-D system is the same as for the rectangle; i.e. β = 2LxLy  where we still have 

Lx = Ly = 1 ; but now β  is four times the area of the triangle. It was confirmed that the starting 

angles which produce closed paths and their associated path lengths are independent of the 
starting location. This has to be, since otherwise the membrane’s resonances would depend on 
where it was excited. This fact is borne out by examining paths f) and g). They are the same 
length and every leg of either path corresponds to a leg in the other which is propagating at the 
same angle. In fact, as the computer program sweeps through the angles, it will find a closed path 
at each angle present in the closed path. This leads to a computational advantage since every 
trajectory must at some point be traveling in, say, the first quadrant, and it is thereby only 
necessary to sweep that quadrant in searching for closed paths. This computational advantage 
does not hold for all polygons

Figure 4 shows the resonance response of the triangle calculated using the wave approach, 
specifically the resonance response function, Eq. (6). The solid vertical lines give the resonance 
frequencies determined by Rayleigh, Eq. (7a), and are labeled at the top with the indices for that 

Figure 4. The resonant frequency response of a right isosceles triangular membrane with 
unit sides (and 2  hypotenuse) with fixed edges and a wave speed of 100. The curve is 
calculated by wave approach. The vertical solid lines, identified by (m,n) at the top, show 
the allowed fm,n resonance frequencies of a unit square calculated by Eq. (7a) The dashed 
lines show the forbidden resonances, fm,n, identified near the bottom by [m,n], of the unit 
square calculated by Eq. (7b).
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equation. The correspondence between the wave calculation and the allowed resonances of Eq. 
(7a) is convincing and each peak in the wave calculation can be identified with one of the modes 
in the Rayleigh treatment. As mentioned, the Rayleigh resonances are a subset of the resonances 
of the enclosing square; i.e. there are square resonances which are forbidden in the triangle. The 
complete set of square resonances are calculated by Eq. (7b) and thereby include the forbidden 
ones which are shown by the vertical dashed lines in the figure. These forbidden modes are 
labeled with the indices as used in Eq. (7b) and identified in the figure in the square brackets near 
the bottom of the figure.

2) The Equilateral Triangle

The equilateral triangle can also be solved exactly. This was done by Lamé [2] who gives the 
resonance frequencies for the unit equilateral triangle as:

   fm,n =
2c
3

m2 + n2 + mn, m,n = 1,2,.... .    (8)

   
The eight shortest closed paths for the equilateral triangle are ordered by increasing length and 
shown in Fig. (5). The correspondence between the closed path length, (Lcp )N , and the 

equivalent string length, L 'N , is:

    L 'N = β
(Lcp )N

, β = 3 3
4 .      (9)

Figure 5. The first few closed path trajectories for the equilateral triangle.
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The shortest path, a) in Fig. (5), folds back on itself and thereby not allowed. All other paths are 
allowed and the resonance response for the equilateral triangle with unit sides is calculated by 
Eq. (6) and shown in Fig. (6). The solid vertical lines give the resonance frequencies determined 
by  Lamé and are labeled at the top with the indices for Eq.(8). The correspondence between the 
wave calculation and the allowed resonances of Eq. (8) is quite good and each peak in the wave 
calculation is identified with one of the modes in the Lamé treatment.

Figure 6. The resonant frequency response of an equilateral triangular membrane with unit 
sides and fixed edges and a wave speed of 100. The curve is calculated by the wave 
approach. The vertical lines identified by (m,n) at the top show the fm,n resonance 
frequencies calculated by Lamé’s formula, Eq. (8). 

2) The Obtuse Triangle

The technique is now applied to an obtuse triangle with arbitrary angles and a unit base; a shape 
for which there is no simple classical solution. The first few closed paths are shown in Fig. (7). 
Paths c) and d) are the same, though found from different starting angles, I confirmed that the 
resonant path lengths (and hence, the resonant frequencies) are independent of starting location. 
The angles which the sides make with the base in this example were 61 and 48 degrees.
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Figure 7. The first few closed path trajectories for the obtuse triangle. 

Figure 8. The calculated resonant frequency response of an obtuse triangular membrane 
with unit base, fixed edges and a wave speed of 100.

The splitting in the lowest frequency peaks results because the computer did not differentiate 
between two paths which were nearly the same path, but were started at different angles, and 
each met the closure criterion. This phenomena deserves a little more work.
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III. Conclusions

I have shown a way to calculate the resonant frequencies of rectangular and triangular 
membranes and demonstrated this by comparing the results with known results of exact 
calculations where they exist. I have extended this to the general obtuse triangle where exact 
solutions do not exist and the results look plausible. For the canonical shapes, rectangles, right 
isosceles and equilateral triangles, the comparison is remarkable; indicating that something is 
clearly correct.

The technique defines a relationship between the lengths of closed path ray trajectories in the 
polygon and the lengths of associated strings whose resonances are the resonances of the 
polygon. The relationship is that the associated string lengths are proportional to the reciprocal of 
the closed path lengths with the cumulative phase changes upon reflection at the boundaries 
accounted for.  A serious shortcoming in this work is that I do not have a way to get this 
proportionality constant for the general polygon; just in cases where the lowest resonant 
frequency of the polygon is known. I welcome any insight readers might provide.
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