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It was shown, in our previous works, that periodic points of d dimensional rational

integrable maps form varieties if the number of invariants p is greater than d/2. In the

case of 3 dimensional Lotka-Volterra map with 2 invariants the varieties are generated

iteratively by the map after it is recovered from the singularity confinement. We

present many other examples of this phenomenon in this paper when p = d− 1, and

discuss how to generalize our algorithm when p is less than d− 1.
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I. INTRODUCTION

We study in this paper rational maps

F : x = (x1, x2, ..., xd) → X = (X1, X2, ..., Xd), x,X ∈ Ĉ
d (1)

in d dimensional complex space where Ĉ = C ∪ {∞}. Since we consider rational maps it is

convenient to write them as

Xj(x) =
NXj

DXj

, (j = 1, 2, ..., d)

where NXj(x), DXj(x) ∈ Ĉ[x1, x2, ..., xd] are polynomials irreducible from each other.

∗email : yumibayashi-tsukasa@ed.tmu.ac.jp
†email : saito˙ru@nifty.com
‡email : wakimoto-yuki@ed.tmu.ac.jp

http://arxiv.org/abs/1107.1832v1
mailto:yumibayashi-tsukasa@ed.tmu.ac.jp
mailto:saito_ru@nifty.com
mailto:wakimoto-yuki@ed.tmu.ac.jp


Let i be one of {1, 2, ..., d} and denote by Σi the variety of zero set of DXi. The points on

Σi are mapped to F (Σi), which is divergent. But, unless the infinity is a fixed point of the

map, there is a possibility that it returns to a finite point after some steps of the map. This

is the phenomenon known as singularity confinement (SC). If the points return to a finite

region after m iteration of the map, we call this number m, the ‘steps of SC’. This means

that none of DX
(m+1)
j (Σi), j = 1, 2, ..., d in F (m+1)(Σi) is identically zero, while F (m)(Σi) is

divergent.

It is not difficult to see how this phenomenon takes place. Suppose the map has an inverse

which is again rational. If Σ− is the zero set of the denominators of the inverse map F−1,

it is mapped to F−1(Σ−), which is divergent, by the inverse map. Conversely the points at

infinity are mapped back to Σ− by the forward map F . From this observation it is clear

that when F (m)(Σi) ∈ F−1(Σ−), it is mapped to F (m+1)(Σi) ∈ Σ−, which is finite. This is

the mechanism that the SC phenomenon undergoes.

Now we assume that the map has p invariants. It was proved in [1] that, when p ≥ d/2,

periodic points of all periods form varieties of non zero dimension, provided periodic points

of one period form a variety. The existence of such a variety characterizes integrability of

the map. Since these varieties are specified only by the invariants, we called them invariant

varieties of periodic points, or IVPP for short. We shall refer this theorem as ‘IVPP theorem’

in this paper. Moreover, in [3], we have shown, in the 3 dimensional Lotka-Volterra (3dLV)

map case, that the IVPPs of all periods can be derived from SC.

Since there exist two invariants in the 3dLV map, they are sufficient to parameterize

the surface Σi by themselves. After the recovery from the singularity, F (m+1)(Σi) is on Σ−

by the reason we explained above. One can repeat the map further. Notice that all such

images of Σi are also parametrized by the invariants alone. This means that F (n+1)(Σi) for

all n ≥ m are sets of rational functions of the invariants. In other words the numerators

and denominators of X
(n+1)
j (Σi) are polynomial functions of the invariants.

An important observation in [3] is that DX
(n+1)
i (Σi) must vanish at the period n points,

because F (n+1)(Σi) is the nth image of F (Σi), which was divergent. This is possible only if

the zero set of one of the irreducible factors of the polynomial function DX
(n+1)
i (Σi) decides

the period n points. Moreover this polynomial factor of the invariants must be the one

which determines the IVPP of period n, because this map has a single polynomial for each
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period. In this way we could derive IVPPs of all periods simply by repeating the map.

We would like to emphasize that a direct derivation of an IVPP from the periodicity

conditions by using algebraic method becomes more and more difficult as the period and/or

the dimension of the map increases. On the other hand it is remarkable that our algorithm

explained above enables us to derive a series of IVPPs by iteration of the map.

We can directly apply this algorithm when the number of invariants is d− 1. One of the

purpose of this paper is to show that this algorithm works, not only in the 3dLV map, but

in general when p = d− 1. Some examples of this type will be presented in the next section

to derive many IVPPs of various integrable maps.

When the number of invariants p is less than d− 1, a single polynomial of the invariants

is not sufficient to determine IVPP of each period. Since we have not studied such cases

so far, we must develop new methods. Our second purpose of this paper is to solve this

problem. To this end we must introduce d− p− 1 additional conditions by hand so that Σi

is parameterized in terms of the invariants. One of the polynomials which determine IVPP

can be derived by the same procedure of the p = d − 1 case. We must determine other

functions by some consistency relations. We show in §3 how this new algorithm works in

the case of 3 point Toda map with d = 6 and p = 4. In the final section we summarize the

mechanism of SC studied in this paper and argue that the varieties formed by indeterminate

points of the map play an important part in this phenomenon.

II. GENERATION OF IVPP’S WHEN p = d− 1

In this section we study the simplest case of the derivation of IVPPs from SC. Namely

we assume that the map has p invariants,

H1(x), H2(x), ..., Hp(x), (2)

and consider the case p = d − 1. According to the IVPP theorem, the set of all period n

points are on a variety specified by the invariants

v(n) =
{

x ∈ Ĉ
d
∣

∣

∣
γ(n)(H1(x), ..., Hd−1(x)) = 0

}

. (3)

Here γ(n) is an irreducible polynomial function of the invariants, when p = d−1, and specifies

the IVPP of period n. Hence the dimension of the variety v(n) is d− 1. Generally speaking
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the function γ(n) could be decided from the periodicity conditions of the map. It is, however,

quite difficult task to find them directly in an algebraic method [1].

In order to derive IVPPs from SC, which we explained in the previous section, let us first

summarize the algorithm in the case p = d− 1.

Algorithm 1

Let F be a rational map (1) which has d− 1 invariants (2). We assume SC of this map,

such that the points of Σi, which are mapped once to infinity, come back to a finite region

after m steps. In other words F (m+1)(Σi) is finite, while F
(m)(Σi) is not.

1. If we fix the values of the invariants, we can always solve the d set of equations

{DXi(x) = 0, H1(x) = h1, H2(x) = h2, ..., Hp(x) = hp} (4)

for x = (x1, x2, ..., xd). This enables us to parameterize the points on Σi in terms of

the invariants h := (h1, h2, ..., hd−1), which we denote as

p(0) :=
(

x1(h), x2(h), ..., xd(h)
)

.

2. In the second step we iterate the map to see how SC works. It will be done by the

substitution of p(0) to F (l)(x), l ≤ m, which must be divergent in some components.

3. Finally by the substitution of p(0) to F (n+1)(x), n ≥ m we must find a polynomial

factor in DX
(n+1)
i which vanishes only at the points of period n. Since the factor is

given by the invariants it must coincide with γ(n) in (3).

Once the algorithm is fixed the manipulation is straightforward. In the following we show

three examples of the derivation of IVPPs of integrable maps when p = d − 1. We will see

that exactly the same mechanism of the generation of IVPPs, which we have found in the

case of 3dLV map in [1], works in all examples.

A. 2 dimensional Möbius Map

The first example is the two dimensional map (x, y) → (X, Y ), which is defined by (5). In

the following we use the notation (x, y), instead of (x1, x2) so on, to represent independent

variables.
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Map and Invariants

(x, y) → (X, Y ) =

(

x
1− y

1− x
, y

1− x

1− y

)

, (5)

with an invariant

r = xy.

Parametrization of Σx and SC

According to the first step of Algorithm 1 we find the initial point of the map which is

parameterized by the invariant r:

p(0) = (1, r) ∈ Σx.

Then the SC map undergoes as

p(0) → (∞, 0) → (−1,−r) →

(

−
1 + r

2
, −

2r

1 + r

)

→

(

−
1 + 3r

3 + r
, −

r(3 + r)

1 + 3r

)

→

(

−
1 + 6r + r2

4(1 + r)
, −

4r(1 + r)

1 + 6r + r2

)

→ · · ·

The steps of the SC is 2, in this map.

IVPP

From the expression of the denominator of X(4) in p(4), we find γ(3) = 3 + r. Similarly

from p(5), it is clear γ(4) = 1 + r, and so on. We obtain

γ(3) = 3 + r

γ(4) = 1 + r

γ(5) = 5 + 10r + r2

γ(6) = 1 + 3r

etc.
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Remarks

Our map (5) can be reduced to the usual Möbius map,

X =
x− r

1− x

whose IVPPs were given in [2], by a different method, as

v(n) =

{

1

1− r
− cos2

(π

n

)

= 0

}

in agreement with our above results. Notice that the IVPP of period 2 does not exist as

long as the invariant r is finite.

B. 3 dimensional Korteweg-de Vries map

The three dimensional KdV map was introduced in [4].

Map and Invariants

(X, Y, Z) =

(

x
1 + xz + xyz2

1 + yx+ yzx2
, y

1 + yx+ yzx2

1 + zy + zxy2
, z

1 + zy + zxy2

1 + xz + xyz2

)

(6)

There are two independent invariants:






f = xyz + 1

g = (1 + xy)(1 + yz)(1 + zx) + 1.

Parametrization of Σx and SC

p(0) =

(

−
f 2 − 2f + g

g(f − 1)
, −

f(f − 1)(f − 2)

f 2 − 2f + g
,
g(f − 1)

f(f − 2)

)

∈ Σx

p(0) → (∞, 0, 1− f) → (∞, 1− f, 0)

→

(

−
f 2 − 2f + g

g(f − 1)
,
g(f − 1)

f(f − 2)
, −

f(f − 1)(f − 2)

f 2 − 2f + g

)

→ · · ·

The steps of SC is 3.
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IVPP

γ(2) = g,

γ(3) = (f 2 − 2f + g)2 − gf(f − 2),

γ(4) = (f 2 − 2f + g)3 − (g − 1)f 3(f − 2)3,

γ(5) = (f 2 − 2f + g)6 − gf 2(f − 2)2(f 2 − 2f + 3)(f 2 − 2f + g)3

−3g3f(f − 2)(f − 1)2(f 2 − 2f + g)2 − g3f 3(f − 2)3(g − 1)2,

etc.

C. 4 dimensional Lotka-Volterra Map

The Lotka-Volterra map of an arbitrary dimension was defined in [4]. Since we have

shown the derivation of IVPPs from the SC in the case of the 3 dimensional LV map in [3],

we study here the four dimensional case.

Map and Invariants

(X, Y, Z,W ) =

(

x
1− y − z + yz + zw

1 − z − w + zw + wx
, y

1− z − w + zw + wx

1− w − x+ wx+ xy

, z
1 − w − x+ wx+ xy

1− x− y + xy + yz
, w

1− x− y + xy + yz

1− y − z + yz + zw

)



















r = xyzw

f = xyzw − (1− x)(1− y)(1− z)(1 − w)

g = (1− x− z)(1 − y − w) + 1
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Parametrization of Σx and SC

p(0) =

(

1

2

(−g2 + g − gf + 2f + gN)f

gf − g2r + f 2
,−

1

2

gf − 2gf − f + f 2 + fN

f
,

−
1

2

(−gf + 2gr + f − f 2 + fN)g

−gf − g2r + f 2 + g2f
,
1

2

−g − 2f + g2 + gf + gN

(−1 + g)g

)

∈ Σx

where

N =
√

1− 2g − 2f + g2 + 2gf + f 2 + 4r − 4gr,

p(0) →

(

∞, 0,−
1

2

−f + 1− g +N

−1 + g
, 1

)

→

(

1,
1

2

f + g − 1 +N

−1 + g
, 0,∞

)

→

(

1

2

−g − 2f + g2 + gf + gN

(−1 + g)g
,−

1

2

(−gf + 2gr + f − f 2 + fN)g

−gf − g2r + f 2 + g2f
,

−
1

2

gf − 2gr− f + f 2 + fN

f
,
1

2

(−g2 + g − gf + 2f + gN)f

gf − g2r + f 2

)

→ · · · .

The steps of SC is 3.

IVPP

γ(2) = g

γ(3) = f 2 − g2r + g2f

γ(4) = −2g2r + g2f + 2f 2

γ(5) = r2fg6 + 3f 5g2 + 3g4r2f 2 − 3rf 4g2 − 4g4rf 3 + f 6 − r3g6 + g4f 4

etc.

III. GENERALIZATION TO THE CASE p < d− 1

Next we consider generalization of our argument in the previous section to the case

p < d − 1. For this purpose we would like to propose a new algorithm which replaces
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Algorithm 1. We will apply this new algorithm to derive IVPPs of 3 point Toda map, in

which p = d− 2 with d = 6.

Algorithm 2

Let F be a rational map of (1) which has p invariants (2). We assume that the steps

of SC of this map is finite. Since the number of the invariants is not sufficient, we must

introduce d − p − 1 additional conditions to (4), so that Σi is parameterized only by the

invariants.

1. We propose to replace (4) by

{

DXi(x) = 0, DX
(2)
i (x) = 0, ..., DX

(d−p)
i (x) = 0,

H1(x) = h1, H2(x) = h2, ..., Hp(x) = hp

}

(7)

to solve for x = (x1, x2, ..., xd). This enables us to parameterize Σi in terms of the

values h of the invariants.

2. In the second step we iterate the map by the substitution of p(0) to F (l)(x), l ≤ m,

which must be divergent. The addition of new conditions in (7) shifts the point of

recovery from the divergences and increases the steps m of the SC. Otherwise it does

not change the mechanism of the SC.

3. By the substitution of p(0) to F (n+1)(x), n ≥ m we will find a single polynomial in

DX
(n+1)
i which vanishes only at the points of n period. It must be one of the inde-

pendent set of functions which determine the IVPP of period n.

4. Finally, to find other elements of the IVPP set of period n, we identify the other

components of F (n+1)(Σi) with those of F (Σi), which are all written by the invariants.

A. 3 point Toda map

We show one example obtained by the application of the new Algorithm 2. Although the

Toda map of arbitrary dimension was given again in [4], we present here only 3 dimensional

case. We mention that the analysis using computer algebra becomes harder as the number

of freedom increases, although the algorithm itself is the same.
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Map and Invariants

(X, Y, Z, U, V,W )

=

(

y
zu + zx+ wu

yw + yz + vw
, z
xv + xy + uv

zu + zx + wu
, x
yw + yz + vw

xv + xy + uv
,

u
yw + yz + vw

zu+ zx+ wu
, v
zu+ zx + wu

xv + xy + uv
, w

xv + xy + uv

yw+ yz + vw

)

(8)



























r = xyz

t = x+ y + z + u+ v + w

f = xy + yz + zx+ uv + vw + wu+ xv + yw + zu

g = uvw − xyz

(9)

Parameterization of Σx and SC

In order to parametrize Σx we use DX(2)(x) in (7), and obtain

p(0) =

(

r(−g2t + gf 2 + f 2r)

g3
,

g2f

−g2t+ f 2r
,

(−g2t + f 2r)g

(−g2t+ gf 2 + f 2r)f
,

−
(r + g)(−g2t+ f 2r)

g3
,−

g(−g2t + gf 2 + f 2r)

(−g2t + f 2r)f
,

g2f

−g2t+ gf 2 + f 2r

)

(10)

p(0) →

(

∞,−
g

f
, 0, 0,

g

f
,∞

)

→

(

0

0
, 0,

0

0
, 0,

0

0
,
0

0

)

→

(

0,
0

0
,
0

0
, 0,

0

0
,
0

0

)

→

(

−
g

f
,∞, 0, 0,∞,

g

f

)

→

(

g2f

−g2t + f 2r
,
r(−g2t+ gf 2 + f 2r)

g3
,

(−g2t+ f 2r)g

(−g2t + gf 2 + f 2r)f
,

−
(r + g)(−g2t + f 2r)

g3
,

g2f

−g2t + gf 2 + f 2r
,−

g(−g2t+ gf 2 + f 2r)

(−g2t + f 2r)f

)

→ . . . (11)

Here 0/0 means that the denominator and the numerator of the component become zero

separately, so that we can not determine its value. In other words the point is indeterminate.
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IVPP

The IVPPs of the Toda map are given by intersections of two functions in the form

v(n) = {γ
(n)
1 = 0, γ

(n)
2 = 0}. We have found

γ
(3)
1 = f, γ

(3)
2 = tg2

γ
(4)
1 = g2t− f 2r, γ

(4)
2 = tf + g

γ
(5)
1 = −2f 3r2 + 2frtg2 − f 3rg − g4, γ

(5)
2 = 4f 3rg3 + f 6r2 − g6

γ
(6)
1 = 5f 4r2 + 5gf 4r − 6g2f 2tr + g2f 4 − 3g3f 2t+ 2g4f + g4t2,

γ
(6)
2 = 4f 6 + 3t2f 2g2 − 4f 3g2 + g4

etc.

Remarks

Since we have chosen the function DX(2) as the additional condition for the parametriza-

tion of Σx, the number of steps of the SC increased from 3 to 5. This change makes us

unable to decide the IVPPs of period 2 and period 3. From our point of view, however,

this does not lower the value of our method. We can always impose periodicity conditions

to find the IVPP of each period separately. For instance, in the map (11), period 3 map

requires p(1) = p(4), or writing it explicitly

(

∞,−
g

f
, 0, 0,

g

f
,∞

)

=

(

−
g

f
,∞, 0, 0,∞,

g

f

)

,

from which we find f = 0, while g 6= 0. The comparison of p(5) with p(2) shows that they

can be the same only if tg2 = 0. In this way γ
(3)
1,2 are obtained.

As for the period 2 case, we can manipulate the periodicity conditions directly. We find

that the points on the intersection of the following three surfaces

xyu3 − 3xyz(x+ y − z + u)u− z(x2 + yz)(y2 + zx) = 0

yzv3 − 3xyz(y + z − x+ v)v − x(y2 + zx)(z2 + xy) = 0

zxw3 − 3xyz(z + x− y + w)w − y(z2 + xy)(x2 + yz) = 0

satisfy the period 2 conditions.
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IV. CONCLUSION

In conclusion we would like to summarize the mechanism of the SC in the cases we have

studied in this paper.

We choose the starting point p(0) of the map on the variety

Σ+ :=
d
⋃

j=1

Σj, Σj := {x|DXj(x) = 0}.

A component of the image p(1) ∈ F (Σ+) of the point p(0) is certainly divergent. But, at the

same time, some other components must vanish, so that the invariants remain finite. This

means p(0) ∈ Σ+ ∩Σ′
+, where Σ′

+ = ∪j{x|NXj = 0} is the zero set of the numerators of the

map. Since Σ′
+ coincides with Σ+ in all our examples studied in this paper, we simply write

it Σ+.

We would like to know the steps of SC. For this purpose let us denote the zero set of the

denominators of the inverse map by

Σ− =
d
⋃

j=1

Σ−1
j , Σ−1

j := {x|DX
(−1)
j (x) = 0}.

We also use the notation to specify the set of divergent points of the map

Λ∓(∞) := F±1(Σ±).

Then one can expect that the map of the SC proceed according to

Σ+ → Λ−(∞) → Λ+(∞) → Σ− → · · · . (12)

In fact points on Σ+ are mapped mostly in this way. It will be worthwhile to present some

examples of Λ±(∞). In the 3dKdV map case

Λ−(∞) =
[

(∞, 0, 1− f), (1− f,∞, 0), (0, 1− f,∞)
]

,

Λ+(∞) =
[

(∞, 1− f, 0), (0,∞, 1− f), (1− f, 0,∞)
]

, (13)

12



whereas those of the 3 point Toda map we have

Λ−(∞) =

[(

∞, y + v, 0, 0,
zv

y + v
,∞

)

,

(

0,∞, z + w,∞, 0,
xw

z + w

)

,

(

x+ u, 0,∞,
yu

x+ u
,∞, 0

)]

Λ+(∞) =

[(

0, y + u,∞,
xu

y + u
, 0,∞

)

,

(

∞, 0, z + v,∞,
yv

z + v
, 0

)

,

(

x+ w,∞, 0, 0,∞,
zw

x+ w

)]

. (14)

In the 2 dimensional Möbius map, Λ±(∞) are the same and given by

Λ+(∞) = Λ−(∞) =
[

(∞, 0), (0,∞)
]

.

Therefore we see that the number of steps of SC is three unless Λ+(∞) and Λ−(∞) coincide.

This simple rule is true, but not always. We have already encountered an exception in

the Toda map (11). An additional condition changed the number of steps of SC. In the

case (11) the point on Λ−(∞) is mapped twice before it is moved to Λ+(∞). We have

noticed that these two extra points are indeterminate. In fact we can show that the same

parameterization as (10 ) of the initial point could be obtained if we used the conditions

(NW (2) = 0, DW (2) = 0), instead of (DX = 0, DX(2) = 0) in (7).

Now there arises a question. Since the indeterminate points are on a subset of Σ+,

they must play some role in SC. Indeed they are on the intersection of the zero set of the

denominators Σ± and those of the numerators Σ′
±, which we denote

Λ± := Σ± ∩ Σ′
±.

In order to clarify the nature of the map on Λ±, we first recall that, in the 3dLV map, IVPPs

of all periods intersect along the lines which are specified by the conditions [3]

f = 0, g = 0. (15)

It is remarkable that this is true in all our examples studied in this paper, except for the

2 dimensional Möbius map, which has only one invariant. We can see it directly from the

expression of γ(n)’s in §2 and §3. Since every point on the lines (15) is occupied by periodic

points of all periods simultaneously, the map must behave quite singular on these lines. In

fact we can convince ourselves that the conditions (15) exactly agree with the intersections

13



Λ±, where both numerators and denominators of the map vanish altogether. In other words

IVPPs of different periods can stay together only at the indeterminate points of the map.

Next, to clarify the behavior of the map on Λ±, let us study the 3dKdV map (6) a little

more carefully. A point on Λ± can be expressed as

p+ =

(

x, 1−
1

x
,

1

1− x

)

, p− =

(

x,
1

1− x
, 1−

1

x

)

, (16)

in general. The substitution of p+ to F yields

F (p+) =

(

0

0
,
0

0
,
0

0

)

,

which has no information. Instead of starting from Λ+ one can approach it by shifting p+

to

p+a :=

(

x, 1−
1

x
+ aϕ(x),

1

1− x
+ aψ(x)

)

and taking the limit a→ 0. Here ϕ(x) and ψ(x) are some functions of x. In the a = 0 limit

the substitutions of p+a to F (n) yield

F (p+0) =

(

x+ (x− 2)R

(1− x)(1 −R)
,
(1− x)(1− R)

(1− 2x) +R
, −

(1 − 2x) +R

x+ (x− 2)R

)

,

F (2)(p+0) =

(

(1− 2x) +R

(1− x)(1 −R)
, −

x+ (x− 2)R

(1 − 2x) +R
,
(1− x)(1− R)

x+ (x− 2)R

)

,

etc., (17)

where R := (1−x)2ψ/ϕ. Since ϕ(x) and ψ(x) are arbitrary it is apparent that the image of

the map is indeterminate. Nevertheless one can show, in general,

F (p+0) ∈ Λ∓, if p+0 ∈ Λ±. (18)

Namely the points are mapped alternatively between two intersections Λ+ and Λ−.

We notice that, when f = 0, the points of Λ±(∞) in (13) are reproduced by p± at

x = ∞, 0, 1, respectively. Hence the SC takes place also on Λ±, but only at some limited

points. From this point of view the lines specified by p± are nothing but the blow up of

Λ±(∞) at f = 0, in the 3dKdV map case.

Similarly in the 3 point Toda map case a point on Λ±, which is again characterized by

(15), is mapped to indeterminate points
(

0
0
, 0
0
, 0
0
, 0
0
, 0
0
, 0
0

)

. We can parameterize these points

on Λ± as

p+ =

(

x, y,−
uw

x+ u
, u,−

xy

x+ u
, w

)

∈ Λ+

p− =

(

w, u,−
xy

x+ u
, x, y,−

uw

x+ u

)

∈ Λ− (19)

14



which are further mapped according to

F (p±) ∈ Λ∓,

respectively. Therefore a point which is trapped into Λ± remains there. It should be com-

pared with the SC map (12) of a generic point on Σ+.

On the other hand, in our 3 point Toda map (11), there appeared different type of

indeterminate points, which was obtained for a particular set of initial points on Σ+. If we

had adopted a different additional function in (7) of the Algorithm 2, we would have another

route of SC map. As we denote by Λ̃± such sets of indeterminate points, the general SC

map will undergo as

Σ+ → Λ−(∞) → Λ̃+ → Λ̃− → Λ+(∞) → Σ− → · · · .

Details will be discussed in our forthcoming paper.
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